Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A robust nickel catalyst with an unsymmetrical propyl-bridged diphosphine ligand for catalyst-transfer polymerization

Abstract

A new nickel diphosphine catalyst has been synthesized in which the bidentate ligand has two different phosphine donors, a typical PPh2 group and a stronger σ-donating PEt2 group. The catalyst was highly effective for the chain-growth polymerization of a 3-alkylthiophene monomer using a Suzuki–Miyaura cross-coupling. The catalyst is particularly effective for this polymerization in the presence of excess free ligand. The unsymmetrical diphosphine nickel complex reported here represents a new approach to tuning metal-ligand reactivity in the chain-growth polymerization of aromatic monomers. In addition, this new nickel catalyst exhibited increased hydrolytic resistance in the polymerization as compared to commercially available 1,3-bis(diphenylphosphino)propane nickel dichloride.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Scheme 3
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. He WY, Patrick BO, Kennepohl P. Identifying the missing link in catalyst transfer polymerization. Nat Commun. 2018;9:3866.

    PubMed  PubMed Central  Google Scholar 

  2. Leone AK, Goldberg PK, McNeil AJ. Ring-walking in catalyst-transfer polymerization. J Am Chem Soc. 2018;140:7846–50.

    CAS  PubMed  Google Scholar 

  3. Baker MA, Tsai CH, Noonan KJT. Diversifying cross-coupling strategies, catalysts and monomers for the controlled synthesis of conjugated polymers. Chem Eur J. 2018;24:13078–88.

    CAS  Google Scholar 

  4. Verheyen L, Leysen P, Van den Eede M-P, Ceunen W, Hardeman T, Koeckelberghs G. Advances in the controlled polymerization of conjugated polymers. Polymer. 2017;108:521–46.

    CAS  Google Scholar 

  5. Yokozawa T, Ohta Y. Transformation of step-growth polymerization into living chain-growth polymerization. Chem Rev. 2016;116:1950–68.

    CAS  PubMed  Google Scholar 

  6. Leone AK, McNeil AJ. Matchmaking in catalyst-transfer polycondensation: optimizing catalysts based on mechanistic insight. Acc Chem Res. 2016;49:2822–31.

    CAS  PubMed  Google Scholar 

  7. Bryan ZJ, McNeil AJ. Conjugated polymer synthesis via catalyst-transfer polycondensation (CTP): mechanism, scope, and applications. Macromolecules. 2013;46:8395–405.

    CAS  Google Scholar 

  8. Okamoto K, Luscombe CK. Controlled polymerizations for the synthesis of semiconducting conjugated polymers. Polym Chem. 2011;2:2424–34.

    CAS  Google Scholar 

  9. Yokozawa T, Yokoyama A. Chain-growth condensation polymerization for the synthesis of well-defined condensation polymers and π-conjugated polymers. Chem Rev. 2009;109:5595–619.

    CAS  PubMed  Google Scholar 

  10. Grisorio R, Suranna GP. Intramolecular catalyst transfer polymerisation of conjugated monomers: from lessons learned to future challenges. Polym Chem. 2015;6:7781–95.

    CAS  Google Scholar 

  11. Leone AK, Mueller EA, McNeil AJ. The history of palladium-catalyzed cross-couplings should inspire the future of catalyst-transfer polymerization. J Am Chem Soc. 2018;140:15126–39.

    CAS  PubMed  Google Scholar 

  12. Sugita H, Nojima M, Ohta Y, Yokozawa T. Unstoichiometric Suzuki–Miyaura cyclic polymerization of extensively conjugated monomers. Polym Chem. 2019;10:1182–5.

    CAS  Google Scholar 

  13. Kosaka K, Uchida T, Mikami K, Ohta Y, Yokozawa T. AmPhos Pd-catalyzed Suzuki Miyaura catalyst-transfer condensation polymerization: narrower dispersity by mixing the catalyst and base prior to polymerization. Macromolecules. 2018;51:364–9.

    CAS  Google Scholar 

  14. Seo K-B, Lee I-H, Lee J, Choi I, Choi T-L. A rational design of highly controlled Suzuki–Miyaura catalyst-transfer polycondensation for precision synthesis of polythiophenes and their block copolymers: marriage of palladacycle precatalysts with MIDA-boronates. J Am Chem Soc. 2018;140:4335–43.

    CAS  PubMed  Google Scholar 

  15. Sugita H, Nojima M, Ohta Y, Yokozawa T. Unusual cyclic polymerization through Suzuki–Miyaura coupling of polyphenylene bearing diboronate at both ends with excess dibromophenylene. Chem Commun. 2017;53:396–9.

    CAS  Google Scholar 

  16. Grisorio R, Suranna GP. Impact of precatalyst activation on Suzuki-Miyaura catalyst-transfer polymerizations: new mechanistic scenarios for pre-transmetalation events. ACS Macro Lett. 2017;6:1251–6.

    CAS  Google Scholar 

  17. Zhang H-H, Peng W, Dong J, Hu Q-S. t-Bu3P-coordinated 2-Phenylaniline-based palladacycle complex/ArBr as robust initiators for controlled Pd(0)/t-Bu3P-catalyzed Suzuki cross-coupling polymerization of AB-type monomers. ACS Macro Lett. 2016;5:656–60.

    CAS  Google Scholar 

  18. Zhang H-H, Xing C-H, Hu Q-S, Hong K. Controlled Pd(0)/t-Bu3P-catalyzed Suzuki cross-coupling polymerization of AB-type monomers with ArPd(t-Bu3P)X or Pd2(dba)3/t-Bu3P/ArX as the initiator. Macromolecules. 2015;48:967–78.

    CAS  Google Scholar 

  19. Kosaka K, Ohta Y, Yokozawa T. Influence of the boron moiety and water on Suzuki-Miyaura catalyst-transfer condensation polymerization. Macromol Rapid Commun. 2015;36:373–7.

    CAS  PubMed  Google Scholar 

  20. Sui A, Shi X, Tian H, Geng Y, Wang F. Suzuki-Miyaura catalyst-transfer polycondensation with Pd(IPr)(OAc)2 as the catalyst for the controlled synthesis of polyfluorenes and polythiophenes. Polym Chem. 2014;5:7072–80.

    CAS  Google Scholar 

  21. Grisorio R, Mastrorilli P, Suranna GP. A Pd(AcO)2/t-Bu3P/K3PO4 catalytic system for the control of Suzuki cross-coupling polymerisation. Polym Chem. 2014;5:4304–10.

    CAS  Google Scholar 

  22. Zhang H-H, Xing C-H, Hu Q-S. Controlled Pd(0)/t-Bu3P-catalyzed Suzuki cross-coupling polymerization of AB-type monomers with PhPd(t-Bu3P)I or Pd2(dba)3/t-Bu3P/ArI as the initiator. J Am Chem Soc. 2012;134:13156–9.

    CAS  PubMed  Google Scholar 

  23. Yokozawa T, Suzuki R, Nojima M, Ohta Y, Yokoyama A. Precision synthesis of poly(3-hexylthiophene) from catalyst-transfer Suzuki−Miyaura coupling polymerization. Macromol Rapid Commun. 2011;32:801–6.

    CAS  PubMed  Google Scholar 

  24. Yokoyama A, Suzuki H, Kubota Y, Ohuchi K, Higashimura H, Yokozawa T. Chain-growth polymerization for the synthesis of polyfluorene via Suzuki−Miyaura coupling reaction from an externally added initiator unit. J Am Chem Soc. 2007;129:7236–7.

    CAS  PubMed  Google Scholar 

  25. Baker MA, Zahn SF, Varni AJ, Tsai CH, Noonan KJT. Elucidating the role of diphosphine ligand in nickel-mediated Suzuki-Miyaura polycondensation. Macromolecules. 2018;51:5911–7.

    CAS  Google Scholar 

  26. Qiu Y, Worch JC, Fortney A, Gayathri C, Gil RR, Noonan KJT. Nickel-catalyzed Suzuki polycondensation for controlled synthesis of ester-functionalized conjugated polymers. Macromolecules. 2016;49:4757–62.

    CAS  Google Scholar 

  27. Benn FR, Briggs JC, McAuliffe CA. Unsymmetrical bis(phosphorus) compounds: synthesis of unsymmetrical ditertiary phosphines, phosphine oxides, and diquaternary phosphonium salts. J Chem Soc Dalton Trans. 1984:293–5.

  28. Briggs JC, McAuliffe CA, Hill WE, Minahan DMA, Dyer G. Unsymmetrical bisphosphorus ligands - Phosphorus-31 and Carbon-13 nuclear magnetic-resonance and mass-spectral measurements. J Chem Soc Perkin Trans 2. 1982:321–5.

    Google Scholar 

  29. Briggs JC, Dyer G. New synthesis of unsymmetrical bidendate phosphine ligands. Chem Ind. 1982:163–4.

  30. Petit C, Favre-Reguillon A, Albela B, Bonneviot L, Mignani G, Lemaire M. Mechanistic Insight into the reduction of tertiary phosphine oxides by Ti(OiPr)4/TMDS. Organometallics. 2009;28:6379–82.

    CAS  Google Scholar 

  31. Liversedge IA, Higgins SJ, Giles M, Heeney M, McCulloch I. Suzuki route to regioregular polyalkylthiophenes using Ir-catalysed borylation to make the monomer, and Pd complexes of bulky phosphanes as coupling catalysts for polymerisation. Tetrahedron Lett. 2006;47:5143–6.

    CAS  Google Scholar 

  32. Harris RK, Becker ED, De Menezes SMC, Goodfellow R, Granger P. NMR nomenclature. Nuclear spin properties and conventions for chemical shifts (IUPAC recommendations 2001). Pure Appl Chem. 2001;73:1795–818.

    CAS  Google Scholar 

  33. CrysAlisPro; The Woodlands, TX: Rigaku OD; 2015.

  34. Sheldrick G. SHELXT—integrated space-group and crystal-structure determination. Acta Cryst Sec A. 2015;71:3–8.

    Google Scholar 

  35. Sheldrick G. A short history of SHELX. Acta Cryst Sec A. 2008;64:112–22.

    CAS  Google Scholar 

  36. Müller P. Practical suggestions for better crystal structures. Crystallogr Rev. 2009;15:57–83.

    Google Scholar 

  37. Kohn P, Huettner S, Komber H, Senkovskyy V, Tkachov R, Kiriy A, et al. On the role of single regiodefects and polydispersity in regioregular poly(3-hexylthiophene): defect distribution, synthesis of defect-free chains, and a simple model for the determination of crystallinity. J Am Chem Soc. 2012;134:4790–805.

    CAS  PubMed  Google Scholar 

  38. Bronstein HA, Luscombe CK. Externally initiated regioregular P3HT with controlled molecular weight and narrow polydispersity. J Am Chem Soc. 2009;131:12894–5.

    CAS  PubMed  Google Scholar 

  39. Iovu MC, Sheina EE, Gil RR, McCullough RD. Experimental evidence for the quasi-“living” nature of the Grignard metathesis method for the synthesis of regioregular poly(3-alkylthiophenes). Macromolecules. 2005;38:8649–56.

    CAS  Google Scholar 

  40. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 09. Gaussian, Inc., Wallingford, CT: Gaussian, Inc.; 2009.

  41. Pople JA. The effect of quadrupole relaxation on nuclear magnetic resonance multiplets. Mol Phys. 1958;1:168–74.

    CAS  Google Scholar 

  42. Bomfim JAS, de Souza FP, Filgueiras CAL, de Sousa AG, Gambardella MTP. Diphosphine complexes of nickel: analogies in molecular structures and variety in crystalline arrangement. Polyhedron. 2003;22:1567–73.

    CAS  Google Scholar 

  43. Thomas AA, Zahrt AF, Delaney CP, Denmark SE. Elucidating the role of the boronic esters in the Suzuki–Miyaura reaction: structural, kinetic, and computational investigations. J Am Chem Soc. 2018;140:4401–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Thomas AA, Denmark SE. Pre-transmetalation intermediates in the Suzuki-Miyaura reaction revealed: the missing link. Science. 2016;352:329–32.

    CAS  PubMed  Google Scholar 

  45. Lennox AJJ, Lloyd-Jones GC. Transmetalation in the Suzuki–Miyaura coupling: the fork in the trail. Angew Chem Int Ed. 2013;52:7362–70.

    CAS  Google Scholar 

  46. Carrow BP, Hartwig JF. Distinguishing between pathways for transmetalation in Suzuki-Miyaura reactions. J Am Chem Soc. 2011;133:2116–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Amatore C, Jutand A, Le Duc G. Kinetic data for the transmetalation/reductive elimination in palladium-catalyzed Suzuki-Miyaura reactions: unexpected triple role of hydroxide ions used as base. Chem Eur J. 2011;17:2492–503.

    CAS  PubMed  Google Scholar 

  48. Schmidt AF, Kurokhtina AA, Larina EV. Role of a base in Suzuki-Miyaura reaction. Russ J Gen Chem. 2011;81:1573.

    CAS  Google Scholar 

  49. Christian AH, Muller P, Monfette S. Nickel hydroxo complexes as intermediates in nickel-catalyzed Suzuki-Miyaura cross-coupling. Organometallics. 2014;33:2134–7.

    CAS  Google Scholar 

  50. Inada K, Miyaura N. Synthesis of biaryls via cross-coupling reaction of arylboronic acids with aryl chlorides catalyzed by NiCl2/triphenylphosphine complexes. Tetrahedron. 2000;56:8657–60.

    CAS  Google Scholar 

  51. Ueda M, Saitoh A, Oh-tani S, Miyaura N. Synthesis of biaryls via nickel-catalyzed cross-coupling reaction of arylboronic acids and aryl mesylates. Tetrahedron. 1998;54:13079–86.

    CAS  Google Scholar 

  52. Saito S, Oh-tani S, Miyaura N. Synthesis of biaryls via a nickel(0)-catalyzed cross-coupling reaction of chloroarenes with arylboronic acids. J Org Chem. 1997;62:8024–30.

    CAS  PubMed  Google Scholar 

  53. Lanni EL, McNeil AJ. Evidence for ligand-dependent mechanistic changes in nickel-catalyzed chain-growth polymerizations. Macromolecules. 2010;43:8039–44.

    CAS  Google Scholar 

  54. Senkovskyy V, Sommer M, Tkachov R, Komber H, Huck WTS, Kiriy A. Convenient route to initiate Kumada catalyst-transfer polycondensation using Ni(dppe)Cl2 or Ni(dppp)Cl2 and sterically hindered Grignard compounds. Macromolecules. 2010;43:10157–61.

    CAS  Google Scholar 

  55. Senkovskyy V, Tkachov R, Beryozkina T, Komber H, Oertel U, Horecha M, et al. “Hairy” poly(3-hexylthiophene) particles prepared via surface-initiated Kumada catalyst-transfer polycondensation. J Am Chem Soc. 2009;131:16445–53.

    CAS  PubMed  Google Scholar 

  56. Boyd SD, Jen AK-Y, Luscombe CK. Steric stabilization effects in nickel-catalyzed regioregular poly(3-hexylthiophene) synthesis. Macromolecules. 2009;42:9387–9.

    CAS  Google Scholar 

  57. Doubina N, Ho A, Jen AK-Y, Luscombe CK. Effect of initiators on the Kumada catalyst-transfer polycondensation reaction. Macromolecules. 2009;42:7670–7.

    CAS  Google Scholar 

  58. Sheina EE, Liu J, Iovu MC, Laird DW, McCullough RD. Chain growth mechanism for regioregular nickel-initiated cross-coupling polymerizations. Macromolecules. 2004;37:3526–8.

    CAS  Google Scholar 

  59. Saito S, Sakai M, Miyaura N. A synthesis of biaryls via nickel(0)-catalyzed cross-coupling reaction of chloroarenes with phenylboronic acids. Tetrahedron Lett. 1996;37:2993–6.

    CAS  Google Scholar 

  60. Zenkina O, Altman M, Leitus G, Shimon LJW, Cohen R, van der Boom ME. From azobenzene coordination to aryl-halide bond activation by platinum. Organometallics. 2007;26:4528–34.

    CAS  Google Scholar 

  61. Yokoyama A, Kato A, Miyakoshi R, Yokozawa T. Precision synthesis of poly (N-hexylpyrrole) and its diblock copolymer with poly(p-phenylene) via catalyst-transfer polycondensation. Macromolecules. 2008;41:7271–3.

    CAS  Google Scholar 

  62. Hall AO, Lee SR, Bootsma AN, Bloom JWG, Wheeler SE, McNeil AJ. Reactive ligand influence on initiation in phenylene catalyst-transfer polymerization. J Polym Sci Part A Polym Chem. 2017;55:1530–5.

    CAS  Google Scholar 

  63. Lee JA, Luscombe CK. Dual-catalytic Ag-Pd system for direct arylation polymerization to synthesize poly(3-hexylthiophene). ACS Macro Lett. 2018;7:767–71.

    CAS  Google Scholar 

Download references

Acknowledgements

K.J.T.N. is grateful to the NSF for a CAREER Award (CHE-1455136). The NMR instrumentation at Carnegie Mellon University is partially supported by the NSF (CHE-0130903, CHE-1039870, and CHE-1726525). The authors would also like to thank both Prof. Tsutomu Yokozawa and Prof. Anne McNeil for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin J. T. Noonan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baker, M.A., Ayuso-Carrillo, J., Koos, M.R.M. et al. A robust nickel catalyst with an unsymmetrical propyl-bridged diphosphine ligand for catalyst-transfer polymerization. Polym J 52, 83–92 (2020). https://doi.org/10.1038/s41428-019-0259-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-019-0259-3

This article is cited by

Search

Quick links