Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Clinical utility of HBV surface antigen quantification in HBV e antigen-negative chronic HBV infection

Abstract

Chronic hepatitis B virus (HBV) infection is a serious problem owing to its worldwide distribution and potential adverse sequelae that include cirrhosis and/or hepatocellular carcinoma. Current antiviral therapies have much improved outcomes, but few patients achieve the ultimate goal of hepatitis B surface antigen (HBsAg) loss (functional cure). As hepatitis B e antigen (HBeAg)-negative chronic HBV infection is the final phase prior to HBsAg loss, the management of patients in this phase together with quantification of HBsAg has attracted increasing clinical and research interest. This Review integrates the findings from research in HBsAg kinetics and discusses how they might inform our understanding and management of HBeAg-negative chronic HBV infection. Studies have shown that HBsAg levels are highly predictive of the presence of inactive HBV infection and that serial changes in HBsAg levels might predict HBsAg loss within 1–3 years. Data also suggest that quantitative HBsAg monitoring is important during hepatitis flare and antiviral therapy, especially in the timing of the decision to stop therapy and to start off-therapy retreatment. These findings have shed new light on the natural course of HBV infection and might lead to optimization of the management of HBeAg-negative chronic HBV infection and contribute to the paradigm shift from indefinite to finite therapy for patients with HBV infection.

Key points

  • Chronic hepatitis B virus (HBV) infection is a serious clinical problem involving ~292 million people worldwide, and has the potential risk of adverse sequelae including cirrhosis and hepatocellular carcinoma.

  • A hepatitis B surface antigen (HBsAg) level <1,000 IU/ml is indicative of inactive infection and a level <200 IU/ml with decline of >0.5 log10 IU/ml per year predicts HBsAg loss within 1–3 years.

  • A hepatitis B e antigen (HBeAg)-negative patient with active infection requires nucleoside or nucleotide analogue (NUC) or interferon-based therapy; interferon-based therapy increases HBsAg decline and rate of loss.

  • Rapid HBsAg decline of >0.5 log10 IU/ml in 6 months can lead to HBsAg levels of <100 IU/ml or HBsAg loss during NUC therapy.

  • Stopping NUC therapy in sustained responders and those who achieve HBsAg <100 IU/ml by the end of therapy might increase the 5-year HBsAg loss by up to >30%.

  • HBsAg kinetics during clinical relapse can help the retreatment decision; retreatment is required in those with increasing HBsAg levels, whereas retreatment might be unnecessary in those with decreasing HBsAg levels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Natural course of chronic HBV infection.
Fig. 2: Schematic diagram of the HBV life cycle and its immunopathogenesis.
Fig. 3: HBsAg kinetics in inactive HBeAg-negative chronic HBV infection.
Fig. 4: HBsAg kinetics during hepatitis B flares with different outcomes.
Fig. 5: Flow chart of suggested quantitative HBsAg assay timings.

Similar content being viewed by others

References

  1. Polaris Observatory Collaborators. Global prevalence, treatment, and prevention of hepatitis B virus infection in 2016: a modelling study. Lancet Gastroenterol. Hepatol. 3, 383–403 (2018).

    Google Scholar 

  2. Liaw, Y. F. & Chu, C. M. Hepatitis B virus infection. Lancet 373, 582–592 (2009). A comprehensive review on the natural history and therapy of chronic HBV infection.

    CAS  PubMed  Google Scholar 

  3. Chen, Y. C. & Liaw, Y. F. Pharmacotherapeutic options for hepatitis B. Expert. Opin. Pharmacother. 17, 355–367 (2016).

    CAS  PubMed  Google Scholar 

  4. Chang, M. L. & Liaw, Y. F. Hepatitis B flares in chronic hepatitis B: pathogenesis, natural course and management. J. Hepatol. 61, 1407–1417 (2014). A review of hepatitis B flare, a frequent immune-mediated event that might lead to sustained remission or disease progression.

    PubMed  Google Scholar 

  5. Liaw, Y. F. Clinical utility of hepatitis B surface antigen quantitation in patients with chronic hepatitis B: a review. Hepatology 54, E1–E9 (2011).

    PubMed  Google Scholar 

  6. Brunetto, M. R. A new role for an old marker, HBsAg. J. Hepatol. 52, 475–477 (2010).

    CAS  PubMed  Google Scholar 

  7. Chan, H. L. et al. A longitudinal study on the natural history of serum hepatitis B surface antigen changes in chronic hepatitis B. Hepatology 52, 1232–1241 (2010).

    CAS  PubMed  Google Scholar 

  8. Nguyen, T. et al. Hepatitis B surface antigen levels during the natural history of chronic hepatitis B: a perspective on Asia. J. Hepatol. 52, 508–513 (2010).

    CAS  PubMed  Google Scholar 

  9. Jaroszewicz, J. et al. Hepatitis B surface antigen (HBsAg) levels in the natural history of hepatitis B virus (HBV)-infection: a European perspective. J. Hepatol. 52, 514–522 (2010).

    CAS  PubMed  Google Scholar 

  10. Sarin, S. K. et al. Asian-Pacific clinical practice guidelines on the management of hepatitis B: a 2015 update. Hepatol. Int. 10, 1–98 (2016).

    CAS  PubMed  Google Scholar 

  11. European Association for the Study of the Liver. EASL 2017 clinical practice guidelines on the management of hepatitis B virus infection. J. Hepatol. 67, 370–398 (2017).

    Google Scholar 

  12. Terrault, N. A. et al. Update on prevention, diagnosis, and treatment of chronic hepatitis B: AASLD 2018 hepatitis B guidance. Hepatology 67, 1560–1599 (2018).

    PubMed  PubMed Central  Google Scholar 

  13. Brunetto, M. R. et al. Hepatitis B surface antigen serum levels help to distinguish active from inactive hepatitis B virus genotype D carriers. Gastroenterology 139, 483–490 (2010). A landmark study on the HBsAg level of <1,000 IU/ml for the identification of carriers of inactive HBV.

    CAS  PubMed  Google Scholar 

  14. Tai, D. I. et al. Long-term outcome of hepatitis B e antigen-negative hepatitis B surface antigen carriers in relation to changes of alanine aminotransferase levels over time. Hepatology 49, 1859–1867 (2009).

    CAS  PubMed  Google Scholar 

  15. Chu, C. M., Chen, Y. C., Tai, D. I. & Liaw, Y. F. Level of hepatitis B virus DNA in inactive carriers with persistently normal levels of alanine aminotransferase. Clin. Gastroenterol. Hepatol. 8, 535–540 (2010).

    CAS  PubMed  Google Scholar 

  16. Chen, Y. C., Huang, S. F., Chu, C. M. & Liaw, Y. F. Serial HBV DNA levels in patients with persistently normal transaminase over 10 years following spontaneous HBeAg seroconversion. J. Viral Hepat. 19, 138–146 (2012).

    CAS  PubMed  Google Scholar 

  17. Oliveri, F. et al. Long-term outcome of inactive and active, low viraemic HBeAg-negative-hepatitis B virus infection: benign course towards HBsAg clearance. Liver Int. 37, 1622–1631 (2017).

    CAS  PubMed  Google Scholar 

  18. Bonacci, M. et al. Anti-viral therapy can be delayed or avoided in a significant proportion of HBeAg-negative Caucasian patients in the Grey Zone. Aliment. Pharmacol. Ther. 47, 1397–1408 (2018).

    CAS  PubMed  Google Scholar 

  19. Liu, J. et al. Serum levels of hepatitis B surface antigen and DNA can predict inactive carriers with low risk of disease progression. Hepatology 64, 381–389 (2016).

    CAS  PubMed  Google Scholar 

  20. Tseng, T. C. et al. Serum hepatitis B surface antigen levels help predict disease progression in patients with low hepatitis B virus loads. Hepatology 57, 441–450 (2013).

    CAS  PubMed  Google Scholar 

  21. Brouwer, W. P. et al. Repeated measurements of hepatitis B surface antigen identify carriers of inactive HBV during long-term follow-up. Clin. Gastroenterol. Hepatol. 14, 1481–1489 (2016).

    PubMed  Google Scholar 

  22. Pfefferkorn, M. et al. Quantification of large and middle proteins of hepatitis B virus surface antigen (HBsAg) as a novel tool for the identification of inactive HBV carriers. Gut 67, 2045–2053 (2018).

    CAS  PubMed  Google Scholar 

  23. Martinot-Peignoux, M. et al. Prediction of disease reactivation in asymptomatic hepatitis B e antigen-negative chronic hepatitis B patients using baseline serum measurements of HBsAg and HBV-DNA. J. Clin. Virol. 58, 401–407 (2013).

    CAS  PubMed  Google Scholar 

  24. Zhu, L. et al. Incidence and determinants of spontaneous hepatitis B surface antigen seroclearance and seroconversion in hepatitis B e antigen-negative chronic infection patients: a population-based prospective cohort. J. Viral Hepat. 25, 1588–1598 (2018).

    CAS  PubMed  Google Scholar 

  25. Chan, H. L., Wong, G. L., Tse, C. H., Chan, H. Y. & Wong, V. W. Viral determinants of hepatitis B surface antigen seroclearance in hepatitis B e antigen-negative chronic hepatitis B patients. J. Infect. Dis. 204, 408–414 (2011).

    CAS  PubMed  Google Scholar 

  26. Tseng, T. C. et al. Serum hepatitis B surface antigen levels predict surface antigen loss in hepatitis B e antigen seroconverters. Gastroenterology 141, 517–525 (2011).

    CAS  PubMed  Google Scholar 

  27. Chen, Y. C., Jeng, W. J., Chu, C. M. & Liaw, Y. F. Decreasing levels of HBsAg predict HBsAg seroclearance in patients with inactive chronic hepatitis B virus infection. Clin. Gastroenterol. Hepatol. 10, 297–302 (2012). A long-term HBsAg kinetic study in carriers of inactive HBV that led to the proposal of criteria for the prediction of HBsAg loss in 1–3 years.

    CAS  PubMed  Google Scholar 

  28. Liu, J. et al. A predictive scoring system for the seroclearance of HBsAg in HBeAg-seronegative chronic hepatitis B patients with genotype B or C infection. J. Hepatol. 58, 853–860 (2013).

    CAS  PubMed  Google Scholar 

  29. Seto, W. K. et al. A large case-control study on the predictability of hepatitis B surface antigen levels three years before hepatitis B surface antigen seroclearance. Hepatology 56, 812–819 (2012).

    CAS  PubMed  Google Scholar 

  30. Bonino, F. & Brunetto, M. R. Chronic hepatitis B e antigen (HBeAg) negative, anti-HBe positive hepatitis B: an overview. J. Hepatol. 39, (Suppl. 1), S160–S163 (2003).

    PubMed  Google Scholar 

  31. Liaw, Y. F., Tai, D. I., Chu, C. M., Pao, C. C. & Chen, T. J. Acute exacerbation in chronic type B hepatitis: comparison between HBeAg and antibody-positive patients. Hepatology 7, 20–23 (1987).

    CAS  PubMed  Google Scholar 

  32. Liaw, Y. F. et al. Asian-Pacific consensus statement on the management of chronic hepatitis B: a 2012 update. Hepatol. Int. 6, 531–561 (2012). Guidelines that propose a stopping rule for nucleoside or nucleotide therapy in HBV e antigen (HBeAg)-negative patients with chronic HBV infection.

    PubMed  Google Scholar 

  33. Liaw, Y. F., Pao, C. C. & Chu, C. M. Changes of serum HBV-DNA in relation to serum transaminase level during acute exacerbation in patients with chronic type B hepatitis. Liver 8, 231–235 (1988).

    CAS  PubMed  Google Scholar 

  34. Levrero, M. et al. Control of cccDNA function in hepatitis B virus infection. J. Hepatol. 51, 581–592 (2009).

    CAS  PubMed  Google Scholar 

  35. Papatheodoridis, G. et al. Changes of HBsAg and interferon-inducible protein 10 serum levels in naive HBeAg-negative chronic hepatitis B patients under 4-year entecavir therapy. J. Hepatol. 60, 62–68 (2014).

    CAS  PubMed  Google Scholar 

  36. Papatheodoridis, G. et al. Serum HBsAg kinetics and usefulness of interferon-inducible protein 10 serum in HBeAg-negative chronic hepatitis B patients treated with tenofovir disoproxil fumarate. J. Viral Hepat. 22, 1079–1087 (2015).

    CAS  PubMed  Google Scholar 

  37. Chevaliez, S., Hézode, C., Bahrami, S., Grare, M. & Pawlotsky, J. M. Long-term hepatitis B surface antigen (HBsAg) kinetics during nucleoside/nucleotide analogue therapy: finite treatment duration unlikely. J. Hepatol. 58, 676–683 (2013). A study showing why several decades is required for nucleoside or nucleotide therapy to achieve the therapeutic goal of HBV surface antigen loss.

    CAS  PubMed  Google Scholar 

  38. Marcellin, P. et al. Combination of tenofovir disoproxil fumarate and peginterferon α-2a increases loss of hepatitis B surface antigen in patients with chronic hepatitis B. Gastroenterology 150, 134–144 (2016).

    CAS  PubMed  Google Scholar 

  39. Marcellin, P. et al. Hepatitis B surface antigen levels: association with 5-year response to peginterferon alfa-2a in hepatitis B e-antigen-negative patients. Hepatol. Int. 7, 88–97 (2013).

    PubMed  Google Scholar 

  40. Brunetto, M. R. et al. Hepatitis B virus surface antigen levels: a guide to sustained response to peginterferon alfa-2a in HBeAg-negative chronic hepatitis B. Hepatology 49, 1141–1150 (2009).

    CAS  PubMed  Google Scholar 

  41. Lampertico, P. et al. Randomised study comparing 48 and 96 weeks peginterferon α-2a therapy in genotype D HBeAg-negative chronic hepatitis B. Gut 62, 290–298 (2013).

    CAS  PubMed  Google Scholar 

  42. Moucari, R. et al. Early serum HBsAg drop: a strong predictor of sustained virological response to pegylated interferon alfa-2a in HBeAg-negative patients. Hepatology 49, 1151–1157 (2009).

    CAS  PubMed  Google Scholar 

  43. Peng, C. Y. et al. Early serum HBsAg level as a strong predictor of sustained response to peginterferon alfa-2a in HBeAg-negative chronic hepatitis B. Aliment. Pharmacol. Ther. 35, 458–468 (2012).

    CAS  PubMed  Google Scholar 

  44. Lee, I. C. et al. Incidence and predictors of HBsAg loss after peginterferon therapy in HBeAg-negative chronic hepatitis B: a multicenter, long-term follow-up study. J. Infect. Dis. 218, 1075–1084 (2018).

    PubMed  Google Scholar 

  45. Chuaypen, N. et al. Predictive role of serum HBsAg and HBcrAg kinetics in patients with HBeAg-negative chronic hepatitis B receiving pegylated interferon-based therapy. Clin. Microbiol. Infect. 24, 306.e7–306.e13 (2018).

    CAS  Google Scholar 

  46. Rijckborst, V. et al. Validation of a stopping rule at week 12 using HBsAg and HBV DNA for HBeAg-negative patients treated with peginterferon alfa-2a. J. Hepatol. 56, 1006–1011 (2012).

    CAS  PubMed  Google Scholar 

  47. Boglione, L., Cusato, J., Cariti, G., Di Perri, G. & D’Avolio, A. Role of HBsAg decline in patients with chronic hepatitis B HBeAg-negative and E genotype treated with pegylated-interferon. Antivir. Res. 136, 32–36 (2016).

    CAS  PubMed  Google Scholar 

  48. Moucari, R. et al. Influence of genotype on hepatitis B surface antigen kinetics in hepatitis B e antigen-negative patients treated with pegylated interferon-alpha2a. Antivir. Ther. 14, 1183–1188 (2009).

    CAS  PubMed  Google Scholar 

  49. Brunetto, M. R. et al. Response to peginterferon alfa-2a (40KD) in HBeAg-negative CHB: on-treatment kinetics of HBsAg serum levels vary by HBV genotype. J. Hepatol. 59, 1153–1159 (2013).

    CAS  PubMed  Google Scholar 

  50. Buti, M. et al. Tenofovir alafenamide versus tenofovir disoproxil fumarate for the treatment of patients with HBeAg-negative chronic hepatitis B virus infection: a randomised, double-blind, phase 3, non-inferiority trial. Lancet. Gastroenterol. Hepatol. 1, 196–206 (2016).

    Google Scholar 

  51. Wong, G. L. et al. Serum hepatitis B surface antigen kinetics in severe reactivation of hepatitis B e antigen negative chronic hepatitis B patients receiving nucleoside/nucleotide analogues. Antivir. Ther. 18, 979–986 (2013).

    CAS  PubMed  Google Scholar 

  52. Zoulim, F. et al. Quantification of HBsAg in nucleos(t)ide-naïve patients treated for chronic hepatitis B with entecavir with or without tenofovir in the BE-LOW study. J. Hepatol. 62, 56–63 (2015).

    CAS  PubMed  Google Scholar 

  53. Jeng, W. J., Chen, Y. C., Chang, M. L. & Liaw, Y. F. α-Fetoprotein level-dependent early HBsAg decline during entecavir therapy in chronic hepatitis B with hepatitis flare. J. Antimicrob. Chemother. 71, 1601–1608 (2016).

    CAS  PubMed  Google Scholar 

  54. Liaw, Y. F., Tai, D. Y., Chen, T. J., Chu, C. M. & Huang, M. J. Alpha-fetoprotein changes in the course of chronic hepatitis: relation to bridging hepatic necrosis and hepatocellular carcinoma. Liver 6, 133–137 (1986).

    CAS  PubMed  Google Scholar 

  55. Xia, Y. et al. Interferon-γ and tumor necrosis factor-α produced by T cells reduce the HBV persistence form, cccDNA, without cytolysis. Gastroenterology 150, 194–205 (2016).

    CAS  PubMed  Google Scholar 

  56. Boni, C. et al. Transient restoration of anti-viral T cell responses induced by lamivudine therapy in chronic hepatitis B. J. Hepatol. 39, 595–605 (2003).

    CAS  PubMed  Google Scholar 

  57. Jeng, W. J., Chen, Y. C. & Liaw, Y. F. Great and rapid HBsAg decline in patients with on-treatment hepatitis flare in early phase of potent antiviral therapy. J. Viral Hepat. 25, 421–428 (2018).

    CAS  PubMed  Google Scholar 

  58. Peng, C. Y. et al. Early hepatitis B surface antigen decline predicts treatment response to entecavir in patients with chronic hepatitis B. Sci. Rep. 7, 42879 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Kim, G. A. et al. HBsAg seroclearance after nucleoside analogue therapy in patients with chronic hepatitis B: clinical outcomes and durability. Gut 63, 1325–1332 (2014).

    CAS  PubMed  Google Scholar 

  60. Jeng, W. J., Chen, Y. C., Chien, R. N., Sheen, I. S. & Liaw, Y. F. Incidence and predictors of hepatitis B surface antigen seroclearance after cessation of nucleos(t)ide analogue therapy in hepatitis B e antigen-negative chronic hepatitis B. Hepatology 68, 425–434 (2018). The largest study in HBeAg-negative patients showing much higher HBV surface antigen loss rate after cessation of nucleoside or nucleotide therapy in patients with sustained remission and un-retreated clinical relapse.

    CAS  PubMed  Google Scholar 

  61. Buti, M. et al. Seven-year efficacy and safety of treatment with tenofovir disoproxil fumarate for chronic hepatitis B virus infection. Dig. Dis. Sci. 60, 1457–1464 (2015).

    CAS  PubMed  Google Scholar 

  62. Hadziyannis, E. & Laras, A. Viral biomarkers in chronic HBeAg negative HBV infection. Genes 9, 469 (2018).

    PubMed Central  Google Scholar 

  63. Ahn, S. H. et al. Hepatitis B surface antigen loss with tenofovir disoproxil fumarate plus peginterferon alfa-2a: week 120 analysis. Dig. Dis. Sci. 63, 3487–3497 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Marcellin, P. et al. Predictors of response to tenofovir disoproxil fumarate plus peginterferon alfa-2a combination therapy for chronic hepatitis B. Aliment. Pharmacol. Ther. 44, 957–966 (2016).

    CAS  PubMed  Google Scholar 

  65. Qiu, K. et al. Systematic review with meta-analysis: combination treatment of regimens based on pegylated interferon for chronic hepatitis B focusing on hepatitis B surface antigen clearance. Aliment. Pharmacol. Ther. 47, 1340–1348 (2018).

    CAS  PubMed  Google Scholar 

  66. Bourlière, M. et al. Effect on HBs antigen clearance of addition of pegylated interferon alfa-2a to nucleos(t)ide analogue therapy versus nucleos(t)ide analogue therapy alone in patients with HBe antigen-negative chronic hepatitis B and sustained undetectable plasma hepatitis B virus DNA: a randomised, controlled, open-label trial. Lancet. Gastroenterol. Hepatol. 2, 177–188 (2017).

    Google Scholar 

  67. Chang, M. L., Liaw, Y. F. & Hadziyannis, S. J. Systematic review: cessation of long-term nucleos(t)ide analogue therapy in patients with hepatitis B e antigen-negative chronic hepatitis B. Aliment. Pharmacol. Ther. 42, 243–257 (2015).

    CAS  PubMed  Google Scholar 

  68. Papatheodoridis, G. et al. Discontinuation of oral antivirals in chronic hepatitis B: A systematic review. Hepatology 63, 1481–1492 (2016).

    CAS  PubMed  Google Scholar 

  69. Jeng, W. J. et al. Clinical relapse after cessation of tenofovir therapy in HBeAg-negative patients. Clin. Gastroenterol. Hepatol. 14, 1813–1820 (2016).

    CAS  PubMed  Google Scholar 

  70. Kuo, M. T. et al. Hepatitis B virus relapse rates in chronic hepatitis B patients who discontinue either entecavir or tenofovir. Aliment. Pharmacol. Ther. 49, 218–228 (2019).

    CAS  PubMed  Google Scholar 

  71. Chen, C. H. et al. Long-term incidence and predictors of hepatitis B surface antigen loss after discontinuing nucleoside analogues in noncirrhotic chronic hepatitis B patients. Clin. Microbiol. Infect. 24, 997–1003 (2018).

    CAS  PubMed  Google Scholar 

  72. Yao, C. C. et al. Incidence and predictors of HBV relapse after cessation of nucleoside analogues in HBeAg-negative patients with HBsAg ≤ 200 IU/mL. Sci. Rep. 7, 1839 (2017).

    PubMed  PubMed Central  Google Scholar 

  73. Su, T. H. et al. Distinct relapse rates and risk predictors after discontinuing tenofovir and entecavir therapy. J. Infect. Dis. 217, 1193–1201 (2018).

    CAS  PubMed  Google Scholar 

  74. Höner Zu Siederdissen, C. et al. Viral and host responses after stopping long-term nucleos(t)ide analogue therapy in HBeAg-negative chronic hepatitis B. J. Infect. Dis. 214, 1492–1497 (2016).

    PubMed  Google Scholar 

  75. Berg, T. et al. Long-term response after stopping tenofovir disoproxil fumarate in non-cirrhotic HBeAg-negative patients – FINITE study. J. Hepatol. 67, 918–924 (2017). The first and so far the only randomized controlled trial on events and increased HBsAg loss rate after stopping nucleoside or nucleotide therapy.

    CAS  PubMed  Google Scholar 

  76. Höner zu Siederdissen, C. et al. Contrasting timing of virological relapse after discontinuation of tenofovir or entecavir in hepatitis B e antigen-negative patients. J. Infect. Dis. 218, 1480–1484 (2018).

    PubMed  Google Scholar 

  77. Hadziyannis, S. J., Sevastianos, V., Rapti, I., Vassilopoulos, D. & Hadziyannis, E. Sustained responses and loss of HBsAg in HBeAg-negative patients with chronic hepatitis B who stop long-term treatment with adefovir. Gastroenterology 143, 629–636 (2012).

    CAS  PubMed  Google Scholar 

  78. Chi, H. et al. Reduced risk of relapse after long-term nucleos(t)ide analogue consolidation therapy for chronic hepatitis B. Aliment. Pharmacol. Ther. 41, 867–876 (2015).

    CAS  PubMed  Google Scholar 

  79. Hung, C. H. et al. Hepatitis B surface antigen loss and clinical outcomes between HBeAg-negative cirrhosis patients who discontinued or continued nucleoside analogue therapy. J. Viral Hepat. 24, 599–607 (2017).

    CAS  PubMed  Google Scholar 

  80. Zimmer, C. L. et al. Increased NK cell function after cessation of long-term nucleos(t)ide analogue treatment in chronic hepatitis B is associated with liver damage and HBsAg loss. J. Infect. Dis. 217, 1656–1666 (2018).

    CAS  PubMed  Google Scholar 

  81. Rivino, L. et al. Hepatitis B virus-specific T cells associate with viral control upon nucleos(t)ide-analogue therapy discontinuation. J. Clin. Invest 128, 668–681 (2018).

    PubMed  PubMed Central  Google Scholar 

  82. Rinker, F. et al. Hepatitis B virus-specific T cell responses after stopping nucleos(t)ide analogue therapy in HBeAg-negative chronic hepatitis B. J. Hepatol. 69, 584–593 (2018).

    CAS  PubMed  Google Scholar 

  83. Liaw, Y. F. Stop-and-watch strategy after cessation of nucleos(t)ide analogue therapy in HBeAg-negative patients. J. Hepatol. 68, 1102–1104 (2018).

    PubMed  Google Scholar 

  84. Liaw, Y. F., Jeng, W. J. & Chang, M. L. HBsAg kinetics in re-treatment decision for off-therapy hepatitis B flare in HBeAg-negative patients. Gastroenterology 154, 2280–2281 (2018). A proof-of-concept study using combined HBsAg and alanine aminotransferase kinetics for re-treatment decision.

    PubMed  Google Scholar 

  85. Jeng, W. J., Chang, M. L. & Liaw, Y. F. Off-therapy precipitous HBsAg decline predicts HBsAg loss after finite entecavir therapy in HBeAg-negative patients. J. Viral Hepat. 26, 1019–1026 (2019).

    CAS  PubMed  Google Scholar 

  86. Hsu, Y. C. et al. Combining hepatitis B core-related and surface antigens at end of nucleos(t)ide analogue treatment to predict off-therapy relapse risk. Aliment. Pharmacol. Ther. 49, 107–115 (2019).

    CAS  PubMed  Google Scholar 

  87. Wang, J. et al. Relationship between serum HBV-RNA levels and intrahepatic viral as well as histologic activity markers in entecavir-treated patients. J. Hepatol. 68, 16–24 (2018).

    CAS  Google Scholar 

  88. Martinez, M. G., Testoni, B. & Zoulim, F. Biological basis for functional cure of chronic hepatitis B. J. Viral Hepat. 26, 786–794 (2019).

    PubMed  Google Scholar 

Download references

Acknowledgements

The author has been supported by grants from Chang Gung Medical Research Fund (CMRPG1G0061-3) and the Prosperous Foundation, Taipei, Taiwan. The author thanks Su-Chiung Chu for assistance in preparing the manuscript and figures.

Reviewer information

Nature Reviews Gastroenterology & Hepatology thanks N. Coppola, P. Marcellin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Fan Liaw.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liaw, YF. Clinical utility of HBV surface antigen quantification in HBV e antigen-negative chronic HBV infection. Nat Rev Gastroenterol Hepatol 16, 631–641 (2019). https://doi.org/10.1038/s41575-019-0197-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-019-0197-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing