1932

Abstract

Transcription activator-like effectors (TALEs) from the genus are proteins with the remarkable ability to directly bind the promoters of genes in the plant host to induce their expression, which often helps bacterial colonization. Metaphorically, TALEs act as spies that infiltrate the plant disguised as high-ranking civilians (transcription factors) to trick the plant into activating weak points that allow an invasion. Current knowledge of how TALEs operate allows researchers to predict their activity (counterespionage) and exploit their function, engineering them to do our bidding (a Manchurian agent). This has been possible thanks particularly to the discovery of their DNA binding mechanism, which obeys specific amino acid–DNA correspondences (the TALE code). Here, we review the history of how researchers discovered the way these proteins work and what has changed in the ten years since the discovery of the code. Recommended music for reading this review can be found in the .

[Erratum, Closure]

An erratum has been published for this article:
Erratum: A Decade Decoded: Spies and Hackers in the History of TAL Effectors Research
Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-082718-100026
2019-08-25
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/phyto/57/1/annurev-phyto-082718-100026.html?itemId=/content/journals/10.1146/annurev-phyto-082718-100026&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Antony G, Zhou J, Huang S, Li T, Liu B et al. 2010. Rice xa13 recessive resistance to bacterial blight is defeated by induction of the disease susceptibility gene Os-11N3. Plant Cell Online 22:113864–76
    [Google Scholar]
  2. 2. 
    Barrangou R, Doudna JA. 2016. Applications of CRISPR technologies in research and beyond. Nat. Biotechnol. 34:9933–41
    [Google Scholar]
  3. 3. 
    Begoum FM. 1962. Observations on the Double Agent: Central Intelligence Agency Washington, DC: Cent. Stud. Intell https://www.cia.gov/library/readingroom/docs/DOC_0000609015.pdf
    [Google Scholar]
  4. 4. 
    Bent AF, Mackey D. 2007. Elicitors, effectors, and R genes: the new paradigm and a lifetime supply of questions. Annu. Rev. Phytopathol. 45:1399–436
    [Google Scholar]
  5. 5. 
    Bierne H, Cossart P. 2012. When bacteria target the nucleus: the emerging family of nucleomodulins. Cell. Microbiol. 14:5622–33
    [Google Scholar]
  6. 6. 
    Biffen RH. 1905. Mendel's laws of inheritance and wheat breeding. J. Agric. Sci. 1:14–48
    [Google Scholar]
  7. 7. 
    Blanvillain-Baufumé S, Reschke M, Solé M, Auguy F, Doucoure H et al. 2016. Targeted promoter editing for rice resistance to Xanthomonas oryzae pv. oryzae reveals differential activities for SWEET14-inducing TAL effectors. Plant Biotechnol. J. 15:3306–17
    [Google Scholar]
  8. 8. 
    Boch J, Bonas U, Lahaye T 2014. TAL effectors: pathogen strategies and plant resistance engineering. New Phytol 204:4823–32
    [Google Scholar]
  9. 9. 
    Boch J, Scholze H, Schornack S, Landgraf A, Hahn S et al. 2009. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:59591509–12
    [Google Scholar]
  10. 10. 
    Bogdanove AJ, Voytas DF. 2011. TAL effectors: customizable proteins for DNA targeting. Science 333:60511843–46
    [Google Scholar]
  11. 11. 
    Bonas U, Conrads-Strauch J, Balbo I 1993. Resistance in tomato to Xanthomonas campestris pv vesicatoria is determined by alleles of the pepper-specific avirulence gene avrBs3. Mol. Gen. Genet 238:1261–69
    [Google Scholar]
  12. 12. 
    Bonas U, Stall RE, Staskawicz B 1989. Genetic and structural characterization of the avirulence gene avrBs3 from Xanthomonas campestris pv. vesicatoria. Mol. Gen. Genet. 218:1127–36
    [Google Scholar]
  13. 13. 
    Brown AC. 2007. Bodyguard of Lies: The Extraordinary True Story Behind D-Day Guilford, CT: Globe Pequot Press947 pp.
    [Google Scholar]
  14. 14. 
    Canteros B, Minsavage G, Bonas U, Pring D, Stall R 1991. A gene from Xanthomonas campestris pv. vesicatoria that determines avirulence in tomato is related to avrBs3. Mol. Plant-Microbe Interact 4:6628–32
    [Google Scholar]
  15. 15. 
    Castiblanco LF, Gil J, Rojas A, Osorio D, Gutiérrez S et al. 2013. TALE1 from Xanthomonas axonopodis pv. manihotis acts as a transcriptional activator in plant cells and is important for pathogenicity in cassava plants. Mol. Plant Pathol. 14:184–95
    [Google Scholar]
  16. 16. 
    Cermak T, Doyle EL, Christian M, Wang L, Zhang Y et al. 2011. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39:12e82
    [Google Scholar]
  17. 17. 
    Cernadas RA, Doyle EL, Niño-Liu DO, Wilkins KE, Bancroft T et al. 2014. Code-assisted discovery of TAL effector targets in bacterial leaf streak of rice reveals contrast with bacterial blight and a novel susceptibility gene. PLOS Pathog 10:2e1003972
    [Google Scholar]
  18. 18. 
    Chen L-Q. 2014. SWEET sugar transporters for phloem transport and pathogen nutrition. New Phytol 201:41150–55
    [Google Scholar]
  19. 19. 
    Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F et al. 2010. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:2757–61
    [Google Scholar]
  20. 20. 
    Chu Z, Fu B, Yang H, Xu C, Li Z et al. 2006. Targeting xa13, a recessive gene for bacterial blight resistance in rice. Theor. Appl. Genet. 112:3455–61
    [Google Scholar]
  21. 21. 
    Cohn M, Bart RS, Shybut M, Dahlbeck D, Gomez M et al. 2014. Xanthomonas axonopodis virulence is promoted by a transcription activator-like effector-mediated induction of a SWEET sugar transporter in cassava. Mol. Plant-Microbe Interact. 27:111186–98
    [Google Scholar]
  22. 22. 
    Comai L, Kosuge T. 1980. Involvement of plasmid deoxyribonucleic acid in indoleacetic acid synthesis in Pseudomonas savastanoi. J. Bacteriol 143:2950–57
    [Google Scholar]
  23. 23. 
    Cong L, Zhou R, Kuo Y, Cunniff M, Zhang F 2012. Comprehensive interrogation of natural TALE DNA binding modules and transcriptional repressor domains. Nat. Commun. 3:968
    [Google Scholar]
  24. 24. 
    Cox KL, Meng F, Wilkins KE, Li F, Wang P et al. 2017. TAL effector driven induction of a SWEET gene confers susceptibility to bacterial blight of cotton. Nat. Commun. 8:15588
    [Google Scholar]
  25. 25. 
    Cuculis L, Abil Z, Zhao H, Schroeder CM 2015. Direct observation of TALE protein dynamics reveals a two-state search mechanism. Nat. Commun. 6:7277
    [Google Scholar]
  26. 26. 
    Cuculis L, Abil Z, Zhao H, Schroeder CM 2016. TALE proteins search DNA using a rotationally decoupled mechanism. Nat. Chem. Biol. 12:10831–37
    [Google Scholar]
  27. 27. 
    Dawkins R, Krebs JR. 1979. Arms races between and within species. Proc. R. Soc. B 205:1161489–511
    [Google Scholar]
  28. 28. 
    De Feyter R, Gabriel DW 1991. At least 6 avirulence genes are clustered on a 90-kb plasmid in Xanthomonas campestris pv. malvacearum. Mol. Plant-Microbe Interact. 4:5423–32
    [Google Scholar]
  29. 29. 
    de Lange O, Binder A, Lahaye T 2014. From dead leaf, to new life: TAL effectors as tools for synthetic biology. Plant J 78:5753–71
    [Google Scholar]
  30. 30. 
    de Lange O, Schreiber T, Schandry N, Radeck J, Braun KH et al. 2013. Breaking the DNA-binding code of Ralstonia solanacearum TAL effectors provides new possibilities to generate plant resistance genes against bacterial wilt disease. New Phytol 199:3773–86
    [Google Scholar]
  31. 31. 
    de Lange O, Wolf C, Thiel P, Krüger J, Kleusch C et al. 2015. DNA-binding proteins from marine bacteria expand the known sequence diversity of TALE-like repeats. Nucleic Acids Res 43:2010065–80
    [Google Scholar]
  32. 32. 
    Deng D, Yan C, Pan X, Mahfouz M, Wang J et al. 2012. Structural basis for sequence-specific recognition of DNA by TAL effectors. Science 335:6069720–23
    [Google Scholar]
  33. 33. 
    Deng D, Yan C, Wu J, Pan X, Yan N 2014. Revisiting the TALE repeat. Protein Cell 5:4297–306
    [Google Scholar]
  34. 34. 
    Deng D, Yin P, Yan C, Pan X, Gong X et al. 2012. Recognition of methylated DNA by TAL effectors. Cell Res 22:101502–4
    [Google Scholar]
  35. 35. 
    Dowson WJ. 1943. On the generic names Pseudomonas, Xanthomonas and Bacterium for certain bacterial plant pathogens. Trans. Br. Mycol. Soc. 26:4–14
    [Google Scholar]
  36. 36. 
    Doyle EL, Booher NJ, Standage DS, Voytas DF, Brendel VP et al. 2012. TAL effector-nucleotide targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction. Nucleic Acids Res 40:W1W117–22
    [Google Scholar]
  37. 37. 
    Duan S, Jia H, Pang Z, Teper D, White F et al. 2018. Functional characterization of the citrus canker susceptibility gene CsLOB1. Mol. Plant Pathol 19:81908–16
    [Google Scholar]
  38. 38. 
    Erkes A, Reschke M, Boch J, Grau J 2017. Evolution of transcription activator-like effectors in Xanthomonas oryzae. Genome Biol. Evol 9:61599–615
    [Google Scholar]
  39. 39. 
    Falahi Charkhabi N, Booher NJ, Peng Z, Wang L, Rahimian H et al. 2017. Complete genome sequencing and targeted mutagenesis reveal virulence contributions of Tal2 and Tal4b of Xanthomonas translucens pv. undulosa ICMP11055 in bacterial leaf streak of wheat. Front. Microbiol. 8:1488
    [Google Scholar]
  40. 40. 
    Ferreira RM, de Oliveira ACP, Moreira LM, Belasque J, Gourbeyre E et al. 2015. A TALE of transposition: Tn 3-like transposons play a major role in the spread of pathogenicity determinants of Xanthomonas citri and other xanthomonads. mBio 6:1e02505–14
    [Google Scholar]
  41. 41. 
    Flor H. 1946. Genetics of pathogenicity in Melampsora lini. J. Agric. Res 73:335–57
    [Google Scholar]
  42. 42. 
    Gao H, Wu X, Chai J, Han Z 2012. Crystal structure of a TALE protein reveals an extended N-terminal DNA binding region. Cell Res 22:121716–20
    [Google Scholar]
  43. 43. 
    Geiger-Schuller K, Mitra J, Ha T, Barrick D 2019. Functional instability allows access to DNA in longer transcription activator-like effector (TALE) arrays. eLife 8:e38298
    [Google Scholar]
  44. 44. 
    Gemayel R, Vinces MD, Legendre M, Verstrepen KJ 2010. Variable tandem repeats accelerate evolution of coding and regulatory sequences. Annu. Rev. Genet. 44:445–77
    [Google Scholar]
  45. 45. 
    Gijsegem FV, Genin S, Boucher C 1993. Conservation of secretion pathways for pathogenicity determinants of plant and animal bacteria. Trends Microbiol 1:5175–80
    [Google Scholar]
  46. 46. 
    Grau J, Wolf A, Reschke M, Bonas U, Posch S, Boch J 2013. Computational predictions provide insights into the biology of TAL effector target sites. PLOS Comput. Biol. 9:3e1002962
    [Google Scholar]
  47. 47. 
    Gu K, Yang B, Tian D, Wu L, Wang D et al. 2005. R gene expression induced by a type-III effector triggers disease resistance in rice. Nature 435:70451122–25
    [Google Scholar]
  48. 48. 
    Gürlebeck D, Szurek B, Bonas U 2005. Dimerization of the bacterial effector protein AvrBs3 in the plant cell cytoplasm prior to nuclear import: AvrBs3 dimerizes in the plant cell. Plant J 42:2175–87
    [Google Scholar]
  49. 49. 
    Hayward AC. 1993. The hosts of Xanthomonas. Xanthomonas JG Swings, EL Civerolo 1–119 Dordrecht, Neth: Springer
    [Google Scholar]
  50. 50. 
    Herbers K, Conrads-Strauch J, Bonas U 1992. Race-specificity of plant resistance to bacterial spot disease determined by repetitive motifs in a bacterial avirulence protein. Nature 356:6365172–74
    [Google Scholar]
  51. 51. 
    Hopkins CM, White F, Choi S, Guo A, Leach J 1992. Identification of a family of avirulence genes from Xanthomonas oryzae pv. oryzae. Mol. Plant-Microbe Interact. 5:6451–59
    [Google Scholar]
  52. 52. 
    Hu Y, Zhang J, Jia H, Sosso D, Li T et al. 2014. Lateral organ boundaries 1 is a disease susceptibility gene for citrus bacterial canker disease. PNAS 111:4E521–29
    [Google Scholar]
  53. 53. 
    Hui S, Shi Y, Tian J, Wang L, Li Y et al. 2019. TALE-carrying bacterial pathogens trap host nuclear import receptors for facilitation of infection of rice. Mol. Plant Pathol. 20:4519–32
    [Google Scholar]
  54. 54. 
    Hui S, Liu H, Zhang M, Chen D, Li Q et al. 2019. The host basal transcription factor IIA subunits coordinate for facilitating infection of TALEs-carrying bacterial pathogens in rice. Plant Sci 284:48–56
    [Google Scholar]
  55. 55. 
    Hummel AW, Bogdanove AJ. 2012. The roles of transcription activator-like (TAL) effectors in virulence and avirulence of Xanthomonas. Molecular Plant Immunity G Sessa 107–22 Hoboken, NJ: Wiley-Blackwell
    [Google Scholar]
  56. 56. 
    Hummel AW, Doyle EL, Bogdanove AJ 2012. Addition of transcription activator-like effector binding sites to a pathogen strain-specific rice bacterial blight resistance gene makes it effective against additional strains and against bacterial leaf streak. New Phytol 195:4883–93
    [Google Scholar]
  57. 57. 
    Hutin M, Pérez-Quintero AL, Lopez C, Szurek B 2015. MorTAL Kombat: the story of defense against TAL effectors through loss-of-susceptibility. Front. Plant Sci. 6:535
    [Google Scholar]
  58. 58. 
    Hutin M, Sabot F, Ghesquière A, Koebnik R, Szurek B 2015. A knowledge-based molecular screen uncovers a broad-spectrum OsSWEET14 resistance allele to bacterial blight from wild rice. Plant J 84:4694–703
    [Google Scholar]
  59. 59. 
    Iyer AS, McCouch SR. 2004. The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance. Mol. Plant-Microbe Interact. 17:121348–54
    [Google Scholar]
  60. 60. 
    Ji Z, Ji C, Liu B, Zou L, Chen G, Yang B 2016. Interfering TAL effectors of Xanthomonas oryzae neutralize R-gene-mediated plant disease resistance. Nat. Commun. 7:13435
    [Google Scholar]
  61. 61. 
    Jia H, Orbovic V, Jones JB, Wang N 2016. Modification of the PthA4 effector binding elements in Type I CsLOB1 promoter using Cas9/sgRNA to produce transgenic Duncan grapefruit alleviating XccΔpthA4:dCsLOB1.3 infection. Plant Biotechnol. J. 14:51291–301
    [Google Scholar]
  62. 62. 
    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:6096816–21
    [Google Scholar]
  63. 63. 
    Jones JDG, Dangl JL. 2006. The plant immune system. Nature 444:7117323–29
    [Google Scholar]
  64. 64. 
    Juillerat A, Bertonati C, Dubois G, Guyot V, Thomas S et al. 2014. BurrH: a new modular DNA binding protein for genome engineering. Sci. Rep. 4:3831
    [Google Scholar]
  65. 65. 
    Kay S, Hahn S, Marois E, Hause G, Bonas U 2007. A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science 318:5850648–51
    [Google Scholar]
  66. 66. 
    Keen NT. 2000. A century of plant pathology: a retrospective view on understanding host-parasite interactions. Annu. Rev. Phytopathol. 38:131–48
    [Google Scholar]
  67. 67. 
    Kim B, Hartmann R. 1985. Inheritance of a gene (Bs3) conferring hypersensitive resistance to Xanthomonascampestris pv. vesicatoria in pepper (Capsicum annuum). Plant Dis 69:233–35
    [Google Scholar]
  68. 68. 
    Kim Y, Kweon J, Kim A, Chon JK, Yoo JY et al. 2013. A library of TAL effector nucleases spanning the human genome. Nat. Biotechnol. 31:3251–58
    [Google Scholar]
  69. 69. 
    Knoop V, Staskawicz B, Bonas U 1991. Expression of the avirulence gene avrBs3 from Xanthomonas campestris pv. vesicatoria is not under the control of hrp genes and is independent of plant factors. J. Bacteriol. 173:227142–50
    [Google Scholar]
  70. 70. 
    Lackner G, Moebius N, Hertweck C 2011. Endofungal bacterium controls its host by an hrp type III secretion system. ISME J 5:2252–61
    [Google Scholar]
  71. 71. 
    Lackner G, Moebius N, Partida-Martinez L, Hertweck C 2011. Complete genome sequence of Burkholderia rhizoxinica, an endosymbiont of Rhizopus microsporus. J. Bacteriol 193:3783–84
    [Google Scholar]
  72. 72. 
    Lange OD, Wolf C, Dietze J, Elsaesser J, Morbitzer R, Lahaye T 2014. Programmable DNA-binding proteins from Burkholderia provide a fresh perspective on the TALE-like repeat domain. Nucleic Acids Res 42:117436–49
    [Google Scholar]
  73. 73. 
    Lebar T, Jerala R. 2016. Benchmarking of TALE- and CRISPR/dCas9-based transcriptional regulators in mammalian cells for the construction of synthetic genetic circuits. ACS Synth. Biol. 5:101050–58
    [Google Scholar]
  74. 74. 
    Li T, Liu B, Spalding MH, Weeks DP, Yang B 2012. High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat. Biotechnol. 30:5390–92
    [Google Scholar]
  75. 75. 
    Lin S, Zhao Y, Zhu Y, Gosney M, Deng X et al. 2016. An effective and inducible system of TAL effector-mediated transcriptional repression in Arabidopsis. Mol. Plant 9:111546–49
    [Google Scholar]
  76. 76. 
    Lindgren PB. 1997. The role of hrp genes during plant-bacterial interactions. Annu. Rev. Phytopathol. 35:1129–52
    [Google Scholar]
  77. 77. 
    Ma W, Zou L, Zhiyuan JI, Xiameng XU, Zhengyin XU et al. 2018. Xanthomonas oryzae pv. oryzae TALE proteins recruit OsTFIIAγ1 to compensate for the absence of OsTFIIAγ5 in bacterial blight in rice. Mol. Plant Pathol 19:102248–62
    [Google Scholar]
  78. 78. 
    Macho AP, Guidot A, Barberis P, Beuzón CR, Genin S 2010. A competitive index assay identifies several Ralstonia solanacearum type III effector mutant strains with reduced fitness in host plants. Mol. Plant-Microbe Interact. 23:91197–205
    [Google Scholar]
  79. 79. 
    Mak AN-S, Bradley P, Bogdanove AJ, Stoddard BL 2013. TAL effectors: function, structure, engineering and applications. Curr. Opin. Struct. Biol. 23:193–99
    [Google Scholar]
  80. 80. 
    Mak AN-S, Bradley P, Cernadas RA, Bogdanove AJ, Stoddard BL 2012. The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 335:6069716–19
    [Google Scholar]
  81. 81. 
    Marois E, Van den Ackerveken G, Bonas U 2002. The Xanthomonas type III effector protein AvrBs3 modulates plant gene expression and induces cell hypertrophy in the susceptible host. Mol. Plant-Microbe Interact. 15:7637–46
    [Google Scholar]
  82. 82. 
    Meckler JF, Bhakta MS, Kim M-S, Ovadia R, Habrian CH et al. 2013. Quantitative analysis of TALE-DNA interactions suggests polarity effects. Nucleic Acids Res 41:74118–28
    [Google Scholar]
  83. 83. 
    Mercer AC, Gaj T, Fuller RP, Barbas CF 2012. Chimeric TALE recombinases with programmable DNA sequence specificity. Nucleic Acids Res 40:2111163–72
    [Google Scholar]
  84. 84. 
    Mesarich CH, Bowen JK, Hamiaux C, Templeton MD 2015. Repeat-containing protein effectors of plant-associated organisms. Front. Plant Sci. 6:872
    [Google Scholar]
  85. 85. 
    Miyanari Y. 2014. TAL effector-mediated genome visualization (TGV). Methods 69:2198–204
    [Google Scholar]
  86. 86. 
    Moscou MJ, Bogdanove AJ. 2009. A simple cipher governs DNA recognition by TAL effectors. Science 326:59591501
    [Google Scholar]
  87. 87. 
    Mukhtar MS, Carvunis A-R, Dreze M, Epple P, Steinbrenner J et al. 2011. Independently evolved virulence effectors converge onto hubs in a plant immune system network. Science 333:6042596–601
    [Google Scholar]
  88. 88. 
    Murakami MT, Sforça ML, Neves JL, Paiva JH, Domingues MN et al. 2010. The repeat domain of the type III effector protein PthA shows a TPR-like structure and undergoes conformational changes upon DNA interaction. Proteins 78:163386–95
    [Google Scholar]
  89. 89. 
    Nat. Microbiol 2018. CRISPR still needs microbiologists. Nat. Microbiol. 3:6641
    [Google Scholar]
  90. 90. 
    Niepold F, Anderson D, Mills D 1985. Cloning determinants of pathogenesis from Pseudomonas syringae pathovar syringae. PNAS 82:2406–10
    [Google Scholar]
  91. 91. 
    Peeters N, Guidot A, Vailleau F, Valls M 2013. Ralstonia solanacearum, a widespread bacterial plant pathogen in the post‐genomic era. Mol. Plant Pathol. 14:7651–62
    [Google Scholar]
  92. 92. 
    Pérez-Quintero AL, Rodriguez-R LM, Dereeper A, López C, Koebnik R et al. 2013. An improved method for TAL effectors DNA-binding sites prediction reveals functional convergence in TAL repertoires of Xanthomonas oryzae strains. PLOS ONE 8:7e68464
    [Google Scholar]
  93. 93. 
    Ponciano G, Webb K, Bai J, Cruz CV, Leach JE 2004. Molecular characterization of the avrXa7 locus from Xanthomonas oryzae pv. oryzae field isolates. Physiol. Mol. Plant Pathol. 64:3145–53
    [Google Scholar]
  94. 94. 
    Praetorius F, Dietz H. 2017. Self-assembly of genetically encoded DNA-protein hybrid nanoscale shapes. Science 355:6331eaam5488
    [Google Scholar]
  95. 95. 
    Qasim W, Zhan H, Samarasinghe S, Adams S, Amrolia P et al. 2017. Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells. Sci. Transl. Med. 9:374eaaj2013
    [Google Scholar]
  96. 96. 
    Quibod IL, Perez-Quintero A, Booher NJ, Dossa GS, Grande G et al. 2016. Effector diversification contributes to Xanthomonas oryzae pv. oryzae phenotypic adaptation in a semi-isolated environment. Sci. Rep. 6:34137
    [Google Scholar]
  97. 97. 
    Read AC, Rinaldi FC, Hutin M, He Y-Q, Triplett LR, Bogdanove AJ 2016. Suppression of Xo1-mediated disease resistance in rice by a truncated, non-DNA-binding TAL effector of Xanthomonas oryzae. Front. Plant Sci 7:1516
    [Google Scholar]
  98. 98. 
    Reinke EC. 1962. Classical cryptography. Class. J. 58:3113–21
    [Google Scholar]
  99. 99. 
    Remenant B, Coupat-Goutaland B, Guidot A, Cellier G, Wicker E et al. 2010. Genomes of three tomato pathogens within the Ralstonia solanacearum species complex reveal significant evolutionary divergence. BMC Genom 11:379
    [Google Scholar]
  100. 100. 
    Richter A, Streubel J, Blücher C, Szurek B, Reschke M et al. 2014. A TAL effector repeat architecture for frameshift binding. Nat. Commun. 5:3447
    [Google Scholar]
  101. 101. 
    Rogers JM, Barrera LA, Reyon D, Sander JD, Kellis M et al. 2015. Context influences on TALE-DNA binding revealed by quantitative profiling. Nat. Commun. 6:7440
    [Google Scholar]
  102. 102. 
    Romer P, Hahn S, Jordan T, Strauss T, Bonas U, Lahaye T 2007. Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene. Science 318:5850645–48
    [Google Scholar]
  103. 103. 
    Rossier O, Wengelnik K, Hahn K, Bonas U 1999. The Xanthomonas Hrp type III system secretes proteins from plant and mammalian bacterial pathogens. PNAS 96:169368–73
    [Google Scholar]
  104. 104. 
    Ruh M, Briand M, Bonneau S, Jacques M-A, Chen NWG 2017. Xanthomonas adaptation to common bean is associated with horizontal transfers of genes encoding TAL effectors. BMC Genom 18:670
    [Google Scholar]
  105. 105. 
    Salanoubat M, Genin S, Artiguenave F, Gouzy J, Mangenot S et al. 2002. Genome sequence of the plant pathogen Ralstonia solanacearum. Nature 415:6871497–502
    [Google Scholar]
  106. 106. 
    Schandry N, de Lange O, Prior P, Lahaye T 2016. TALE-like effectors are an ancestral feature of the Ralstonia solanacearum species complex and converge in DNA targeting specificity. Front. Plant Sci. 7:1225
    [Google Scholar]
  107. 107. 
    Schandry N, Jacobs JM, Szurek B, Perez‐Quintero AL 2018. A cautionary TALE: how plant breeding may have favoured expanded TALE repertoires in Xanthomonas. Mol. Plant Pathol 19:61297–301
    [Google Scholar]
  108. 108. 
    Schornack S, Ballvora A, Gürlebeck D, Peart J, Ganal M et al. 2004. The tomato resistance protein Bs4 is a predicted non-nuclear TIR-NB-LRR protein that mediates defense responses to severely truncated derivatives of AvrBs4 and overexpressed AvrBs3. Plant J 37:146–60
    [Google Scholar]
  109. 109. 
    Schornack S, Meyer A, Römer P, Jordan T, Lahaye T 2006. Gene-for-gene-mediated recognition of nuclear-targeted AvrBs3-like bacterial effector proteins. J. Plant Physiol. 163:3256–72
    [Google Scholar]
  110. 110. 
    Schornack S, Minsavage GV, Stall RE, Jones JB, Lahaye T 2008. Characterization of AvrHah1, a novel AvrBs3-like effector from Xanthomonas gardneri with virulence and avirulence activity. New Phytol 179:2546–56
    [Google Scholar]
  111. 111. 
    Schreiber T, Bonas U. 2014. Repeat 1 of TAL effectors affects target specificity for the base at position zero. Nucleic Acids Res 42:117160–69
    [Google Scholar]
  112. 112. 
    Schwartz AR, Morbitzer R, Lahaye T, Staskawicz BJ 2017. TALE-induced bHLH transcription factors that activate a pectate lyase contribute to water soaking in bacterial spot of tomato. PNAS 114:5E897–903
    [Google Scholar]
  113. 113. 
    Singh S. 2002. The Code Book: The Secrets Behind Codebreaking New York: Random House269
    [Google Scholar]
  114. 114. 
    Staskawicz BJ, Dahlbeck D, Keen NT 1984. Cloned avirulence gene of Pseudomonas syringae pv. glycinea determines race-specific incompatibility on Glycine max (L.) Merr. PNAS 81:196024–28
    [Google Scholar]
  115. 115. 
    Stella S, Molina R, López-Méndez B, Juillerat A, Bertonati C et al. 2014. BuD, a helix-loop-helix DNA-binding domain for genome modification. Acta Crystallogr. D 70:72042–52
    [Google Scholar]
  116. 116. 
    Stella S, Molina R, Yefimenko I, Prieto J, Silva G et al. 2013. Structure of the AvrBs3-DNA complex provides new insights into the initial thymine-recognition mechanism. Acta Crystallogr. D 69:91707–16
    [Google Scholar]
  117. 117. 
    Strauss T, van Poecke RMP, Strauss A, Romer P, Minsavage GV et al. 2012. RNA-seq pinpoints a Xanthomonas TAL-effector activated resistance gene in a large-crop genome. PNAS 109:4719480–85
    [Google Scholar]
  118. 118. 
    Streubel J, Blücher C, Landgraf A, Boch J 2012. TAL effector RVD specificities and efficiencies. Nat. Biotechnol. 30:7593–95
    [Google Scholar]
  119. 119. 
    Streubel J, Pesce C, Hutin M, Koebnik R, Boch J, Szurek B 2013. Five phylogenetically close rice SWEET genes confer TAL effector-mediated susceptibility to Xanthomonas oryzae pv. oryzae. New Phytol. 200:3808–19
    [Google Scholar]
  120. 120. 
    Sugio A, Yang B, Zhu T, White FF 2007. Two type III effector genes of Xanthomonas oryzae pv. oryzae control the induction of the host genes OsTFIIAγ1 and OsTFX1 during bacterial blight of rice. PNAS 104:2510720–25
    [Google Scholar]
  121. 121. 
    Swarup S, De Feyter R, Brlansky RH, Gabriel DW 1991. A pathogenicity locus from Xanthomonas citri enables strains from several pathovars of X. campestris to elicit cankerlike lesions on citrus. Phytopathology 81:7802–9
    [Google Scholar]
  122. 122. 
    Szurek B, Marois E, Bonas U, Van den Ackerveken G 2001. Eukaryotic features of the Xanthomonas type III effector AvrBs3: protein domains involved in transcriptional activation and the interaction with nuclear import receptors from pepper. Plant J 26:5523–34
    [Google Scholar]
  123. 123. 
    Szurek B, Rossier O, Hause G, Bonas U 2002. Type III-dependent translocation of the Xanthomonas AvrBs3 protein into the plant cell. Mol. Microbiol. 46:113–23
    [Google Scholar]
  124. 124. 
    Tian D, Wang J, Zeng X, Gu K, Qiu C et al. 2014. The rice TAL effector-dependent resistance protein XA10 triggers cell death and calcium depletion in the endoplasmic reticulum. Plant Cell 26:1497–515
    [Google Scholar]
  125. 125. 
    Tran TT, Pérez-Quintero AL, Wonni I, Carpenter SCD, Yu Y et al. 2018. Functional analysis of African Xanthomonas oryzae pv. oryzae TALomes reveals a new susceptibility gene in bacterial leaf blight of rice. PLOS Pathog 14:6e1007092
    [Google Scholar]
  126. 126. 
    Triplett LR, Cohen SP, Heffelfinger C, Schmidt CL, Huerta AI et al. 2016. A resistance locus in the American heirloom rice variety Carolina Gold Select is triggered by TAL effectors with diverse predicted targets and is effective against African strains of Xanthomonas oryzae pv. oryzicola. Plant J. 87:5472–83
    [Google Scholar]
  127. 127. 
    Van den Ackerveken G, Marois E, Bonas U 1996. Recognition of the bacterial avirulence protein AvrBs3 occurs inside the host plant cell. Cell 87:71307–16
    [Google Scholar]
  128. 128. 
    Vera Cruz CM, Bai J, Oña I, Leung H, Nelson RJ et al. 2000. Predicting durability of a disease resistance gene based on an assessment of the fitness loss and epidemiological consequences of avirulence gene mutation. PNAS 97:2513500–5
    [Google Scholar]
  129. 129. 
    Verdier V, Triplett LR, Hummel AW, Corral R, Cernadas RA et al. 2012. Transcription activator-like (TAL) effectors targeting OsSWEET genes enhance virulence on diverse rice (Oryza sativa) varieties when expressed individually in a TAL effector-deficient strain of Xanthomonas oryzae. New Phytol 196:41197–207
    [Google Scholar]
  130. 130. 
    Voytas DF, Joung JK. 2009. DNA binding made easy. Science 326:59591491–92
    [Google Scholar]
  131. 131. 
    Wakker JH. 1887. Onderzoek der Ziekten van Hyacinthen en Andere Bol-en Knolgewassen Gedurende de Jaren 1883, 1884 en 1885 Haarlem, Neth. Alg. Ver. Bloembollencult:.
    [Google Scholar]
  132. 132. 
    Wan H, Chang S, Hu J, Tian X, Wang M 2016. Potential role of the last half repeat in TAL effectors revealed by a molecular simulation study. BioMed Res. Int. 2016:8036450
    [Google Scholar]
  133. 133. 
    Wang C, Fan Y, Zheng C, Qin T, Zhang X, Zhao K 2014. High-resolution genetic mapping of rice bacterial blight resistance gene Xa23. Mol. Genet. Genom 289:5745–53
    [Google Scholar]
  134. 134. 
    Wang J, Zeng X, Tian D, Yang X, Wang L, Yin Z 2018. The pepper Bs4C proteins are localized to the endoplasmic reticulum (ER) membrane and confer disease resistance to bacterial blight in transgenic rice: the Bs4C genes confer disease resistance in rice. Mol. Plant Pathol. 19:82025–35
    [Google Scholar]
  135. 135. 
    Wang L, Rinaldi FC, Singh P, Doyle EL, Dubrow ZE et al. 2017. TAL effectors drive transcription bidirectionally in plants. Mol. Plant 10:2285–96
    [Google Scholar]
  136. 136. 
    Win J, Chaparro-Garcia A, Belhaj K, Saunders DGO, Yoshida K et al. 2012. Effector biology of plant-associated organisms: concepts and perspectives. Cold Spring Harb. Symp. Quant. Biol. 77:235–47
    [Google Scholar]
  137. 137. 
    Xu C, Luo F, Hochholdinger F 2016. LOB domain proteins: beyond lateral organ boundaries. Trends Plant Sci 21:2159–67
    [Google Scholar]
  138. 138. 
    Yang B, Sugio A, White FF 2006. Os8N3 is a host disease-susceptibility gene for bacterial blight of rice. PNAS 103:2710503–8
    [Google Scholar]
  139. 139. 
    Yang B, Zhu W, Johnson LB, White FF 2000. The virulence factor AvrXa7 of Xanthomonas oryzae pv. oryzae is a type III secretion pathway-dependent nuclear-localized double-stranded DNA-binding protein. PNAS 97:179807–12
    [Google Scholar]
  140. 140. 
    Yang J, Zhang Y, Yuan P, Zhou Y, Cai C et al. 2014. Complete decoding of TAL effectors for DNA recognition. Cell Res 24:5628–31
    [Google Scholar]
  141. 141. 
    Yang Y, Gabriel DW. 1995. Intragenic recombination of a single plant pathogen gene provides a mechanism for the evolution of new host specificities. J. Bacteriol. 177:174963–68
    [Google Scholar]
  142. 142. 
    Yang Y, Gabriel DW. 1995. Xanthomonas avirulence/pathogenicity gene family encodes functional plant nuclear targeting signals. Mol. Plant-Microbe Interact. 8:4627–31
    [Google Scholar]
  143. 143. 
    Yin P, Deng D, Yan C, Pan X, Xi JJ et al. 2012. Specific DNA-RNA hybrid recognition by TAL effectors. Cell Rep 2:4707–13
    [Google Scholar]
  144. 144. 
    Yong E. 2018. The CRISPR baby scandal gets worse by the day. The Atlantic Dec. 3. https://www.theatlantic.com/science/archive/2018/12/15-worrying-things-about-crispr-babies-scandal/577234/
    [Google Scholar]
  145. 145. 
    Yoshimura S, Yamanouchi U, Katayose Y, Toki S, Wang Z-X et al. 1998. Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterialinoculation. PNAS 95:41663–68
    [Google Scholar]
  146. 146. 
    Yu Y, Streubel J, Balzergue S, Champion A, Boch J et al. 2011. Colonization of rice leaf blades by an African strain of Xanthomonas oryzae pv. oryzae depends on a new TAL effector that induces the rice nodulin-3 Os11N3 gene. Mol. Plant-Microbe Interact. 24:91102–13
    [Google Scholar]
  147. 147. 
    Yuan M, Ke Y, Huang R, Ma L, Yang Z et al. 2016. A host basal transcription factor is a key component for infection of rice by TALE-carrying bacteria. eLife 5:e19605
    [Google Scholar]
  148. 148. 
    Zeng X, Tian D, Gu K, Zhou Z, Yang X et al. 2015. Genetic engineering of the Xa10 promoter for broad-spectrum and durable resistance to Xanthomonas oryzae pv. oryzae. Plant Biotechnol. J. 13:7993–1001
    [Google Scholar]
  149. 149. 
    Zhang J, Huguet-Tapia JC, Hu Y, Jones J, Wang N et al. 2016. Homologues of CsLOB1 in citrus function as disease susceptibility genes in citrus canker. Mol. Plant Pathol. 18:6798–810
    [Google Scholar]
  150. 150. 
    Zhang J, Yin Z, White F 2015. TAL effectors and the executor R genes. Front. Plant Sci. 6:641
    [Google Scholar]
  151. 151. 
    Zhou J, Peng Z, Long J, Sosso D, Liu B et al. 2015. Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice. Plant J 82:4632–43
    [Google Scholar]
  152. 152. 
    Zhu W, Yang B, Chittoor JM, Johnson LB, White FF 1998. AvrXa10 contains an acidic transcriptional activation domain in the functionally conserved C terminus. Mol. Plant-Microbe Interact. 11:8824–32
    [Google Scholar]
  153. 153. 
    Zhu W, Yang B, Wills N, Johnson LB, White FF 1999. The C terminus of AvrXa10 can be replaced by the transcriptional activation domain of VP16 from the herpes simplex virus. Plant Cell 11:91665–74
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-082718-100026
Loading
/content/journals/10.1146/annurev-phyto-082718-100026
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error