Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MicroRNA-146a negatively regulates IL-33 in activated group 2 innate lymphoid cells by inhibiting IRAK1 and TRAF6

Abstract

Type II innate lymphoid cells (ILC2) play a very important role in the pathogenesis of allergic asthma. This study aims to investigate whether miR-146a inhibition of asthma is related with interleukin (IL)-33 signaling path way in ILC2 and the underlying mechanisms. Asthma mice model was induced by ovalbumin. miRNA146a mimics was administrated to asthma mice or transfected to activated ILC2 purified from asthma mice lung. RT-PCR was used to detect miRNA146a level in lung tissue and ILC2. IL-5 and IL-13 levels in culture supernatant were detected by flow cytometry. Interleukin-1 receptor-associated kinase 1 (IRAK1), TNF receptor-associated factor 6 (TRAF6), signal transducer and activator of transcription 1 (STAT1) protein expression levels were detected by western blot. miR-146a directly inhibited ILC2 function and suppressed ILC2 proliferation both in vivo and in vitro. During stimulation of ILC2, miR-146a expression gradually increased with a decrease of cell proliferation. Modulation of ILC2 function by miR-146a may depend on IL-33/interleukin 1 receptor-like 1 (IL1RL1 or ST2) signaling through inhibiting IRAK1 and TRAF6.miR-146a can inhibit IRAK1 and TRAF6, downstream molecules of ST2 signal pathway, thereby negatively regulate IL-33/ST2-activated ILC2 to inhibit asthma. Targeting miR-146 maybe a novel strategy for the treatment of allergic asthma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kubo M. Innate and adaptive type 2 immunity in lung allergic inflammation. Immunol Rev. 2017;278:162–72.

    Article  CAS  PubMed  Google Scholar 

  2. van Rijt L, von Richthofen H, van Ree R. Type 2 innate lymphoid cells: at the cross-roads in allergic asthma. Semin Immunopathol. 2016;38:483–96.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Moore WC, Meyers DA, Wenzel SE, Teague WG, Li H, Li X, et al. Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program. Am J Respir Crit Care Med. 2010;181:315–23.

    Article  PubMed  Google Scholar 

  4. Trejo Bittar HE, Yousem SA, Wenzel SE. Pathobiology of severe asthma. Annu Rev Pathol. 2015;10:511–45.

    Article  CAS  PubMed  Google Scholar 

  5. Fajt ML, Wenzel SE. Asthma phenotypes and the use of biologic medications in asthma and allergic disease: the next steps toward personalized care. J Allergy Clin Immunol. 2015;135:299–310. quiz 311

    Article  PubMed  Google Scholar 

  6. Rebane A. microRNA and allergy. Adv Exp Med Biol. 2015;888:331–52.

    Article  PubMed  Google Scholar 

  7. Pua HH, Ansel KM. MicroRNA regulation of allergic inflammation and asthma. Curr Opin Immunol. 2015;36:101–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sato T, Liu X, Nelson A, Nakanishi M, Kanaji N, Wang X, et al. Reduced miR-146a increases prostaglandin E(2)in chronic obstructive pulmonary disease fibroblasts. Am J Respir Crit Care Med. 2010;182:1020–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cheng HS, Sivachandran N, Lau A, Boudreau E, Zhao JL, Baltimore D, et al. MicroRNA-146 represses endothelial activation by inhibiting pro-inflammatory pathways. EMBO Mol Med. 2013;5:1017–34.

    Article  PubMed  Google Scholar 

  10. Taganov KD, Boldin MP, Chang KJ, Baltimore D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA. 2006;103:12481–6.

    Article  CAS  PubMed  Google Scholar 

  11. Cho S, Lee HM, Yu IS. Differential cell-intrinsic regulations of germinal center B and T cells by miR-146a and miR-146b. Nat Commun. 2018;9:2757.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Han S, Ma C, Bao L, Lv L, Huang M. miR-146a mimics attenuate allergic airway inflammation by impacted group 2 innate lymphoid cells in an ovalbumin-induced asthma mouse model. Int Arch Allergy Immunol. 2018;177:302–10.

    Article  CAS  PubMed  Google Scholar 

  13. Steiner DF, Thomas MF, Hu JK, Yang Z, Babiarz JE, Allen CD, et al. MicroRNA-29 regulates T-box transcription factors and interferon-gamma production in helper T cells. Immunity. 2011;35:169–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cephus JY, Stier MT, Fuseini H, Yung JA, Toki S, Bloodworth MH, et al. Testosterone attenuates group 2 innate lymphoid cell-mediated airway inflammation. Cell Rep. 2017;21:2487–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Barnes PJ. Immunology of asthma and chronic obstructive pulmonary disease. Nat Rev Immunol. 2008;8:183–92.

    Article  CAS  PubMed  Google Scholar 

  16. Scanlon ST, McKenzie AN. Type 2 innate lymphoid cells: new players in asthma and allergy. Curr Opin Immunol. 2012;24:707–12.

    Article  CAS  PubMed  Google Scholar 

  17. Diefenbach A, Colonna M, Koyasu S. Development, differentiation, and diversity of innate lymphoid cells. Immunity. 2014;41:354–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Klose CS, Artis D. Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis. Nat Immunol. 2016;17:765–74.

    Article  CAS  PubMed  Google Scholar 

  19. Hoyler T, Klose CS, Souabni A, Turqueti-Neves A, Pfeifer D, Rawlins EL, et al. The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells. Immunity. 2012;37:634–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mjosberg J, Bernink J, Peters C, Spits H. Transcriptional control of innate lymphoid cells. Eur J Immunol. 2012;42:1916–23.

    Article  PubMed  Google Scholar 

  21. Wu X, Yan L. MicroRNA-448 suppresses osteosarcoma cell proliferation and invasion through targeting EPHA7. PLoS ONE. 2017;12:e0175553.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Xie X, Li YS, Xiao WF, Deng ZH, He HB, Liu Q, et al. MicroRNA-379 inhibits the proliferation, migration and invasion of human osteosarcoma cells by targetting EIF4G2. Biosci Rep. 2017;37:BSR20160542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Moro K, Yamada T, Tanabe M, Takeuchi T, Ikawa T, Kawamoto H, et al. Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells. Nature. 2010;463:540–4.

    Article  CAS  PubMed  Google Scholar 

  24. Lingel A, Weiss TM, Niebuhr M, Pan B, Appleton BA, Wiesmann C, et al. Structure of IL-33 and its interaction with the ST2 and IL-1RAcP receptors-insight into heterotrimeric IL-1 signaling complexes. Structure. 2009;17:1398–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu X, Hammel M, He Y, Tainer JA, Jeng US, Zhang L, et al. Structural insights into the interaction of IL-33 with its receptors. Proc Natl Acad Sci USA. 2013;110:14918–23.

    Article  CAS  PubMed  Google Scholar 

  26. Martin MU. Special aspects of interleukin-33 and the IL-33 receptor complex. Semin Immunol. 2013;25:449–57.

    Article  CAS  PubMed  Google Scholar 

  27. Braun H, Afonina IS, Mueller C, Beyaert R. Dichotomous function of IL-33 in health and disease: from biology to clinical implications. Biochem Pharm. 2018;148:238–52.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by Wuxi Science and Education Revitalization Project-Young Medical Talents (QNRC058).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuguang Han.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, B., Wei, Z., Jiang, L. et al. MicroRNA-146a negatively regulates IL-33 in activated group 2 innate lymphoid cells by inhibiting IRAK1 and TRAF6. Genes Immun 21, 37–44 (2020). https://doi.org/10.1038/s41435-019-0084-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41435-019-0084-x

This article is cited by

Search

Quick links