Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

End-reactive poly(tetrahydrofuran) for functionalization and graft copolymer synthesis via a conjugate substitution reaction

Abstract

α-(Chloromethyl)acryloyl cation, prepared from the corresponding acyl chloride and silver triflate, was used as an initiator for the living, cationic ring-opening polymerization of tetrahydrofuran. The α-end of the resulting poly(tetrahydrofuran) has an α-(chloromethyl)acrylate skeleton, which is an excellent substrate for nucleophilic conjugate substitution. In fact, treatment with a phenol resulted in a functionalized α-end. Moreover, 2-aminoethylanol and 2-mercaptoethanol afforded doubly functionalized polymers with two hydroxy groups at the α-ends via conjugate substitution and subsequent addition reactions. Since α-(chloromethyl)acrylate can be attacked by two equivalents of a nucleophile, it can function as a monomer in polycondensations with dithiols. Therefore, the α-(chloromethyl)acrylate chain end was subjected to polycondensation with 1,10-decandithiol in the presence of Bu3P, resulting in a graft copolymer. The above results suggest that the α-(chloromethyl)acryloyl cation is a functional initiator for incorporating a chain end reactive to a variety of nucleophiles for single and double end-functionalizations and the preparation of graft copolymers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Scheme 3
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Matyjaszewski K, Tsarevsky NV. Nanostructured functional materials prepared by atom transfer radical polymerization. Nat Chem. 2009;1:276–88.

    Article  CAS  Google Scholar 

  2. Durmaz H, Dag A, Altintas O, Erdogan T, Hizal G, Tunca U. One-pot synthesis of abc type triblock copolymers via in situ click [3 + 2] and diels−alder [4 + 2] reactions. Macromolecules. 2007;40:191–8.

    Article  CAS  Google Scholar 

  3. Sinnwell S, Inglis AJ, Davis TP, Stenzel MH, Barner-Kowollik C. An atom-efficient conjugation approach to well-defined block copolymers using RAFT chemistry and hetero Diels–Alder cycloaddition. Chem. Commun. 2008:44:2052–4.

  4. Yang B, Zhao Y, Fu C, Zhu C, Zhang Y, Wang S, et al. Introducing the Ugi reaction into polymer chemistry as a green click reaction to prepare middle-functional block copolymers. Polym Chem. 2014;5:2704–8.

    Article  CAS  Google Scholar 

  5. Reuther JF, Siriwardane DA, Kulikov OV, Batchelor BL, Campos R, Novak BM. Facile synthesis of rod–coil block copolymers with chiral, helical polycarbodiimide segments via postpolymerization CuAAC “click” coupling of functional end groups. Macromolecules. 2015;48:3207–16.

    Article  CAS  Google Scholar 

  6. Lin W, Fu Q, Zhang Y, Huang J. One-pot synthesis of abc type triblock copolymers via a combination of “click chemistry” and atom transfer nitroxide radical coupling chemistry. Macromolecules. 2008;41:4127–35.

    Article  CAS  Google Scholar 

  7. Gacal B, Durmaz H, Tasdelen MA, Hizal G, Tunca U, Yagci Y, et al. Anthracene−maleimide-based Diels−Alder “click chemistry” as a novel route to graft copolymers. Macromolecules. 2006;39:5330–6.

    Article  CAS  Google Scholar 

  8. Quémener D, Hellaye ML, Bissett C, Davis TP, Barner-Kowollik C, Stenzel MH. Graft block copolymers of propargyl methacrylate and vinyl acetate via a combination of RAFT/MADIX and click chemistry: reaction analysis. J Polym Sci Part A Polym Chem. 2008;46:155–73.

    Article  Google Scholar 

  9. Dag A, Durmaz H, Demir E, Hizal G, Tunca U. Heterograft copolymers via double click reactions using one-pot technique. J Polym Sci Part A Polym Chem. 2008;46:6969–77.

    Article  CAS  Google Scholar 

  10. Lee Y-G, Koyama Y, Yonekawa M, Takata T. Polymer nitrile N-oxides directed toward catalyst- and solvent-free click grafting. Macromolecules. 2009;42:7709–25.

    Article  CAS  Google Scholar 

  11. Tsutsuba T, Sogawa H, Takata T. Preparation of a highly reactive polymer click reagent, PEG nitrile N-oxide, and its application in block and star polymer synthesis. Polym Chem. 2017;8:1145–8.

    Article  Google Scholar 

  12. Durmaz H, Sanyal A, Hizal G, Tunca U. Double click reaction strategies for polymer conjugation and post-functionalization of polymers. Polym Chem. 2012;3:825–35.

    Article  CAS  Google Scholar 

  13. Schmidt BVKJ, Fechler N, Falkenhagen J, Lutz J-F. Controlled folding of synthetic polymer chains through the formation of positionable covalent bridges. Nat Chem. 2011;3:234–8.

    Article  CAS  Google Scholar 

  14. Wang C-G, Koyama Y, Uchida S, Takata T. Synthesis of highly reactive polymer nitrile N-oxides for effective solvent-free grafting. ACS Macro Lett. 2014;3:286–90.

    Article  CAS  Google Scholar 

  15. Yang WJ, Neoh K-G, Kang E-T, Teo SL-M, Rittschof D. Stainless steel surfaces with thiol-terminated hyperbranched polymers for functionalization via thiol-based chemistry. Polym Chem. 2013;4:3105–15.

    Article  CAS  Google Scholar 

  16. Arslan M, Tasdelen MA. Click chemistry in macromolecular design: complex architectures from functional polymers, chemistry Africa. (2018). https://doi.org/10.1007/s42250-018-0030-8.

    Article  Google Scholar 

  17. Tasdelen MA, Kahveci MU, Yagci Y. Telechelic polymers by living and controlled/living polymerization methods. Prog Polym Sci. 2011;36:455–567.

    Article  CAS  Google Scholar 

  18. Iha RK, Wooley KL, Nystrom AM, Burke DJ, Kade MJ, Hawker CJ. Applications of orthogonal “click” chemistries in the synthesis of functional soft materials. Chem Rev. 2009;109:5620–86.

    Article  CAS  Google Scholar 

  19. Coessens V, Nakagawa Y, Matyjaszewski K. Synthesis of azido end-functionalized polyacrylates via atom transfer radical polymerization. Polym Bull. 1998;40:135–42.

    Article  CAS  Google Scholar 

  20. Lutz J-F, Börner HG, Weichenhan K. Combining atom transfer radical polymerization and click chemistry: a versatile method for the preparation of end-functional polymers. Macromol Rapid Commun. 2005;26:514–8.

    Article  CAS  Google Scholar 

  21. Kataoka Y, Kohsaka Y, Kitaura T, Domae S, Ishihara S, Kitayama T. Anionic polymerization of ethyl acrylate initiated by tetrabutylammonium azide: direct synthesis of end-clickable polyacrylate. Polym Chem. 2017;8:3858–61.

    Article  CAS  Google Scholar 

  22. Kohsaka Y, Miyazaki T, Hagiwara K. Conjugate substitution and addition of α-substituted acrylate: a highly efficient, facile, convenient, and versatile approach to fabricate degradable polymers by dynamic covalent chemistry. Polym Chem. 2018;9:1610–7.

    Article  CAS  Google Scholar 

  23. Kohsaka Y, Kurata T, Kitayama T. End-functional stereoregular poly(methyl methacrylate) with clickable C=C bonds: Facile synthesis and thiol–ene reaction. Polym Chem. 2013;4:5043–7.

    Article  CAS  Google Scholar 

  24. Kohsaka Y, Kurata T, Yamamoto K, Ishihara S, Kitayama T. Synthesis and post-polymerization reaction of end-clickable stereoregular polymethacrylates via termination of stereospecific living anionic polymerization. Polym Chem. 2015;6:1078–87.

    Article  CAS  Google Scholar 

  25. Kohsaka Y, Yamamoto K, Kitayama T. Stereoregular poly(methyl methacrylate) with double-clickable ω-end: Synthesis and click reaction. Polym Chem. 2015;6:3601–7.

    Article  CAS  Google Scholar 

  26. Kohsaka Y, Hagiwara K, Ito K. Polymerization of α-(halomethyl)acrylates through sequential nucleophilic attack of dithiols using a combination of addition–elimination and click reactions. Polym Chem. 2017;8:976–9.

    Article  CAS  Google Scholar 

  27. Vargas JS, Zilliox JG, Rempp P, Franta E. Cationic synthesis of macromers. Polym Bull. 1980;3:83–9.

    Article  CAS  Google Scholar 

  28. Kohsaka Y, Koyama Y, Takata T. Graft polyrotaxanes: a new class of graft copolymers with mobile graft chains. Angew Chem Int Ed. 2011;50:10417–20.

    Article  CAS  Google Scholar 

  29. Burgess FJ, Cunliffe AV, Richards DH, Thompson D. Organic halides as cationic initiators. Polym. 1978;19:334–40.

    Article  CAS  Google Scholar 

  30. Lowe A. Thiol-ene “click” reactions and recent applications in polymer and materials synthesis. Polym Chem. 2010;1:17–36.

    Article  CAS  Google Scholar 

  31. Lowe A. Thiol–ene “click” reactions and recent applications in polymer and materials synthesis: a first update. Polym Chem. 2014;5:4820–70.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Osaka Organic Chemical Industry Ltd and Nippon Shokubai Co, Ltd for supplying the reagent supplements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Kohsaka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kohsaka, Y., Nagatsuka, N. End-reactive poly(tetrahydrofuran) for functionalization and graft copolymer synthesis via a conjugate substitution reaction. Polym J 52, 75–81 (2020). https://doi.org/10.1038/s41428-019-0258-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-019-0258-4

This article is cited by

Search

Quick links