Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New approaches for effective and safe pelvic radiotherapy in high-risk prostate cancer

Abstract

Radical radiotherapy for prostate cancer offers excellent long-term outcomes for patients with high-risk disease. The increased risk of pelvic nodal involvement in this cohort has led to the development of whole-pelvis radiotherapy (WPRT) with a prostate boost. However, the use of WPRT remains controversial. Data are mixed, but advanced radiotherapy techniques enable delivery of increased radiation to pelvic nodes with acceptable levels of toxicity. Contemporary imaging modalities with increased sensitivity for detecting subclinical lymph node disease will facilitate selection of patients most likely to benefit from WPRT. Using such modalities for image guidance of advanced radiotherapy techniques could also permit high-dose delivery to nodes outside the conventional Radiation Therapy Oncology Group volumes, where magnetic resonance lymphography and single-photon-emission CT imaging have mapped a high frequency of microscopic disease. With increased toxicity a concern, an alternative to WPRT would be selective irradiation of target nodal groups most likely to harbour occult disease. New image-based ‘big data’ mining techniques enable the large-scale comparison of incidental dose distributions of thousands of patients treated in the past. By using novel computing methods and artificial intelligence, high-risk regions can be identified and used to optimize WPRT through refined knowledge of the likely location of subclinical disease.

Key points

  • Prophylactic pelvic nodal irradiation in patients with high-risk prostate cancer might improve clinical outcomes.

  • Negative results in clinical trials to date might be attributable to subtherapeutic radiation doses, inappropriate patient selection and suboptimal field size delineation.

  • Conformal radiotherapy techniques reduce incidental pelvic lymph node dose, increasing the potential utility of whole pelvis radiotherapy (WPRT) in the modern intensity-modulated radiotherapy era.

  • Contemporary imaging modalities with high sensitivity for the detection of occult lymph node metastases will improve patient selection for WPRT and guide appropriate target volume definition.

  • Advanced radiotherapy techniques will permit dose escalation to minimally positive nodal regions, both inside and outside of the standard Radiation Therapy Oncology Group target volumes.

  • Large-scale image-based data mining raises the possibility of selective irradiation of statistically identified high-risk nodal groups to improve the therapeutic ratio in WPRT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Patterns of lymph node failure after prostate-only radiotherapy.
Fig. 2: Kaplan–Meier bPFS curves of intermediate and high-risk prostate cancer patients treated with EBRT and HDR brachytherapy.
Fig. 3: Potential radiotherapy clinical target volumes in high-risk prostate cancer.
Fig. 4: Image-based data mining infrastructure.

Similar content being viewed by others

References

  1. Torre, L. A. et al. Global cancer statistics, 2012. CA Cancer J. Clin. 65, 87–108 (2015).

    Article  PubMed  Google Scholar 

  2. Fridriksson, J. Ö. et al. Long-term adverse effects after curative radiotherapy and radical prostatectomy: population-based nationwide register study. Scand. J. Urol. 50, 338–345 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Widmark, A. et al. Endocrine treatment with or without radiotherapy in locally advanced prostate cancer (SPCG-7/SFUO-3): an open randomised phase III trial. Lancet 373, 301–308 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Mason, M. D. et al. Final report of the intergroup randomized study of combined androgen-deprivation therapy plus radiotherapy versus androgen-deprivation therapy alone in locally advanced prostate cancer. J. Clin. Oncol. 33, 2143–2150 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Morikawa, L. K. & Roach, M. Pelvic nodal radiotherapy in patients with unfavorable intermediate and high-risk prostate cancer: evidence, rationale, and future directions. Int. J. Radiat. Oncol. Biol. Phys. 80, 6–16 (2011).

    Article  PubMed  Google Scholar 

  6. Roach, M. et al. Phase III trial comparing whole-pelvic versus prostate-only radiotherapy and neoadjuvant versus adjuvant combined androgen suppression: Radiation Therapy Oncology Group 9413. J. Clin. Oncol. 21, 1904–1911 (2003).

    Article  PubMed  Google Scholar 

  7. Pommier, P. et al. Is there a role for pelvic irradiation in localized prostate adenocarcinoma? Preliminary results of GETUG-01. J. Clin. Oncol. 25, 5366–5373 (2011).

    Article  Google Scholar 

  8. Tharmalingam, H., Tsang, Y., Choudhury, A. & Hoskin, P. J. External beam (EBRT) and HDR brachytherapy (BT) in prostate cancer: impact of EBRT volume [abstract OC-0285]. Radiother. Oncol. 127 (Suppl. 1), 146–147 (2018).

    Article  Google Scholar 

  9. Murthy, V. et al. Incidental dose to pelvic nodal regions in prostate-only radiotherapy. Technol. Cancer Res. Treat. 16, 211–217 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Fischer-Valuck, B. W., Rao, Y. J. & Michalski, J. M. Intensity-modulated radiotherapy for prostate cancer. Transl Androl. Urol. 7, 297–307 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Roach, M., Waldman, F. & Pollack, A. Predictive models in external beam radiotherapy for clinically localized prostate cancer. Cancer 115, 3112–3120 (2009).

    Article  PubMed  Google Scholar 

  12. D’Amico, A. V. et al. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA 280, 969–974 (1998).

    Article  PubMed  Google Scholar 

  13. Kuban, D. A. et al. Long-term results of the M. D. Anderson randomized dose-escalation trial for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 70, 67–74 (2008).

    Article  PubMed  Google Scholar 

  14. Peeters, S. T. H. et al. Dose-response in radiotherapy for localized prostate cancer: results of the Dutch multicentre randomized phase III trial comparing 68Gy of radiotherapy with 78Gy. J. Clin. Oncol. 24, 1990–1996 (2006).

    Article  PubMed  Google Scholar 

  15. Dearnaley, D. P. et al. Escalated-dose versus standard-dose conformal radiotherapy in prostate cancer: first results from the MRC RT01 randomised controlled trial. Lancet Oncol. 8, 475–487 (2007).

    Article  PubMed  Google Scholar 

  16. Bolla, M. et al. Improved survival in patients with locally advanced prostate cancer treated with radiotherapy and goserelin. N. Engl. J. Med. 337, 295–300 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Hanks, G. E. et al. Phase III trial of long-term adjuvant androgen deprivation after neoadjuvant hormonal cytoreduction and radiotherapy in locally advanced carcinoma of the prostate: the Radiation Therapy Oncology Group Protocol 92–02. J. Clin. Oncol. 21, 3972–3978 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Zapatero, A. et al. High-dose radiotherapy with short-term or long-term androgen deprivation in localised prostate cancer (DART01/05 GICOR): a randomised, controlled, phase 3 trial. Lancet Oncol. 16, 320–327 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Roach, M. et al. Predicting the risk of lymph node involvement using the pre-treatment prostate specific antigen and Gleason score in men with clinically localized prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 28, 33–37 (1994).

    Article  PubMed  Google Scholar 

  20. Wagner, M., Sokoloff, M. & Daneshmand, S. The role of pelvic lymphadenectomy for prostate cancer-therapeutic? J. Urol. 179, 408–413 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Briganti, A. et al. Pelvic lymph node dissection in prostate cancer. Eur. Urol. 55, 1251–1265 (2009).

    Article  PubMed  Google Scholar 

  22. Heidenreich, A., Varga, Z. & Von Knobloch, R. Extended pelvic lymphadenectomy in patients undergoing radical prostatectomy: high incidence of lymph node metastasis. J. Urol. 167, 1681–1686 (2002).

    Article  PubMed  Google Scholar 

  23. Grégoire, V. et al. CT-based delineation of lymph node levels and related CTVs in the node-negative neck: DAHANCA, EORTC, GORTEC, NCIC, RTOG consensus guidelines. Radiother. Oncol. 69, 227–236 (2003).

    Article  PubMed  Google Scholar 

  24. Lim, K. et al. Consensus guidelines for delineation of clinical target volume for intensity-modulated pelvic radiotherapy for the definitive treatment of cervix cancer. Int. J. Radiat. Oncol. Biol. Phys. 79, 348–355 (2011).

    Article  PubMed  Google Scholar 

  25. Roels, S. et al. Definition and delineation of the clinical target volume for rectal cancer. Int. J. Radiat. Oncol. Biol. Phys. 65, 1129–1142 (2006).

    Article  PubMed  Google Scholar 

  26. Aizer, A. A. et al. Whole pelvic radiotherapy versus prostate only radiotherapy in the management of locally advanced or aggressive prostate adenocarcinoma. Int. J. Radiat. Oncol. Biol. Phys. 75, 1344–1349 (2009).

    Article  PubMed  Google Scholar 

  27. Mantini, G. et al. Effect of whole pelvic radiotherapy for patients with locally advanced prostate cancer treated with radiotherapy and long-term androgen deprivation therapy. Int. J. Radiat. Oncol. Biol. Phys. 81, e721–726 (2011).

    Article  PubMed  Google Scholar 

  28. Seaward, S. A. et al. Improved freedom from PSA failure with whole pelvic irradiation for high-risk prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 42, 1055–1062 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Seaward, S. A. et al. Identification of a high-risk clinically localized prostate cancer subgroup receiving maximum benefit from whole-pelvic irradiation. Cancer J. Sci. Am. 4, 370–377 (1998).

    CAS  PubMed  Google Scholar 

  30. Amini, A. et al. Survival outcomes of whole-pelvic versus prostate-only radiation therapy for high-risk prostate cancer patients with use of the National Cancer Data Base. Int. J. Radiat. Oncol. Biol. Phys. 93, 1052–1063 (2015).

    Article  PubMed  Google Scholar 

  31. Pan, C. C., Kim, K. Y., Taylor, J. M. G., McLaughlin, P. W. & Sandler, H. M. Influence of 3D-CRT pelvic irradiation on outcome in prostate cancer treated with external beam radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 53, 1139–1145 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Jacob, R. et al. Role of prostate dose escalation in patients with greater than 15% risk of pelvic lymph node involvement. Int. J. Radiat. Oncol. Biol. Phys. 61, 695–701 (2005).

    Article  PubMed  Google Scholar 

  33. Milecki, P. et al. Benefit of whole pelvic radiotherapy combined with neoadjuvant androgen deprivation for the high-risk prostate cancer. J. Biomed. Biotechnol. 2009, 625394 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Lawton, C. A. et al. An update of the phase III trial comparing whole pelvic to prostate only radiotherapy and neoadjuvant to adjuvant total androgen suppression: updated analysis of RTOG 94–13 with emphasis on unexpected hormone/radiation interactions. Int. J. Radiat. Oncol. Biol. Phys. 69, 646–655 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Spratt, D. E. et al. Patterns of lymph node failure after dose-escalated radiotherapy: implications for extended pelvic lymph node coverage. Eur. Urol. 71, 37–43 (2017).

    Article  PubMed  Google Scholar 

  36. Hoskin, P. J. et al. Randomised trial of external beam radiotherapy alone or combined with high-dose-rate brachytherapy boost for localised prostate cancer. Radiother. Oncol. 103, 217–222 (2012).

    Article  PubMed  Google Scholar 

  37. Morris, W. J. et al. Androgen suppression combined with elective nodal and dose escalated radiation therapy (the ASCENDE-RT trial): an analysis of survival endpoints for a randomized trial comparing low-dose-rate brachytherapy boost to a dose-escalated external beam boost for high- and intermediate-risk prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 98, 275–285 (2017).

    Article  PubMed  Google Scholar 

  38. Dayes, I. S. et al. Long-term results of a randomized trial comparing iridium implant plus external beam radiation therapy with external beam radiation therapy alone in node-negative locally advanced cancer of the prostate. Int. J. Radiat. Oncol. Biol. Phys. 99, 90–93 (2017).

    Article  PubMed  Google Scholar 

  39. Perez, C. A., Michalski, J., Brown, K. C. & Lockett, M. A. Nonrandomized evaluation of pelvic lymph node irradiation in localized carcinoma of the prostate. Int. J. Radiat. Oncol. Biol. Phys. 36, 573–584 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Roach, M. et al. Whole pelvis, “mini-pelvis,” or prostate-only external beam radiotherapy after neoadjuvant and concurrent hormonal therapy in patients treated in the Radiation Therapy Oncology Group 9413 trial. Int. J. Radiat. Oncol. Biol. Phys. 66, 647–653 (2006).

    Article  PubMed  Google Scholar 

  41. Fiorino, C. et al. Dose–volume relationships for acute bowel toxicity in patients treated with pelvic nodal irradiation for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 75, 29–35 (2009).

    Article  PubMed  Google Scholar 

  42. Longobardi, B. et al. Anatomical and clinical predictors of acute bowel toxicity in whole pelvis irradiation for prostate cancer with tomotherapy. Radiother. Oncol. 101, 460–464 (2011).

    Article  PubMed  Google Scholar 

  43. Perna, L. et al. Predictors of acute bowel toxicity in patients treated with IMRT whole pelvis irradiation after prostatectomy. Radiother. Oncol. 97, 71–75 (2010).

    Article  PubMed  Google Scholar 

  44. Sini, C. et al. Patient-reported intestinal toxicity from whole pelvis intensity-modulated radiotherapy: first quantification of bowel dose–volume effects. Radiother. Oncol. 124, 296–301 (2017).

    Article  PubMed  Google Scholar 

  45. Song, C. et al. Elective pelvic versus prostate bed-only salvage radiotherapy following radical prostatectomy: a propensity score-matched analysis. Strahlenther. Onkol. 191, 801–809 (2015).

    Article  PubMed  Google Scholar 

  46. Spiotto, M. T., Hancock, S. L. & King, C. R. Radiotherapy after prostatectomy: improved biochemical relapse-free survival with whole pelvic compared with prostate bed only for high-risk patients. Int. J. Radiat. Oncol. Biol. Phys. 69, 54–61 (2007).

    Article  PubMed  Google Scholar 

  47. Moghanaki, D. et al. Elective irradiation of pelvic lymph nodes during postprostatectomy salvage radiotherapy. Cancer 119, 52–60 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Ramey, S. J. et al. Multi-institutional evaluation of elective nodal irradiation and/or androgen deprivation therapy with postprostatectomy salvage radiotherapy for prostate cancer. Eur. Urol. 74, 99–106 (2018).

    Article  PubMed  Google Scholar 

  49. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00567580 (2017).

  50. Pollack, A. et al. Short term androgen deprivation therapy without or with pelvic lymph node treatment added to prostate bed only salvage radiation therapy: the NRG Oncology/RTOG 0534 SPPORT trial. Int. J. Radiat. Oncol. Biol. Phys. 102, 1605 (2018).

    Article  Google Scholar 

  51. van Loon, J. et al. Selective nodal irradiation on basis of 18FDG-PET scans in limited-disease small-cell lung cancer: a prospective study. Int. J. Radiat. Oncol. Biol. Phys. 77, 329–336 (2010).

    Article  PubMed  Google Scholar 

  52. Hoskin, P. J., Díez, P., Williams, M., Lucraft, H. & Bayne, M. Recommendations for the use of radiotherapy in nodal lymphoma. Clin. Oncol. (R. Coll. Radiol.) 25, 49–58 (2013).

    Article  CAS  Google Scholar 

  53. Koper, P. et al. Acute morbidity reduction using 3DCRT for prostate carcinoma: a randomized study. Int. J. Radiat. Oncol. Biol. Phys. 43, 727–734 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Heemsbergen, W. D., Al-Mamgani, A., Witte, M. G., Van Herk, M. & Lebesque, J. V. Radiotherapy with rectangular fields is associated with fewer clinical failures than conformal fields in the high-risk prostate cancer subgroup: results from a randomized trial. Radiother. Oncol. 107, 134–139 (2013).

    Article  PubMed  Google Scholar 

  55. Zietman, A. L., Nakfoor, B. M., Prince, E. A. & Gerweck, L. E. The effect of androgen deprivation and radiation therapy on an androgen-sensitive murine tumor: an in vitro and in vivo study. Cancer J. Sci. Am. 3, 31–36 (1997).

    CAS  PubMed  Google Scholar 

  56. Meijer, H. J. M. et al. Individualized image-based lymph node irradiation for prostate cancer. Nat. Rev. Urol. 10, 376–385 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Heesakkers, R. A. M. et al. Detection of lymph node metastases outside the routine surgical area with ferumoxtran-10–enhanced MR imaging. Radiology 251, 408–414 (2009).

    Article  PubMed  Google Scholar 

  58. Partin, A. W. et al. The use of prostate specific antigen, clinical stage and Gleason score to predict pathological stage in men with localized prostate cancer. J. Urol. 150, 110–114 (1993).

    Article  CAS  PubMed  Google Scholar 

  59. Nguyen, P. L., Chen, M. H., Hoffman, K. E., Katz, M. S. & D’Amico, A. V. Predicting the risk of pelvic node involvement among men with prostate cancer in the contemporary era. Int. J. Radiat. Oncol. Biol. Phys. 74, 104–109 (2009).

    Article  PubMed  Google Scholar 

  60. Bader, P., Burkhard, F. C., Markwalder, R. & Studer, U. E. Is a limited lymph node dissection an adequate staging procedure for prostate cancer? J. Urol. 168, 514–518 (2002).

    Article  PubMed  Google Scholar 

  61. Lattouf, J. B. et al. Laparoscopic extended pelvic lymph node dissection for prostate cancer: description of the surgical technique and initial results. Eur. Urol. 52, 1347–1357 (2007).

    Article  PubMed  Google Scholar 

  62. Arenas, L. F., Fullhase, C., Boemans, P. & Fichtner, J. Detecting lymph nodes metastasis in prostate cancer through extended versus standard laparoscopic pelvic lymphadenectomy. Aktuelle Urol. 41, S10–S14 (2010).

    Article  PubMed  Google Scholar 

  63. Joniau, S. et al. Mapping of pelvic lymph node metastases in prostate cancer. Eur. Urol. 63, 450–458 (2013).

    Article  PubMed  Google Scholar 

  64. Abdollah, F. et al. Indications for pelvic nodal treatment in prostate cancer should change. Validation of the Roach formula in a large extended nodal dissection series. Int. J. Radiat. Oncol. Biol. Phys. 83, 624–629 (2012).

    Article  PubMed  Google Scholar 

  65. Mattei, A. et al. The template of the primary lymphatic landing sites of the prostate should be revisited: results of a multimodality mapping study. Eur. Urol. 53, 118–125 (2008).

    Article  PubMed  Google Scholar 

  66. Ganswindt, U. et al. Distribution of prostate sentinel nodes: a SPECT-derived anatomic atlas. Int. J. Radiat. Oncol. Biol. Phys. 79, 1364–1372 (2011).

    Article  PubMed  Google Scholar 

  67. Edelstein, R. A. et al. Implications of prostate micrometastases in pelvic lymph nodes: an archival tissue study. Urology 47, 370–375 (1996).

    Article  CAS  PubMed  Google Scholar 

  68. Ferrari, A. C. et al. Prospective analysis of prostate-specific markers in pelvic lymph nodes of patients with high-risk prostate cancer. J. Natl Cancer Inst. 89, 1498–1504 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Briganti, A. et al. Updated nomogram predicting lymph node invasion in patients with prostate cancer undergoing extended pelvic lymph node dissection: the essential importance of percentage of positive cores. Eur. Urol. 61, 480–487 (2012).

    Article  PubMed  Google Scholar 

  70. Vance, S. M. et al. Percentage of cancer volume in biopsy cores is prognostic for prostate cancer death and overall survival in patients treated with dose-escalated external beam radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 83, 940–946 (2012).

    Article  PubMed  Google Scholar 

  71. Hansen, J. et al. External validation of the updated Briganti nomogram to predict lymph node invasion in prostate cancer patients undergoing extended lymph node dissection. Prostate 73, 211–218 (2013).

    Article  PubMed  Google Scholar 

  72. Gacci, M. et al. External validation of the updated nomogram predicting lymph node invasion in patients with prostate cancer undergoing extended pelvic lymph node dissection. Urol. Int. 90, 277–282 (2013).

    Article  PubMed  Google Scholar 

  73. Walz, J. et al. Head to head comparison of nomograms predicting probability of lymph node invasion of prostate cancer in patients undergoing extended pelvic lymph node dissection. Urology 79, 546–551 (2012).

    Article  PubMed  Google Scholar 

  74. Hricak, H., Choyke, P. L., Eberhardt, S. C., Leibel, S. A. & Scardino, P. T. Imaging prostate cancer: a multidisciplinary perspective. Radiology 243, 28–53 (2007).

    Article  PubMed  Google Scholar 

  75. Davis, G. L. Sensitivity of frozen section examination of pelvic nodes for metastatic prostate carcinoma. Cancer 76, 661–668 (1995).

    Article  CAS  PubMed  Google Scholar 

  76. Hövels, A. M. et al. The diagnostic accuracy of CT and MRI in the staging of pelvic lymph nodes in patients with prostate cancer: a meta-analysis. Clin. Radiol. 63, 387–395 (2008).

    Article  PubMed  Google Scholar 

  77. Bauman, G. et al. 18F-fluorocholine for prostate cancer imaging: a systematic review of the literature. Prostate Cancer Prostatic Dis. 15, 45–55 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Perera, M. et al. Gallium-68 prostate-specific membrane antigen positron emission tomography in advanced prostate cancer-updated diagnostic utility, sensitivity, specificity, and distribution of prostate-specific membrane antigen-avid lesions: a systematic review and meta-analysis. Eur. Urol. https://doi.org/10.1016/j.eururo.2019.01.049 (2019).

    Article  PubMed  Google Scholar 

  79. Harisinghani, M. G. et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N. Engl. J. Med. 348, 2491–2499 (2003).

    Article  PubMed  Google Scholar 

  80. Heesakkers, R. A. et al. MRI with a lymph-node-specific contrast agent as an alternative to CT scan and lymph node dissection in patients with prostate cancer: a prospective multicohort study. Lancet Oncol. 9, 850–856 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Ackerstaff, E., Glunde, K. & Bhujwalla, Z. M. Choline phospholipid metabolism: a target in cancer cells? J. Cell. Biochem. 90, 525–533 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. de Jong, I. J., Pruim, J., Elsinga, P. H., Vaalburg, W. & Mensink, H. J. Preoperative staging of pelvic lymph nodes in prostate cancer by C-11-choline PET. J. Nucl. Med. 44, 331–335 (2003).

    PubMed  Google Scholar 

  83. Poulsen, M. H. et al. [18F]-fluorocholine positron-emission/computed tomography for lymph node staging of patients with prostate cancer: preliminary results of a prospective study. BJU Int. 106, 639–643 (2010).

    Article  PubMed  Google Scholar 

  84. Steuber, T. et al. [F18]-fluoroethylcholine combined in-line PET-CT scan for detection of lymph-node metastasis in high risk prostate cancer patients prior to radical prostatectomy: preliminary results from a prospective histology based study. Eur. J. Cancer 46, 449–455 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Hacker, A. et al. Detection of pelvic lymph node metastases in patients with clinically localized prostate cancer: comparison of [18F] fluorocholine positron emission tomography-computerized tomography and laparoscopic radioisotope guided sentinel lymph node dissection. J. Urol. 176, 2014–2019 (2006).

    Article  PubMed  Google Scholar 

  86. Evangelista, L. et al. Utility of choline positron emission tomography/computed tomography for lymph node involvement identification in intermediate- to high-risk prostate cancer: a systematic literature review and meta-analysis. Eur. Urol. 63, 1040–1048 (2001).

    Article  Google Scholar 

  87. Fuccio, C., Rubello, D., Castellucci, P., Marzola, M. C. & Fanti, S. Choline PET/CT for prostate cancer: main clinical applications. Eur. J. Radiol. 80, e50–e56 (2011).

    Article  PubMed  Google Scholar 

  88. Osborne, J. R. et al. Prostate-specific membrane antigen-based imaging. Urol. Oncol. 31, 144–154 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Wright, G. L., Haley, C., Beckett, M. L. & Schellhammer, P. F. Expression of prostate-specific membrane antigen in normal, benign, and malignant prostate tissues. Urol. Oncol. Semin. Ori. 1, 18–28 (1995).

    Article  Google Scholar 

  90. Wright, G. L. et al. Upregulation of prostate-specific membrane antigen after androgen-deprivation therapy. Urology 48, 326–334 (1996).

    Article  PubMed  Google Scholar 

  91. Sweat, S. D., Pacelli, A., Murphy, G. P. & Bostwick, D. G. Prostate-specific membrane antigen expression is greatest in prostate adenocarcinoma and lymph node metastases. Urology 52, 637–640 (1998).

    Article  CAS  PubMed  Google Scholar 

  92. Evans, J. D. et al. Prostate cancer-specific PET radiotracers: a review on the clinical utility in recurrent disease. Pract. Radiat. Oncol. 8, 28–39 (2018).

    Article  PubMed  Google Scholar 

  93. Maurer, T. et al. Diagnostic efficacy of 68Gallium-PSMA positron emission tomography compared to conventional imaging for lymph node staging of 130 consecutive patients with intermediate to high risk prostate cancer. J. Urol. 195, 1436–1443 (2016).

    Article  PubMed  Google Scholar 

  94. van Leeuwen, P. J. et al. Prospective evaluation of 68Gallium-prostate-specific membrane antigen positron emission tomography/computed tomography for preoperative lymph node staging in prostate cancer. BJU Int. 119, 209–215 (2017).

    Article  PubMed  CAS  Google Scholar 

  95. Budaus, L. et al. Initial experience of 68Ga-PSMA PET/CT imaging in high-risk prostate cancer patients prior to radical prostatectomy. Eur. Urol. 69, 393–396 (2016).

    Article  PubMed  Google Scholar 

  96. Grubmüller, B. et al. PSMA ligand PET/MRI for primary prostate cancer: staging performance and clinical impact. Clin. Cancer Res. 24, 6300–6307 (2018).

    Article  PubMed  Google Scholar 

  97. Barentsz, J. O., Fütterer, J. J. & Takahashi, S. Use of ultrasmall superparamagnetic iron oxide in lymph node MR imaging in prostate cancer patients. Eur. J. Radiol. 63, 369–372 (2007).

    Article  PubMed  Google Scholar 

  98. Weissleder, R. et al. Ultrasmall superparamagnetic iron oxide: an intravenous contrast agent for assessing lymph nodes with MR imaging. Radiology 175, 494–498 (1990).

    Article  CAS  PubMed  Google Scholar 

  99. Wunderbaldinger, P., Josephson, L., Bremer, C., Moore, A. & Weissleder, R. Detection of lymph node metastases by contrast-enhanced MRI in an experimental model. Magn. Reson. Med. 47, 292–297 (2002).

    Article  PubMed  Google Scholar 

  100. Fortuin, A. S. et al. Value of PET/CT and MR lymphography in treatment of prostate cancer patients with lymph node metastases. Int. J. Radiat. Oncol. Biol. Phys. 84, 712–718 (2012).

    Article  PubMed  Google Scholar 

  101. Thoeny, H. C. et al. Combined ultrasmall superparamagnetic particles of iron oxide-enhanced and diffusion-weighted magnetic resonance imaging reliably detect pelvic lymph node metastases in normal-sized nodes of bladder and prostate cancer patients. Eur. Urol. 55, 761–769 (2009).

    Article  PubMed  Google Scholar 

  102. Birkhäuser, F. D. et al. Combined ultrasmall superparamagnetic particles of iron oxide-enhanced and diffusion-weighted magnetic resonance imaging facilitates detection of metastases in normal-sized pelvic lymph nodes of patients with bladder and prostate cancer. Eur. Urol. 64, 953–960 (2013).

    Article  PubMed  Google Scholar 

  103. Hövels, A. M., Heesakkers, R. A. M., Adang, E. M., Jager, G. J. & Barentsz, J. O. Cost-analysis of staging methods for lymph nodes in patients with prostate cancer: MRI with a lymph node-specific contrast agent compared to pelvic lymph node dissection or CT. Eur. Radiol. 14, 1707–1712 (2004).

    Article  PubMed  Google Scholar 

  104. Staffurth, J. A review of the clinical evidence for intensity-modulated radiotherapy. Clin. Oncol. (R. Coll. Radiol.) 22, 643–657 (2010).

    Article  Google Scholar 

  105. Michalski, J. M. et al. Effect of standard versus dose-escalated radiation therapy for patients with intermediate-risk prostate cancer: the NRG oncology RTOG 0126 randomized clinical trial. JAMA Oncol. 4, e180039 (2018).

    Google Scholar 

  106. Michalski, J. M. et al. Preliminary toxicity analysis of 3-dimensional conformal radiation therapy versus intensity modulated radiation therapy on the high-dose arm of the Radiation Therapy Oncology Group 0126 prostate cancer trial. Int. J. Radiat. Oncol. Biol. Phys. 87, 932–938 (2013).

    Article  PubMed  Google Scholar 

  107. Koontz, B. F., Bossi, A., Cozzarini, C., Wiegel, T. & D’Amico, A. A systematic review of hypofractionation for primary management of prostate cancer. Eur. Urol. 68, 683–691 (2015).

    Article  PubMed  Google Scholar 

  108. Zaorsky, N. G., Ohri, N., Showalter, T. N., Dicker, A. P. & Den, R. B. Systematic review of hypofractionated radiation therapy for prostate cancer. Cancer Treat. Rev. 39, 728–736 (2013).

    Article  PubMed  Google Scholar 

  109. Arcangeli, S. & Greco, C. Hypofractionated radiotherapy for organ-confined prostate cancer: is less more? Nat. Rev. Urol. 13, 400–408 (2016).

    Article  CAS  PubMed  Google Scholar 

  110. Dearnaley, D. et al. Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: 5-year outcomes of the randomised, non-inferiority, phase 3 CHHiP trial. Lancet Oncol. 17, 1047–1060 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Hong, T. S., Tomé, W. A., Jaradat, H., Raisbeck, B. M. & Ritter, M. A. Pelvic nodal dose escalation with prostate hypofractionation using conformal avoidance defined (H-CAD) intensity modulated radiation therapy. Acta Oncol. 45, 717–727 (2006).

    Article  PubMed  Google Scholar 

  112. Di Muzio, N. et al. Phase I-II study of hypofractionated simultaneous integrated boost with tomotherapy for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 74, 392–398 (2009).

    Article  PubMed  Google Scholar 

  113. Adkison, J. B. et al. Phase I trial of pelvic nodal dose escalation with hypofractionated IMRT for high-risk prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 82, 184–190 (2012).

    Article  PubMed  Google Scholar 

  114. Fonteyne, V. et al. Hypofractionated intensity-modulated arc therapy for lymph node metastasized prostate cancer: early late toxicity and 3-year clinical outcome. Radiother. Oncol. 109, 229–234 (2013).

    Article  PubMed  Google Scholar 

  115. Guerrero Urbano, T. et al. Intensity-modulated radiotherapy allows escalation of the radiation dose to the pelvic lymph nodes in patients with locally advanced prostate cancer: preliminary results of a phase I dose escalation study. Clin. Oncol. (R. Coll. Radiol.) 22, 236–244 (2010).

    Article  CAS  Google Scholar 

  116. Reis Ferreira, M. et al. Phase 1/2 dose-escalation study of the use of intensity modulated radiation therapy to treat the prostate and pelvic nodes in patients with prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 99, 1234–1242 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Muteganya, R., Goldman, S., Aoun, F., Roumeguère, T. & Albisinni, S. Current imaging techniques for lymph node staging in prostate cancer: a review. Front. Surg. 5, 74 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Wurschmidt, F., Petersen, C., Wahl, A., Dahle, J. & Kretschmer, M. 18F-fluoroethylcholine PET/CT imaging for radiation treatment planning of recurrent and primary prostate cancer with dose escalation to PET/CT-positive lymph nodes. Radiat. Oncol. 6, 44 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Schmidt-Hegemann, N. S. et al. Outcome after PSMA PET/CT based radiotherapy in patients with biochemical persistence or recurrence after radical prostatectomy. Radiat. Oncol. 13, 37 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Meijer, H. J. M. et al. Magnetic resonance lymphography-guided selective high-dose lymph node irradiation in prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 82, 175–183 (2012).

    Article  PubMed  Google Scholar 

  121. Lawton, C. A. F. et al. Variation in the definition of clinical target volumes for pelvic nodal conformal radiation therapy for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 74, 377–382 (2009).

    Article  PubMed  Google Scholar 

  122. Lawton, C. A. F. et al. RTOG GU radiation oncology specialists reach consensus on pelvic lymph node volumes for high-risk prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 74, 383–387 (2009).

    Article  PubMed  Google Scholar 

  123. Paxton, R. M., Williams, G. & Macdonald, J. S. Role of lymphography in carcinoma of the prostate. Br. Med. J. 1, 120–122 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Heidenreich, A., Ohlmann, C. H. & Polyakov, S. Anatomical extent of pelvic lymphadenectomy in patients undergoing radical prostatectomy. Eur. Urol. 52, 29–37 (2007).

    Article  PubMed  Google Scholar 

  125. Meijer, H. J. M. et al. Geographical distribution of lymph node metastases on MR lymphography in prostate cancer patients. Radiother. Oncol. 106, 59–63 (2013).

    Article  PubMed  Google Scholar 

  126. Chen, C., Witte, M., Heemsbergen, W. & van Herk, M. Multiple comparisons permutation test for image based data mining in radiotherapy. Radiat. Oncol. 8, 293 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Shipley, W. U. et al. Proton radiation as boost therapy for localized prostatic carcinoma. JAMA 241, 1912–1915 (1979).

    Article  CAS  PubMed  Google Scholar 

  128. Dryzmala, R. et al. Dose-volume histograms. Int. J. Radiat. Oncol. Biol. Phys. 21, 71–78 (1991).

    Article  Google Scholar 

  129. Witte, M. G. et al. Relating dose outside the prostate with freedom from failure in the Dutch trial 68 Gy versus 78 Gy. Int. J. Radiat. Oncol. Biol. Phys. 77, 131–138 (2010).

    Article  PubMed  Google Scholar 

  130. Beasley, W. et al. Image-based data mining with continuous outcome variables. Radiother. Oncol. 127, S1088 (2018).

    Article  Google Scholar 

  131. Heemsbergen, W. D. et al. Urinary obstruction in prostate cancer patients from the Dutch trial (68 Gy versus 78 Gy): relationships with local dose, acute effects, and baseline characteristics. Int. J. Radiat. Oncol. Biol. Phys. 78, 19–25 (2010).

    Article  PubMed  Google Scholar 

  132. Palorini, F. et al. First application of a pixel-wise analysis on bladder dose-surface maps in prostate cancer radiotherapy. Radiother. Oncol. 119, 123–128 (2016).

    Article  PubMed  Google Scholar 

  133. Improta, I. et al. Bladder spatial-dose descriptors correlate with acute urinary toxicity after radiation therapy for prostate cancer. Phys. Med. 32, 1681–1689 (2016).

    Article  CAS  PubMed  Google Scholar 

  134. Hoogeman, M. S. et al. Quantification of local rectal wall displacements by virtual rectum unfolding. Radiother. Oncol. 70, 21–30 (2004).

    Article  PubMed  Google Scholar 

  135. Heemsbergen, W. D., Hoogeman, M. S., Hart, G. A. M., Lebesque, J. V. & Koper, P. C. M. Gastrointestinal toxicity and its relation to dose distributions in the anorectal region of prostate cancer patients treated with radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 61, 1011–1018 (2005).

    Article  PubMed  Google Scholar 

  136. Acosta, O. et al. Voxel-based population analysis for correlating local dose and rectal toxicity in prostate cancer radiotherapy. Phys. Med. Biol. 58, 2581–2595 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  137. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01368588 (2019).

  138. International Standard Randomised Controlled Trial Number Register. A phase III randomised controlled trial of prostate and pelvis versus prostate alone radiotherapy with or without prostate boost. ISRCTN http://www.isrctn.com/ISRCTN80146950 (2019).

Download references

Acknowledgements

H.T. is part funded by Prostate Cancer UK grant RIA-ST2-031. A.C. and M.V.H. are supported by the National Institute for Health Research (NIHR) Manchester Biomedical Research Centre.

Author information

Authors and Affiliations

Authors

Contributions

H.T. researched data for the article and wrote the manuscript. All authors made substantial contributions to discussions of content and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Hannah Tharmalingam.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Urology thanks C. Cozzarini and M. Roach III for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Intensity-modulated radiotherapy

An advanced form of 3D radiotherapy that uses multiple narrow radiation beams of differing intensities aimed at the tumour from many angles to enable precise conformation of dose to the target.

Image-guided radiotherapy

The process of imaging during radiotherapy to ensure accuracy of treatment delivery and adherence to the actual radiation plan.

Propensity-score matched analyses

A statistical matching technique that estimates treatment effect by accounting for covariates that predict receipt of it, thereby attempting to reduce bias due to confounding factors.

High-dose rate (HDR) brachytherapy

A type of brachytherapy used in prostate cancer whereby a radioactive source is dispensed via a number of temporary catheters placed transperineally into the prostate to deliver radiation at a rapid rate of >12 Gy/h.

3D conformal radiotherapy

A type of radiotherapy that uses special imaging modalities to define the 3D shape of the tumour and computer-controlled planning techniques to conform the radiation beams to the target.

D33%

Mean radiation dose delivered to 33% of a defined target volume typically derived from a dose–volume histogram.

α/β ratio

A parameter derived from linear quadratic dose–response curves that determines the sensitivity of different types of tissue to radiation doses.

International Prostate Symptom Score

A validated self-assessment tool developed to measure lower urinary tract symptoms and health-related quality of life in patients with prostate disease.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tharmalingam, H., Choudhury, A., Van Herk, M. et al. New approaches for effective and safe pelvic radiotherapy in high-risk prostate cancer. Nat Rev Urol 16, 523–538 (2019). https://doi.org/10.1038/s41585-019-0213-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-019-0213-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing