Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The Cancer Genome Atlas of renal cell carcinoma: findings and clinical implications

Abstract

The Cancer Genome Atlas (TCGA) characterized the somatic genetic and genomic alterations in renal cell carcinoma (RCC) encompassing the major RCC histological subtypes, including clear cell RCC (ccRCC), papillary RCC (pRCC) and chromophobe RCC (chRCC). Unique distinguishing features were found between the RCC subtypes, including in chromosomal alterations and tumour metabolism, as well as within each RCC subtype, of which some correlated with differences in patient survival. Two new RCC subtypes were defined by distinct epigenetic and metabolic pathway expression patterns, the hypermethylated CpG island methylator phenotype-associated (CIMP) RCCs and metabolically divergent chRCCs, and new biomarkers of poor patient outcome were identified, including PBRM1 mutation in type 1 pRCC and CDKN2A loss in chRCC. Expression of many immune cell gene-specific signatures was increased in ccRCC compared with pRCC and chRCC, and expression of select signatures, including the type 2 T helper cell signature, was increased in CIMP RCC. Increased expression of the type 2 T helper cell signature correlated with poorer survival in ccRCC, pRCC and chRCC. In addition to improving our current understanding of RCC, TCGA RCC studies are an invaluable resource that provides the foundation for the development of improved methods for diagnosis, treatment and prevention of this disease.

Key points

  • The Cancer Genome Atlas (TCGA) analyses of renal cell carcinoma (RCC) highlight the fundamental differences between the major histological RCC subtypes, such as their distinct chromosomal alterations and metabolic pathway expression signatures.

  • Two novel RCC subtypes were identified by distinct epigenetic and mRNA expression features, the hypermethylated CpG island methylator phenotype-associated (CIMP) RCCs and the metabolically divergent chromophobe RCCs (chRCCs).

  • Mutation of chromatin-remodelling genes was common in clear cell RCC (ccRCC) and present in some papillary RCCs (pRCCs) with BAP1 and PBRM1 mutations, correlating with poor survival in ccRCC and pRCC, respectively.

  • Loss of CDKN2A by deletion of chromosome band 9p21.3 or promoter hypermethylation was frequent in RCC and correlated with poorer survival in all RCC histological subtypes.

  • Increased DNA hypermethylation was present in a subset of ccRCC, pRCC and chRCC tumours and correlated with poor survival in all RCC histological subtypes.

  • Expression of immune cell gene-specific signatures was increased in ccRCC and CIMP RCC, whereas increased expression of the type 2 T helper cell signature correlated with poorer survival in all RCC histological subtypes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TCGA analysis of RCC.
Fig. 2: Main alterations in ccRCC identified in TCGA analyses.
Fig. 3: Main alterations in pRCC identified in TCGA analyses.
Fig. 4: Main alterations in chRCC identified in TCGA analyses.
Fig. 5: DNA methylation in RCC.
Fig. 6: Metabolic RNA expression signatures.
Fig. 7: Immune RNA expression signatures.

Similar content being viewed by others

References

  1. Linehan, W. M., Srinivasan, R. & Schmidt, L. S. The genetic basis of kidney cancer: a metabolic disease. Nat. Rev. Urol. 7, 277–285 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Moch, H., Cubilla, A. L., Humphrey, P. A., Reuter, V. E. & Ulbright, T. M. The 2016 WHO classification of tumours of the urinary system and male genital organs-part A: renal, penile, and testicular tumours. Eur. Urol. 70, 93–105 (2016).

    Article  PubMed  Google Scholar 

  3. Linehan, W. M. & Ricketts, C. J. The metabolic basis of kidney cancer. Semin. Cancer Biol. 23, 46–55 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Linehan, W. M., Coleman, J. A., Walther, M. M. & Zbar, B. in Comprehensive Textbook of Genitourinary Oncology Vol. 3 (eds Vogelzang, N. J. et al) 701–709 (Lippincott Williams & Wilkins, 2006).

  5. Hsieh, J. J. et al. Renal cell carcinoma. Nat. Rev. Dis. Primers 3, 17009 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  6. The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of papillary renal-cell carcinoma. N. Engl. J. Med. 374, 135–145 (2016).

    Article  Google Scholar 

  7. Davis, C. F. et al. The somatic genomic landscape of chromophobe renal cell carcinoma. Cancer Cell 26, 319–330 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499, 43–49 (2013).

    Article  PubMed Central  Google Scholar 

  9. Ricketts, C. J. et al. The Cancer Genome Atlas comprehensive molecular characterization of renal cell carcinoma. Cell Rep. 23, 313–326 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zbar, B., Brauch, H., Talmadge, C. & Linehan, W. M. Loss of alleles of loci on the short arm of chromosome 3 in renal cell carcinoma. Nature 327, 721–724 (1987).

    Article  CAS  PubMed  Google Scholar 

  11. Speicher, M. R. et al. Specific loss of chromosomes 1,2,6,10,13,17, and 21 in chromophobe renal cell carcinomas revealed by comparative genomic hybridization. Am. J. Pathol. 145, 356–364 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kovacs, G. Papillary renal cell carcinoma. A morphologic and cytogenetic study of 11 cases. Am. J. Pathol. 134, 27–34 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Schmidt, L. et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat. Genet. 16, 68–73 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Gnarra, J. R. et al. Mutations of the VHL tumour suppressor gene in renal carcinoma. Nat. Genet. 7, 85–90 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Varela, I. et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 469, 539–542 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen, F. et al. Multilevel genomics-based taxonomy of renal cell carcinoma. Cell Rep. 14, 2476–2489 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mitchell, T. J. et al. Timing the landmark events in the evolution of clear cell renal cell cancer: TRACERx Renal. Cell 173, 611–623 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Latif, F. et al. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 260, 1317–1320 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Kaelin, W. G. Jr Molecular basis of the VHL hereditary cancer syndrome. Nat. Rev. Cancer 2, 673–682 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Sato, Y. et al. Integrated molecular analysis of clear-cell renal cell carcinoma. Nat. Genet. 45, 860–867 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Dalgliesh, G. L. et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 463, 360–363 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pena-Llopis, S. et al. BAP1 loss defines a new class of renal cell carcinoma. Nat. Genet. 44, 751–759 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li, L. et al. SQSTM1 is a pathogenic target of 5q copy number gains in kidney cancer. Cancer Cell 24, 738–750 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jiang, F. et al. Chromosomal imbalances in papillary renal cell carcinoma: genetic differences between histological subtypes. Am. J. Pathol. 153, 1467–1473 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Foster, K. et al. Molecular genetic investigation of sporadic renal cell carcinoma: analysis of allele loss on chromosomes 3p, 5q, 11p, 17 and 22. Br. J. Cancer 69, 230–234 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Durinck, S. et al. Spectrum of diverse genomic alterations define non-clear cell renal carcinoma subtypes. Nat. Genet. 47, 13–21 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Petrilli, A. M. & Fernandez-Valle, C. Role of Merlin/NF2 inactivation in tumor biology. Oncogene 35, 537–548 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Masliah-Planchon, J., Bieche, I., Guinebretiere, J. M., Bourdeaut, F. & Delattre, O. SWI/SNF chromatin remodeling and human malignancies. Annu. Rev. Pathol. 10, 145–171 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Peri, S. et al. Haploinsufficiency in tumor predisposition syndromes: altered genomic transcription in morphologically normal cells heterozygous for VHL or TSC mutation. Oncotarget 8, 17628–17642 (2017).

    Article  PubMed  Google Scholar 

  30. Argani, P. MiT family translocation renal cell carcinoma. Semin. Diagn. Pathol. 32, 103–113 (2015).

    Article  PubMed  Google Scholar 

  31. Kauffman, E. C. et al. Molecular genetics and cellular features of TFE3 and TFEB fusion kidney cancers. Nat. Rev. Urol. 11, 465–475 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xia, Q. Y. et al. Novel gene fusion of PRCC-MITF defines a new member of MiT family translocation renal cell carcinoma: clinicopathological analysis and detection of the gene fusion by RNA sequencing and FISH. Histopathology 72, 786–794 (2018).

    Article  PubMed  Google Scholar 

  33. Brunelli, M. et al. Eosinophilic and classic chromophobe renal cell carcinomas have similar frequent losses of multiple chromosomes from among chromosomes 1, 2, 6, 10, and 17, and this pattern of genetic abnormality is not present in renal oncocytoma. Mod. Pathol. 18, 161–169 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Huang, F. W. et al. Highly recurrent TERT promoter mutations in human melanoma. Science 339, 957–959 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hakimi, A. A. et al. Clinical and pathologic impact of select chromatin-modulating tumor suppressors in clear cell renal cell carcinoma. Eur. Urol. 63, 848–854 (2013).

    Article  PubMed  Google Scholar 

  36. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gerlinger, M. et al. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat. Genet. 46, 225–233 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Turajlic, S. et al. Deterministic evolutionary trajectories influence primary tumor growth: TRACERx Renal. Cell 173, 595–610 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Turajlic, S. et al. Tracking cancer evolution reveals constrained routes to metastases: TRACERx Renal. Cell 173, 581–594 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Herman, J. G. & Baylin, S. B. Gene silencing in cancer in association with promoter hypermethylation. N. Engl. J. Med. 349, 2042–2054 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Herman, J. G. et al. Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc. Natl Acad. Sci. USA 91, 9700–9704 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Morris, M. R. et al. Identification of candidate tumour suppressor genes frequently methylated in renal cell carcinoma. Oncogene 29, 2104–2117 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Morris, M. R. et al. Genome-wide methylation analysis identifies epigenetically inactivated candidate tumour suppressor genes in renal cell carcinoma. Oncogene 30, 1390–1401 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Tomlinson, I. P. et al. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat. Genet. 30, 406–410 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Yang, M., Soga, T. & Pollard, P. J. Oncometabolites: linking altered metabolism with cancer. J. Clin. Invest. 123, 3652–3658 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Turcan, S. et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 483, 479–483 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. The Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 368, 2059–2074 (2013).

    Article  PubMed Central  Google Scholar 

  48. Letouze, E. et al. SDH mutations establish a hypermethylator phenotype in paraganglioma. Cancer Cell 23, 739–752 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Saxena, N. et al. SDHB-deficient cancers: the role of mutations that impair iron sulfur cluster delivery. J. Natl Cancer Inst. 108, djv287 (2016).

    Article  Google Scholar 

  50. Srinivasan, R. et al. Mechanism based targeted therapy for hereditary leiomyomatosis and renal cell cancer (HLRCC) and sporadic papillary renal cell carcinoma: interim results from a phase 2 study of bevacizumab and erlotinib [abstract]. Eur. J. Cancer 50 (Suppl. 6), 8 (2014).

    Article  Google Scholar 

  51. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT01130519 (2019).

  52. Sun, X. J. et al. Identification and characterization of a novel human histone H3 lysine 36-specific methyltransferase. J. Biol. Chem. 280, 35261–35271 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Baubec, T. et al. Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation. Nature 520, 243–247 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Dhayalan, A. et al. The Dnmt3a PWWP domain reads histone 3 lysine 36 trimethylation and guides DNA methylation. J. Biol. Chem. 285, 26114–26120 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tiedemann, R. L. et al. Dynamic reprogramming of DNA methylation in SETD2-deregulated renal cell carcinoma. Oncotarget 7, 1927–1946 (2016).

    Article  PubMed  Google Scholar 

  56. Urakami, S. et al. Wnt antagonist family genes as biomarkers for diagnosis, staging, and prognosis of renal cell carcinoma using tumor and serum DNA. Clin. Cancer Res. 12, 6989–6997 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Ricketts, C. J., Hill, V. K. & Linehan, W. M. Tumor-specific hypermethylation of epigenetic biomarkers, including SFRP1, predicts for poorer survival in patients from the TCGA Kidney Renal Clear Cell Carcinoma (KIRC) project. PLOS ONE 9, e85621 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Borodovsky, A. et al. 5-Azacytidine reduces methylation, promotes differentiation and induces tumor regression in a patient-derived IDH1 mutant glioma xenograft. Oncotarget 4, 1737–1747 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  59. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT03165721 (2019).

  60. Schraml, P. et al. Sporadic clear cell renal cell carcinoma but not the papillary type is characterized by severely reduced frequency of primary cilia. Mod. Pathol. 22, 31–36 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Ooi, A. et al. An antioxidant response phenotype shared between hereditary and sporadic type 2 papillary renal cell carcinoma. Cancer Cell 20, 511–523 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Ooi, A. et al. CUL3 and NRF2 mutations confer an NRF2 activation phenotype in a sporadic form of papillary renal cell carcinoma. Cancer Res. 73, 2044–2051 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Cheval, L., Pierrat, F., Rajerison, R., Piquemal, D. & Doucet, A. Of mice and men: divergence of gene expression patterns in kidney. PLOS ONE 7, e46876 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Brannon, A. R. et al. Molecular stratification of clear cell renal cell carcinoma by consensus clustering reveals distinct subtypes and survival patterns. Genes Cancer 1, 152–163 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hoadley, K. A. et al. Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell 158, 929–944 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. The Cancer Genome Atlas Research Network. Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012).

    Article  Google Scholar 

  67. Chen, W. et al. Targeting renal cell carcinoma with a HIF-2 antagonist. Nature 539, 112–117 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Warburg, O. On the origin of cancer cells. Science 123, 309–314 (1956).

    Article  CAS  PubMed  Google Scholar 

  69. Eales, K. L., Hollinshead, K. E. & Tennant, D. A. Hypoxia and metabolic adaptation of cancer cells. Oncogenesis 5, e190 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sourbier, C. et al. Targeting ABL1-mediated oxidative stress adaptation in fumarate hydratase-deficient cancer. Cancer Cell 26, 840–850 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Patra, K. C. & Hay, N. The pentose phosphate pathway and cancer. Trends Biochem. Sci. 39, 347–354 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lage, R., Dieguez, C., Vidal-Puig, A. & Lopez, M. AMPK: a metabolic gauge regulating whole-body energy homeostasis. Trends Mol. Med. 14, 539–549 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Linehan, W. M., Walther, M. M., Alexander, R. B. & Rosenberg, S. A. Adoptive immunotherapy of renal cell carcinoma: studies from the Surgery Branch, National Cancer Institute. Semin. Urol. 11, 41–43 (1993).

    CAS  PubMed  Google Scholar 

  74. Rosenberg, S. A. IL-2: the first effective immunotherapy for human cancer. J. Immunol. 192, 5451–5458 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Iglesia, M. D. et al. Prognostic B cell signatures using mRNA-seq in patients with subtype-specific breast and ovarian cancer. Clin. Cancer Res. 20, 3818–3829 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bindea, G. et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 39, 782–795 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Geissler, K. et al. Immune signature of tumor infiltrating immune cells in renal cancer. Oncoimmunology 4, e985082 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Chevrier, S. et al. An immune atlas of clear cell renal cell carcinoma. Cell 169, 736–749 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Alsaab, H. O. et al. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front. Pharmacol. 8, 561 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Motzer, R. J. et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med. 373, 1803–1813 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lee, C. H. & Motzer, R. J. Immune checkpoint therapy in renal cell carcinoma. Cancer J. 22, 92–95 (2016).

    Article  PubMed  Google Scholar 

  82. Motzer, R. J. et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N. Engl. J. Med. 378, 1277–1290 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. US Food and Drug Administration. FDA approves nivolumab plus ipilimumab combination for intermediate or poor-risk advanced renal cell carcinoma. FDA https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-nivolumab-plus-ipilimumab-combination-intermediate-or-poor-risk-advanced-renal-cell (2018).

  84. Senbabaoglu, Y. et al. Tumor immune microenvironment characterization in clear cell renal cell carcinoma identifies prognostic and immunotherapeutically relevant messenger RNA signatures. Genome Biol. 17, 231 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The research by the authors discussed in this article was supported by the Intramural Research Program of the National Institutes of Health, National Cancer Institute and Center for Cancer Research.

Reviewer information

Nature Reviews Urology thanks A. A. Hakimi, B. Ljungberg and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, made substantial contributions to discussion of content and wrote and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to W. Marston Linehan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Global Cancer Observatory: https://gco.iarc.fr/today/home

National Cancer Institute Genomic Data Commons: https://gdc.cancer.gov/

TCGA homepage: https://cancergenome.nih.gov/

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Linehan, W.M., Ricketts, C.J. The Cancer Genome Atlas of renal cell carcinoma: findings and clinical implications. Nat Rev Urol 16, 539–552 (2019). https://doi.org/10.1038/s41585-019-0211-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-019-0211-5

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer