1932

Abstract

First-principles methods can provide insight into materials that is otherwise impossible to acquire. Density functional theory (DFT) has been the first-principles method of choice for numerous applications, but it falls short of predicting the properties of correlated materials. First-principles DFT + dynamical mean field theory (DMFT) is a powerful tool that can address these shortcomings of DFT when applied to correlated metals. In this brief review, which is aimed at nonexperts, we review the basics and some applications of DFT + DMFT.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-070218-121825
2019-07-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/matsci/49/1/annurev-matsci-070218-121825.html?itemId=/content/journals/10.1146/annurev-matsci-070218-121825&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Dirac PAM 1929. Quantum mechanics of many-electron systems. Proc. R. Soc. A 123:714–33
    [Google Scholar]
  2. 2.
    Szabo A, Ostlund NS 1996. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory Mineola, NY: Dover
  3. 3.
    Martin RM 2004. Electronic Structure: Basic Theory and Practical Methods Cambridge, UK: Cambridge Univ. Press
  4. 4.
    Kohn W 1999. Nobel lecture: electronic structure of matter–wave functions and density functionals. Rev. Mod. Phys. 71:1253–66
    [Google Scholar]
  5. 5.
    Lejaeghere K, Bihlmayer G, Björkman T, Blaha P, Blügel S et al. 2016. Reproducibility in density functional theory calculations of solids. Science 351:aad3000
    [Google Scholar]
  6. 6.
    Anisimov VI, Poteryaev AI, Korotin MA, Anokhin AO, Kotliar G 1997. First-principles calculations of the electronic structure and spectra of strongly correlated systems: dynamical mean-field theory. J. Phys. Condens. Matter 9:7359
    [Google Scholar]
  7. 7.
    Kotliar G, Vollhardt D 2004. Strongly correlated materials: insights from dynamical mean-field theory. Phys. Today 57:53–59
    [Google Scholar]
  8. 8.
    Kent PR, Kotliar G 2018. Toward a predictive theory of correlated materials. Science 361:348–54
    [Google Scholar]
  9. 9.
    Kotliar G, Savrasov SY, Haule K, Oudovenko VS, Parcollet O, Marianetti CA 2006. Electronic structure calculations with dynamical mean-field theory. Rev. Mod. Phys. 78:865–951
    [Google Scholar]
  10. 10.
    Held K 2007. Electronic structure calculations using dynamical mean field theory. Adv. Phys. 56:829–926
    [Google Scholar]
  11. 11.
    Basov DN, Averitt RD, van der Marel D, Dressel M, Haule K 2011. Electrodynamics of correlated electron materials. Rev. Mod. Phys. 83:471–541
    [Google Scholar]
  12. 12.
    Georges A, Kotliar G, Krauth W, Rozenberg MJ 1996. Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys. 68:13–125
    [Google Scholar]
  13. 13.
    Martin R, Reining L, Ceperley D 2016. Interacting Electrons Cambridge, UK: Cambridge Univ. Press
  14. 14.
    Hohenberg P, Kohn W 1964. Inhomogeneous electron gas. Phys. Rev. 136:B864–71
    [Google Scholar]
  15. 15.
    Ceperley DM, Alder BJ 1980. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45:566–69
    [Google Scholar]
  16. 16.
    Perdew JP 1991. Generalized gradient approximations for exchange and correlation: a look backward and forward. Physica B Condens. Matter 172:1–6
    [Google Scholar]
  17. 17.
    Giuliani G, Vignale G 2005. Quantum Theory of the Electron Liquid Cambridge, UK: Cambridge Univ. Press
  18. 18.
    Vollhardt D 2012. Dynamical mean-field theory for correlated electrons. Ann. Phys. 524:1–19
    [Google Scholar]
  19. 19.
    Anderson PW 2013. Twenty-five years of high-temperature superconductivity—a personal review. J. Phys. Conf. Ser. 449:012001
    [Google Scholar]
  20. 20.
    Dagotto E 2013. Nanoscale Phase Separation and Colossal Magnetoresistance: The Physics of Manganites and Related Compounds Berlin/Heidelberg, Ger.: Springer
  21. 21.
    Imada M, Fujimori A, Tokura Y 1998. Metal-insulator transitions. Rev. Mod. Phys. 70:1039–263
    [Google Scholar]
  22. 22.
    Mott NF 1949. The basis of the electron theory of metals, with special reference to the transition metals. Proc. Phys. Soc. A 62:416
    [Google Scholar]
  23. 23.
    Terakura K, Oguchi T, Williams AR, Kübler J 1984. Band theory of insulating transition-metal monoxides: band-structure calculations. Phys. Rev. B 30:4734–47
    [Google Scholar]
  24. 24.
    Gutzwiller MC 1963. Effect of correlation on the ferromagnetism of transition metals. Phys. Rev. Lett. 10:159–62
    [Google Scholar]
  25. 25.
    Hubbard J 1963. Electron correlations in narrow energy bands. Proc. R. Soc. A 276:238–57
    [Google Scholar]
  26. 26.
    Kanamori J 1963. Electron correlation and ferromagnetism of transition metals. Progr. Theor. Phys. 30:275–89
    [Google Scholar]
  27. 27.
    Lieb EH, Wu FY 1968. Absence of Mott transition in an exact solution of the short-range, one-band model in one dimension. Phys. Rev. Lett. 20:1445–48
    [Google Scholar]
  28. 28.
    Pavarini E, Koch E, Vollhardt D, Lichtenstein A 2014.DMFT at 25: infinite dimensions Lecture Notes, Autumn School on Correlated Electrons 2014, Schriften des Forschungszentrums Jülich, Reihe Modeling and Simulation, Forschungszentrum Jülich
  29. 29.
    Metzner W, Vollhardt D 1989. Correlated lattice fermions in dimensions. Phys. Rev. Lett. 62:324–27
    [Google Scholar]
  30. 30.
    Müller-Hartmann E 1989. The Hubbard model at high dimensions: some exact results and weak coupling theory. Z. Phys. B Condens. Matter 76:211–17
    [Google Scholar]
  31. 31.
    Georges A, Kotliar G 1992. Hubbard model in infinite dimensions. Phys. Rev. B 45:6479–83
    [Google Scholar]
  32. 32.
    Georges A 2004. Strongly correlated electron materials: dynamical mean field theory and electronic structure. AIP Conf. Proc. 715:3–74
    [Google Scholar]
  33. 33.
    Vollhardt D 2010. Dynamical mean field theory of electronic correlations in models and materials. AIP Conf. Proc. 1297:339–403
    [Google Scholar]
  34. 34.
    Jarrell M 1992. Hubbard model in infinite dimensions: a quantum Monte Carlo study. Phys. Rev. Lett. 69:168–71
    [Google Scholar]
  35. 35.
    Anderson PW 1961. Localized magnetic states in metals. Phys. Rev. 124:41–53
    [Google Scholar]
  36. 36.
    Haule K 2018. Structural predictions for correlated electron materials using the functional dynamical mean field theory approach. J. Phys. Soc. Jpn. 87:041005
    [Google Scholar]
  37. 37.
    Marzari N, Mostofi AA, Yates JR, Souza I, Vanderbilt D 2012. Maximally localized Wannier functions: theory and applications. Rev. Mod. Phys. 84:1419–75
    [Google Scholar]
  38. 38.
    Park H, Millis AJ, Marianetti CA 2014. Computing total energies in complex materials using charge self-consistent DFT + DMFT. Phys. Rev. B 90:235103
    [Google Scholar]
  39. 39.
    Haule K, Yee CH, Kim K 2010. Dynamical mean-field theory within the full-potential methods: electronic structure of CeIrIn, CeCoIn, and CeRhIn. Phys. Rev. B 81:195107
    [Google Scholar]
  40. 40.
    Adler R, Kang CJ, Yee CH, Kotliar G 2019. Correlated materials design: prospects and challenges. Rep. Progr. Phys. 82:012504
    [Google Scholar]
  41. 41.
    Anisimov VI, Zaanen J, Andersen OK 1991. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 44:943–54
    [Google Scholar]
  42. 42.
    Karolak M, Ulm G, Wehling T, Mazurenko V, Poteryaev A, Lichtenstein A 2010. Double counting in LDA + DMFT: the example of NiO. J. Electron Spectrosc. Relat. Phenom. 181:11–15
    [Google Scholar]
  43. 43.
    Dang HT, Ai X, Millis AJ, Marianetti CA 2014. Density functional plus dynamical mean-field theory of the metal-insulator transition in early transition-metal oxides. Phys. Rev. B 90:125114
    [Google Scholar]
  44. 44.
    Czyżyk MT, Sawatzky GA 1994. Local-density functional and on-site correlations: the electronic structure of La2CuO4 and LaCuO3. Phys. Rev. B 49:14211–28
    [Google Scholar]
  45. 45.
    Park H, Millis AJ, Marianetti CA 2014. Total energy calculations using DFT + DMFT: computing the pressure phase diagram of the rare earth nickelates. Phys. Rev. B 89:245133
    [Google Scholar]
  46. 46.
    Haule K 2015. Exact double counting in combining the dynamical mean field theory and the density functional theory. Phys. Rev. Lett. 115:196403
    [Google Scholar]
  47. 47.
    Kristanovski O, Shick AB, Lechermann F, Lichtenstein AI 2018. Role of nonspherical double counting in DFT + DMFT: total energy and structural optimization of pnictide superconductors. Phys. Rev. B 97:201116
    [Google Scholar]
  48. 48.
    Werner P, Comanac A, de’ Medici L, Troyer M, Millis AJ 2006. Continuous-time solver for quantum impurity models. Phys. Rev. Lett. 97:076405
    [Google Scholar]
  49. 49.
    Haule K 2007. Quantum Monte Carlo impurity solver for cluster dynamical mean-field theory and electronic structure calculations with adjustable cluster base. Phys. Rev. B 75:155113
    [Google Scholar]
  50. 50.
    Gull E, Millis AJ, Lichtenstein AI, Rubtsov AN, Troyer M, Werner P 2011. Continuous-time Monte Carlo methods for quantum impurity models. Rev. Mod. Phys. 83:349–404
    [Google Scholar]
  51. 51.
    Sémon P, Yee CH, Haule K, Tremblay AMS 2014. Lazy skip-lists: an algorithm for fast hybridization-expansion quantum Monte Carlo. Phys. Rev. B 90:075149
    [Google Scholar]
  52. 52.
    Takizawa M, Minohara M, Kumigashira H, Toyota D, Oshima M et al. 2009. Coherent and incoherent d band dispersions in SrVO3. Phys. Rev. B 80:235104
    [Google Scholar]
  53. 53.
    Haule K, Birol T 2015. Free energy from stationary implementation of the DFT + DMFT functional. Phys. Rev. Lett. 115:256402
    [Google Scholar]
  54. 54.
    Dougier P, Fan JC, Goodenough JB 1975. Etude des proprietes magnetiques, electriques et optiques des phases de structure perovskite SrVO et SrVO3. J. Solid State Chem. 14:247–59
    [Google Scholar]
  55. 55.
    Nekrasov I, Held K, Keller G, Kondakov D, Pruschke T et al. 2006. Momentum-resolved spectral functions of SrVO3 calculated by LDA + DMFT. Phys. Rev. B 73:155112
    [Google Scholar]
  56. 56.
    Hewson AC 1997.The Kondo Problem to Heavy Fermions 2 Cambridge, UK: Cambridge Univ. Press:
  57. 57.
    Fazekas P 1999.Lecture Notes on Electron Correlation and Magnetism 5 Singapore: World Sci.:
  58. 58.
    Uehara A, Shinaoka H, Motome Y 2015. Charge-spin-orbital fluctuations in mixed valence spinels: comparative study of and . Phys. Rev. B 92:195150
    [Google Scholar]
  59. 59.
    Kondo S, Johnston D, Swenson C, Borsa F, Mahajan A et al. 1997. LiV2O4: a heavy fermion transition metal oxide. Phys. Rev. Lett. 78:3729–32
    [Google Scholar]
  60. 60.
    Arita R, Held K, Lukoyanov AV, Anisimov VI 2007. Doped Mott insulator as the origin of heavy-fermion behavior in LiV2O4. Phys. Rev. Lett. 98:166402
    [Google Scholar]
  61. 61.
    Shim J, Haule K, Kotliar G 2007. Modeling the localized-to-itinerant electronic transition in the heavy fermion system CeIrIn. Science 318:1615–17
    [Google Scholar]
  62. 62.
    Choi HC, Min B, Shim J, Haule K, Kotliar G 2012. Temperature-dependent Fermi surface evolution in heavy fermion CeIrIn. Phys. Rev. Lett. 108:016402
    [Google Scholar]
  63. 63.
    Kohn W, Sham LJ 1965. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140:A1133–38
    [Google Scholar]
  64. 64.
    Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P 2001. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73:515–62
    [Google Scholar]
  65. 65.
    Perdew JP, Yue W 1986. Accurate and simple density functional for the electronic exchange energy: generalized gradient approximation. Phys. Rev. B 33:8800–2
    [Google Scholar]
  66. 66.
    Perdew JP, Burke K, Ernzerhof M 1996. Generalized gradient approximation made simple. Phys. Rev. Lett. 77:3865–68
    [Google Scholar]
  67. 67.
    Perdew JP, Ruzsinszky A, Csonka GI, Vydrov OA, Scuseria GE et al. 2008. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100:136406
    [Google Scholar]
  68. 68.
    Haas P, Tran F, Blaha P 2009. Calculation of the lattice constant of solids with semilocal functionals. Phys. Rev. B 79:085104
    [Google Scholar]
  69. 69.
    Rabe KM, Ghosez P 2007. First-principles studies of ferroelectric oxides. Physics of Ferroelectrics KM Rabe, CH Ahn, J-M Triscone11774 Berlin/Heidelberg, Ger: Springer
    [Google Scholar]
  70. 70.
    Vanderbilt D, Zhong W 1998. First-principles theory of structural phase transitions for perovskites: competing instabilities. Ferroelectrics 206:181–204
    [Google Scholar]
  71. 71.
    Khomskii D 2014. Transition Metal Compounds Cambridge, UK: Cambridge Univ. Press
  72. 72.
    Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP 1998. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA + U study. Phys. Rev. B 57:1505–9
    [Google Scholar]
  73. 73.
    Liechtenstein AI, Anisimov VI, Zaanen J 1995. Density-functional theory and strong interactions: orbital ordering in Mott-Hubbard insulators. Phys. Rev. B 52:R5467–70
    [Google Scholar]
  74. 74.
    Rotter M, Tegel M, Johrendt D, Schellenberg I, Hermes W, Pöttgen R 2008. Spin-density-wave anomaly at 140 K in the ternary iron arsenide BaFe2As2. Phys. Rev. B 78:020503
    [Google Scholar]
  75. 75.
    Savrasov SY, Kotliar G 2003. Linear response calculations of lattice dynamics in strongly correlated systems. Phys. Rev. Lett. 90:056401
    [Google Scholar]
  76. 76.
    Dai X, Savrasov SY, Kotliar G, Migliori A, Ledbetter H, Abrahams E 2003. Calculated phonon spectra of plutonium at high temperatures. Science 300:953–55
    [Google Scholar]
  77. 77.
    Yin Q, Savrasov SY 2008. Origin of low thermal conductivity in nuclear fuels. Phys. Rev. Lett. 100:225504
    [Google Scholar]
  78. 78.
    Katsnelson MI, Lichtenstein AI 2000. First-principles calculations of magnetic interactions in correlated systems. Phys. Rev. B 61:8906–12
    [Google Scholar]
  79. 79.
    Lichtenstein A, Katsnelson M, Kotliar G 2001. Finite-temperature magnetism of transition metals: an ab initio dynamical mean-field theory. Phys. Rev. Lett. 87:067205
    [Google Scholar]
  80. 80.
    Yang I, Savrasov SY, Kotliar G 2001. Importance of correlation effects on magnetic anisotropy in Fe and Ni. Phys. Rev. Lett. 87:216405
    [Google Scholar]
  81. 81.
    Hirsch JE, Fye RM 1986. Monte Carlo method for magnetic impurities in metals. Phys. Rev. Lett. 56:2521–24
    [Google Scholar]
  82. 82.
    Leonov I, Poteryaev AI, Anisimov VI, Vollhardt D 2011. 1Electronic correlations at the α-γ structural phase transition in paramagnetic iron. Phys. Rev. Lett. 106:106405
    [Google Scholar]
  83. 83.
    Leonov I, Poteryaev AI, Anisimov VI, Vollhardt D 2012. Calculated phonon spectra of paramagnetic iron at the α-γ phase transition. Phys. Rev. B 85:020401
    [Google Scholar]
  84. 84.
    Leonov I, Poteryaev A, Gornostyrev YN, Lichtenstein A, Katsnelson M et al. 2014. Electronic correlations determine the phase stability of iron up to the melting temperature. Sci. Rep. 4:5585
    [Google Scholar]
  85. 85.
    Han Q, Birol T, Haule K 2018. Phonon softening due to melting of the ferromagnetic order in elemental iron. Phys. Rev. Lett. 120:187203
    [Google Scholar]
  86. 86.
    Haule K, Pascut GL 2016. Forces for structural optimizations in correlated materials within a DFT + embedded DMFT functional approach. Phys. Rev. B 94:195146
    [Google Scholar]
  87. 87.
    Thornton G, Tofield B, Hewat A 1986. A neutron diffraction study of LaCoO3 in the temperature range 4.2 t 1248 K. J. Solid State Chem. 61:301–7
    [Google Scholar]
  88. 88.
    Chakrabarti B, Birol T, Haule K 2017. Role of entropy and structural parameters in the spin-state transition of LaCoO3. Phys. Rev. Mater. 1:064403
    [Google Scholar]
  89. 89.
    Satija SK, Comès RP, Shirane G 1985. Neutron scattering measurements of phonons in iron above and below . Phys. Rev. B 32:3309–11
    [Google Scholar]
  90. 90.
    Bain EC, Dunkirk N 1924. The nature of martensite. Trans. AIME 70:25–47
    [Google Scholar]
  91. 91.
    Neuhaus J, Petry W, Krimmel A 1997. Phonon softening and martensitic transformation in α-Fe. Physica B Condens. Matter 234:897–99
    [Google Scholar]
  92. 92.
    Zunger A, Wei SH, Ferreira LG, Bernard JE 1990. Special quasirandom structures. Phys. Rev. Lett. 65:353–56
    [Google Scholar]
  93. 93.
    Trimarchi G, Wang Z, Zunger A 2018. Polymorphous band structure model of gapping in the antiferromagnetic and paramagnetic phases of the Mott insulators MnO, FeO, CoO, and NiO. Phys. Rev. B 97:035107
    [Google Scholar]
  94. 94.
    Körmann F, Dick A, Grabowski B, Hickel T, Neugebauer J 2012. Atomic forces at finite magnetic temperatures: phonons in paramagnetic iron. Phys. Rev. B 85:125104
    [Google Scholar]
  95. 95.
    Ikeda Y, Seko A, Togo A, Tanaka I 2014. Phonon softening in paramagnetic bcc Fe and its relationship to the pressure-induced phase transition. Phys. Rev. B 90:134106
    [Google Scholar]
  96. 96.
    Körmann F, Grabowski B, Dutta B, Hickel T, Mauger L et al. 2014. Temperature dependent magnon-phonon coupling in bcc Fe from theory and experiment. Phys. Rev. Lett. 113:165503
    [Google Scholar]
  97. 97.
    Luo W, Johansson B, Eriksson O, Arapan S, Souvatzis P et al. 2010. Dynamical stability of body center cubic iron at the Earth's core conditions. PNAS 107:9962–64
    [Google Scholar]
  98. 98.
    Lian CS, Wang JT, Chen C 2015. Ab initio study of the anharmonic lattice dynamics of iron at the γ-Δ phase transition. Phys. Rev. B 92:184110
    [Google Scholar]
  99. 99.
    Kuneš J, Lukoyanov AV, Anisimov VI, Scalettar RT, Pickett WE 2008. Collapse of magnetic moment drives the Mott transition in MnO. Nat. Mater. 7:198–202
    [Google Scholar]
  100. 100.
    Leonov I, Binggeli N, Korotin D, Anisimov VI, Stojić N, Vollhardt D 2008. Structural relaxation due to electronic correlations in the paramagnetic insulator . Phys. Rev. Lett. 101:096405
    [Google Scholar]
  101. 101.
    Park H, Millis AJ, Marianetti CA 2012. Site-selective Mott transition in rare-earth-element nickelates. Phys. Rev. Lett. 109:156402
    [Google Scholar]
  102. 102.
    Haule K, Pascut GL 2017. Mott transition and magnetism in rare earth nickelates and its fingerprint on the X-ray scattering. Sci. Rep. 7:10375
    [Google Scholar]
  103. 103.
    Bärnighausen H, Schiller G 1985. The crystal structure of A-Ce2O3. J. Less Common Metals 110:385–90
    [Google Scholar]
  104. 104.
    Heyd J, Scuseria GE 2004. Assessment and validation of a screened Coulomb hybrid density functional. J. Chem. Phys. 120:7274–80
    [Google Scholar]
  105. 105.
    Adamo C, Barone V 1999. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 110:6158–70
    [Google Scholar]
  106. 106.
    Perdew JP, Ernzerhof M, Burke K 1996. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105:9982–85
    [Google Scholar]
  107. 107.
    Heyd J, Scuseria GE, Ernzerhof M 2003. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118:8207–15
    [Google Scholar]
  108. 108.
    Becke AD 1993. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98:5648–52
    [Google Scholar]
  109. 109.
    Paier J, Marsman M, Kresse G 2007. Why does the B3LYP hybrid functional fail for metals. J. Chem. Phys. 127:024103
    [Google Scholar]
  110. 110.
    Paier J, Marsman M, Hummer K, Kresse G, Gerber IC, Ángyán JG 2006. Screened hybrid density functionals applied to solids. J. Chem. Phys. 124:154709
    [Google Scholar]
  111. 111.
    Da Silva JLF, Ganduglia-Pirovano MV, Sauer J, Bayer V, Kresse G 2007. Hybrid functionals applied to rare-earth oxides: the example of ceria. Phys. Rev. B 75:045121
    [Google Scholar]
  112. 112.
    Jacob D, Haule K, Kotliar G 2008. Combining the hybrid functional method with dynamical mean-field theory. EPL 84:57009
    [Google Scholar]
  113. 113.
    Onida G, Reining L, Rubio A 2002. Electronic excitations: density-functional versus many-body Green's-function approaches. Rev. Mod. Phys. 74:601–59
    [Google Scholar]
  114. 114.
    Kotliar G, Savrasov S 2001. Model Hamiltonians and first principles electronic structure calculations. New Theoretical Approaches to Strongly Correlated Systems AM Tsvelik, pp. 259301 Dordrecht, Neth.: Springer
    [Google Scholar]
  115. 115.
    Biermann S, Aryasetiawan F, Georges A 2003. First-principles approach to the electronic structure of strongly correlated systems: combining the GW approximation and dynamical mean-field theory. Phys. Rev. Lett. 90:086402
    [Google Scholar]
  116. 116.
    Tomczak JM, Casula M, Miyake T, Aryasetiawan F, Biermann S 2012. Combined GW and dynamical mean-field theory: dynamical screening effects in transition metal oxides. EPL 100:67001
    [Google Scholar]
  117. 117.
    Tomczak JM, Casula M, Miyake T, Biermann S 2014. Asymmetry in band widening and quasiparticle lifetimes in SrVO3: competition between screened exchange and local correlations from combined GW and dynamical mean-field theory GW + DMFT. Phys. Rev. B 90:165138
    [Google Scholar]
  118. 118.
    Taranto C, Kaltak M, Parragh N, Sangiovanni G, Kresse G et al. 2013. Comparing quasiparticle GW + DMFT and LDA + DMFT for the test bed material SrVO. Phys. Rev. B 88:165119
    [Google Scholar]
  119. 119.
    Hansmann P, Ayral T, Vaugier L, Werner P, Biermann S 2013. Long-range Coulomb interactions in surface systems: a first-principles description within self-consistently combined GW and dynamical mean-field theory. Phys. Rev. Lett. 110:166401
    [Google Scholar]
  120. 120.
    Choi S, Kutepov A, Haule K, van Schilfgaarde M, Kotliar G 2016. First-principles treatment of Mott insulators: linearized QSGW + DMFT approach. NPJ Quantum Mater. 1:16001
    [Google Scholar]
  121. 121.
    Sémon P, Haule K, Kotliar G 2017. Validity of the local approximation in iron pnictides and chalcogenides. Phys. Rev. B 95:195115
    [Google Scholar]
  122. 122.
    Goodenough JB 1971. The two components of the crystallographic transition in VO2. J. Solid State Chem. 3:490–500
    [Google Scholar]
  123. 123.
    Eyert V 2002. The metal-insulator transitions of VO2: a band theoretical approach. Ann. Phys. 11:650–704
    [Google Scholar]
  124. 124.
    Weber C, O'Regan DD, Hine NDM, Payne MC, Kotliar G, Littlewood PB 2012. Vanadium dioxide: a Peierls-Mott insulator stable against disorder. Phys. Rev. Lett. 108:256402
    [Google Scholar]
  125. 125.
    Biermann S, Poteryaev A, Lichtenstein AI, Georges A 2005. Dynamical singlets and correlation-assisted Peierls transition in VO2. Phys. Rev. Lett. 94:026404
    [Google Scholar]
  126. 126.
    Lazarovits B, Kim K, Haule K, Kotliar G 2010. Effects of strain on the electronic structure of VO2. Phys. Rev. B 81:115117
    [Google Scholar]
  127. 127.
    Brito W, Aguiar M, Haule K, Kotliar G 2016. Metal-insulator transition in VO2: a DFT + DMFT perspective. Phys. Rev. Lett. 117:056402
    [Google Scholar]
  128. 128.
    Brito W, Aguiar M, Haule K, Kotliar G 2017. Dynamic electronic correlation effects in NbO2 as compared to VO2. Phys. Rev. B 96:195102
    [Google Scholar]
  129. 129.
    Franceschetti A, Zunger A 1999. The inverse band-structure problem of finding an atomic configuration with given electronic properties. Nature 402:60–63
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-070218-121825
Loading
/content/journals/10.1146/annurev-matsci-070218-121825
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error