1932

Abstract

Topological magnetic structures such as domain walls, vortices, and skyrmions have recently received considerable attention because of their potential application in advanced functional devices. Tuning the magnetic order of the topological structures can result in emergent functionalities and thus lead to novel application concepts. Strain engineering is one promising approach with which to control magnetic order via magneto-elastic coupling in ferromagnets. By introducing lattice deformation, mechanical strain not only can trigger the magnetic phase transition but also can be used to manipulate topological magnetic orders in ferromagnets. The present review is based on magneto-elastic coupling as the coherent basis of the mechanical control of different topological magnetic orders. Following a description of magneto-elastic coupling, we review recent progress in the mechanical control of the magnetic phase transition and topological structures, including magnetic domain walls, vortices, and skyrmions. The review concludes by briefly addressing the future research directions in the field.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-070218-010200
2019-07-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/matsci/49/1/annurev-matsci-070218-010200.html?itemId=/content/journals/10.1146/annurev-matsci-070218-010200&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Parkin SSP, Hayashi M, Thomas L 2008. Magnetic domain-wall racetrack memory. Science 320:190–94
    [Google Scholar]
  2. 2.
    Seidel J, Vasudevan RK, Valanoor N 2016. Topological structures in multiferroics: domain walls, skyrmions and vortices. Adv. Electron. Mater. 2:1500292
    [Google Scholar]
  3. 3.
    Roessler UK, Bogdanov AN, Pfleiderer C 2006. Spontaneous skyrmion ground states in magnetic metals. Nature 442:797–801
    [Google Scholar]
  4. 4.
    Muehlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A et al. 2009. Skyrmion lattice in a chiral magnet. Science 323:915–19
    [Google Scholar]
  5. 5.
    Finocchio G, Buttner F, Tomasello R, Carpentieri M, Klaeui M 2016. Magnetic skyrmions: from fundamental to applications. J. Phys. D Appl. Phys. 49:423001
    [Google Scholar]
  6. 6.
    Kittel C. 2005. Introduction to Solid State Physics Hoboken, NJ: John Wiley & Sons
  7. 7.
    Callen ER, Callen HB. 1963. Static magnetoelastic coupling in cubic crystals. Phys. Rev. 129:578–93
    [Google Scholar]
  8. 8.
    Lee S, Pirogov A, Kang M, Jang K-H, Yonemura M et al. 2008. Giant magneto-elastic coupling in multiferroic hexagonal manganites. Nature 451:805–8
    [Google Scholar]
  9. 9.
    Kittel C. 1960. Model of exchange-inversion magnetization. Phys. Rev. 120:335–42
    [Google Scholar]
  10. 10.
    Becker R, Döring W. 1939. Ferromagnetismus Berlin: Springer
  11. 11.
    Chikazumi S, Graham CD. 2009. Physics of Ferromagnetism Oxford, UK: Oxford Univ. Press
  12. 12.
    Lee EW. 1955. Magnetostriction and magnetomechanical effects. Rep. Prog. Phys. 18:184
    [Google Scholar]
  13. 13.
    Clark A, DeSavage B, Bozorth R 1965. Anomalous thermal expansion and magnetostriction of single-crystal dysprosium. Phys. Rev. 138:A216–24
    [Google Scholar]
  14. 14.
    Engdahl G. 1999. Handbook of Giant Magnetostrictive Materials San Diego, CA: Academic
  15. 15.
    Sander D. 1999. The correlation between mechanical stress and magnetic anisotropy in ultrathin films. Rep. Prog. Phys. 62:809
    [Google Scholar]
  16. 16.
    Wu R, Chen L, Freeman AJ 1997. First principles determination of magnetostriction in bulk transition metals and thin films. J. Magn. Magn. Mater. 170:103–9
    [Google Scholar]
  17. 17.
    Hjortstam O, Baberschke K, Wills J, Johansson B, Eriksson O 1997. Magnetic anisotropy and magnetostriction in tetragonal and cubic Ni. Phys. Rev. B 55:15026
    [Google Scholar]
  18. 18.
    Cao J, Zhang Y, Ouyang W, Wu R 2009. Large magnetostriction of Fe1−xGex and its electronic origin: density functional study. Phys. Rev. B 80:104414
    [Google Scholar]
  19. 19.
    Odkhuu D, Hong SC. 2010. First-principles investigation of huge magnetostriction in cubic L12Fe3Pt. J. Appl. Phys. 107:09A945
    [Google Scholar]
  20. 20.
    Odkhuu D, Yun WS, Hong SC 2012. Electronic origin of the negligible magnetostriction of an electric steel Fe1−xSix alloy: a density-functional study. J. Appl. Phys. 111:063911
    [Google Scholar]
  21. 21.
    Wu R. 2002. Origin of large magnetostriction in FeGa alloys. J. Appl. Phys. 91:7358–60
    [Google Scholar]
  22. 22.
    Hong SC, Yun WS, Wu R 2009. Giant magnetostriction of Fe1−xBex alloy: a first-principles study. Phys. Rev. B 79:054419
    [Google Scholar]
  23. 23.
    Zhang Y, Cao J, Wu R 2010. Rigid band model for prediction of magnetostriction of iron-gallium alloys. Appl. Phys. Lett. 96:062508
    [Google Scholar]
  24. 24.
    Zhang Y, Wang Z, Cao J 2014. Predicting magnetostriction of MFe3N (M = Fe, Mn, Ir, Os, Pd, Rh) from ab initio calculations. Comput. Mater. Sci. 92:464–67
    [Google Scholar]
  25. 25.
    Bozorth R, Hamming R. 1953. Measurement of magnetostriction in single crystals. Phys. Rev. 89:865–69
    [Google Scholar]
  26. 26.
    Fawcett E. 1970. Magnetostriction of paramagnetic transition metals. I. Group 4—Ti and Zr; group 5—V, Nb, and Ta; group 6—Mo and W. Phys. Rev. B 2:1604–13
    [Google Scholar]
  27. 27.
    Callen E, Clark A, DeSavage B, Coleman W, Callen H 1963. Magnetostriction in cubic Néel ferrimagnets, with application to YIG. Phys. Rev. 130:1735–40
    [Google Scholar]
  28. 28.
    Tsuya N, Arai K, Shiraga Y, Yamada M, Masumoto T 1975. Magnetostriction of amorphous Fe0.80P0.13C0.07 ribbon. Phys. Status Solid. A 31:557–61
    [Google Scholar]
  29. 29.
    Giallorenzi TG, Bucaro JA, Dandridge A, Sigel GH, Cole JH et al. 1982. Optical fiber sensor technology. IEEE Trans. Microw. Theory Tech. 30:472–511
    [Google Scholar]
  30. 30.
    Bucholtz F, Koo K, Sigel G, Dandridge A 1985. Optimization of the fiber/metallic glass bond in fiber-optic magnetic sensors. J. Lightwave Technol. 3:814–17
    [Google Scholar]
  31. 31.
    Squire P, Gibbs M. 1987. Fibre-optic dilatometer for measuring magnetostriction in ribbon samples. J. Phys. E 20:499
    [Google Scholar]
  32. 32.
    Liniers M, Madurga V, Vázquez M, Hernando A 1985. Magnetostrictive torsional strain in transverse-field-annealed Metglas. Phys. Rev. B 31:4425–32
    [Google Scholar]
  33. 33.
    Drosdziok S, Wessel K. 1973. A method for ultrasensitive magnetostriction measurement. IEEE Trans. Magn. 9:56–59
    [Google Scholar]
  34. 34.
    Vázquez M, Fernengel W, Kronmüller H 1983. The effect of tensile stresses on the magnetic properties of Co58Fe5Ni10Si11B16 amorphous alloys. Phys. Status Solid. A 80:195–204
    [Google Scholar]
  35. 35.
    Bushnell S, Nowak W, Oliver S, Vittoria C 1992. The measurement of magnetostriction constants of thin films using planar microwave devices and ferromagnetic resonance. Rev. Sci. Instrum. 63:2021–25
    [Google Scholar]
  36. 36.
    Fujiwara H, Kadomatsu H, Tohma K, Fujii H, Okamoto T 1980. Pressure-induced magnetic transition in Fe2P. J. Magn. Magn. Mater. 21:262–68
    [Google Scholar]
  37. 37.
    Ishizuka M, Kato H, Kunisue T, Endo S, Kanomata T, Nishihara H 2001. Pressure-induced magnetic phase transition in CrTe at approximately 7 GPa. J. Alloys Compd. 320:24–28
    [Google Scholar]
  38. 38.
    Matsushita M, Miyoshi Y, Endo S, Ono F 2005. Pressure-induced magnetic phase transitions in Fe-based Invar alloys. Phys. Rev. B 72:214404
    [Google Scholar]
  39. 39.
    San X, Ma Y, Cui T, He W, Han B et al. 2006. Pressure-induced magnetic transition in metallic nickel hydrides by ab initio pseudopotential plane-wave calculations. Phys. Rev. B 74:052405
    [Google Scholar]
  40. 40.
    Vogt T, Hriljac J, Hyatt N, Woodward P 2003. Pressure-induced intermediate-to-low spin state transition in LaCoO3. Phys. Rev. B 67:140401
    [Google Scholar]
  41. 41.
    Kozlenko D, Golosova N, Jirak Z, Dubrovinsky L, Savenko B et al. 2007. Temperature- and pressure-driven spin-state transitions in LaCoO3. Phys. Rev. B 75:064422
    [Google Scholar]
  42. 42.
    Mydeen K, Kasinathan D, Koz C, Rößler S, Rößler U et al. 2017. Pressure-induced ferromagnetism due to an anisotropic electronic topological transition in Fe1.08Te. Phys. Rev. Lett. 119:227003
    [Google Scholar]
  43. 43.
    Csontos M, Mihály G, Jankó B, Wojtowicz T, Liu X, Furdyna J 2005. Pressure-induced ferromagnetism in (In,Mn)Sb dilute magnetic semiconductor. Nat. Mater. 4:447–49
    [Google Scholar]
  44. 44.
    Shigeoka T, Uwatoko Y, Fujii H, Rebelsky L, Shapiro S, Asai K 1990. Pressure-induced structural and magnetic phase transitions in CeZn. Phys. Rev. B 42:8394–98
    [Google Scholar]
  45. 45.
    Schlom DG, Chen L-Q, Eom C-B, Rabe KM, Streiffer SK, Triscone J-M 2007. Strain tuning of ferroelectric thin films. Annu. Rev. Mater. Res. 37:589–626
    [Google Scholar]
  46. 46.
    Fuchs D, Pinta C, Schwarz T, Schweiss P, Nagel P et al. 2007. Ferromagnetic order in epitaxially strained LaCoO3 thin films. Phys. Rev. B 75:144402
    [Google Scholar]
  47. 47.
    Fuchs D, Arac E, Pinta C, Schuppler S, Schneider R, v. Löhneysen H 2008. Tuning the magnetic properties of LaCoO3 thin films by epitaxial strain. Phys. Rev. B 77:014434
    [Google Scholar]
  48. 48.
    Fujioka J, Yamasaki Y, Nakao H, Kumai R, Murakami Y et al. 2013. Spin-orbital superstructure in strained ferrimagnetic perovskite cobalt oxide. Phys. Rev. Lett. 111:027206
    [Google Scholar]
  49. 49.
    Shockley W, Bardeen J. 1950. Energy bands and mobilities in monatomic semiconductors. Phys. Rev. 77:407–8
    [Google Scholar]
  50. 50.
    Bozovic I, Logvenov G, Belca I, Narimbetov B, Sveklo I 2002. Epitaxial strain and superconductivity in La2−xSrxCuO4 thin films. Phys. Rev. Lett. 89:107001
    [Google Scholar]
  51. 51.
    Bhattacharya A, May SJ. 2014. Magnetic oxide heterostructures. Annu. Rev. Mater. Res. 44:65–90
    [Google Scholar]
  52. 52.
    Garcia V, Sidis Y, Marangolo M, Vidal F, Eddrief M et al. 2007. Biaxial strain in the hexagonal plane of MnAs thin films: the key to stabilize ferromagnetism to higher temperature. Phys. Rev. Lett. 99:117205
    [Google Scholar]
  53. 53.
    Li X, Gupta A, Xiao G 1999. Influence of strain on the magnetic properties of epitaxial (100) chromium dioxide (CrO2) films. Appl. Phys. Lett. 75:713–15
    [Google Scholar]
  54. 54.
    Rondinelli JM, Spaldin NA. 2009. Structural effects on the spin-state transition in epitaxially strained LaCoO3 films. Phys. Rev. B 79:054409
    [Google Scholar]
  55. 55.
    Yokoyama Y, Yamasaki Y, Taguchi M, Hirata Y, Takubo K et al. 2018. Tensile-strain-dependent spin states in epitaxial LaCoO3 thin films. Phys. Rev. Lett. 120:206402
    [Google Scholar]
  56. 56.
    Sterbinsky G, Nanguneri R, Ma J, Shi J, Karapetrova E et al. 2018. Ferromagnetism and charge order from a frozen electron configuration in strained epitaxial LaCoO3. Phys. Rev. Lett. 120:197201
    [Google Scholar]
  57. 57.
    Seo H, Posadas A, Demkov AA 2012. Strain-driven spin-state transition and superexchange interaction in LaCoO3: ab initio study. Phys. Rev. B 86:014430
    [Google Scholar]
  58. 58.
    Hsu H, Blaha P, Wentzcovitch RM 2012. Ferromagnetic insulating state in tensile-strained LaCoO3 thin films from LDA + U calculations. Phys. Rev. B 85:140404
    [Google Scholar]
  59. 59.
    Klie R, Yuan T, Tanase M, Yang G, Ramasse Q 2010. Direct measurement of ferromagnetic ordering in biaxially strained LaCoO3 thin films. Appl. Phys. Lett. 96:082510
    [Google Scholar]
  60. 60.
    Herklotz A, Rata A, Schultz L, Dörr K 2009. Reversible strain effect on the magnetization of LaCoO3 films. Phys. Rev. B 79:092409
    [Google Scholar]
  61. 61.
    Lee JH, Rabe KM. 2010. Epitaxial-strain-induced multiferroicity in SrMnO3 from first principles. Phys. Rev. Lett. 104:207204
    [Google Scholar]
  62. 62.
    Chen XJ, Soltan S, Zhang H, Habermeier H-U 2002. Strain effect on electronic transport and ferromagnetic transition temperature in La0.9Sr0.1MnO3 thin films. Phys. Rev. B 65:174402
    [Google Scholar]
  63. 63.
    Tsui F, Smoak MC, Nath TK, Eom CB 2000. Strain-dependent magnetic phase diagram of epitaxial La0.67Sr0.33MnO3 thin films. Appl. Phys. Lett. 76:2421–23
    [Google Scholar]
  64. 64.
    Zhang J, Tanaka H, Kanki T, Choi JH, Kawai T 2001. Strain effect and the phase diagram of La1–xBaxMnO3 thin films. Phys. Rev. B 64:184404
    [Google Scholar]
  65. 65.
    Millis A, Darling T, Migliori A 1998. Quantifying strain dependence in “colossal” magnetoresistance manganites. J. Appl. Phys. 83:1588–91
    [Google Scholar]
  66. 66.
    Adamo C, Ke X, Wang H, Xin H, Heeg T et al. 2009. Effect of biaxial strain on the electrical and magnetic properties of (001) La0.7 Sr0.3MnO3 thin films. Appl. Phys. Lett. 95:112504
    [Google Scholar]
  67. 67.
    Fennie CJ, Rabe KM. 2006. Magnetic and electric phase control in epitaxial EuTiO3 from first principles. Phys. Rev. Lett. 97:267602
    [Google Scholar]
  68. 68.
    Lee JH, Fang L, Vlahos E, Ke X, Jung YW et al. 2010. A strong ferroelectric ferromagnet created by means of spin–lattice coupling. Nature 466:954–58
    [Google Scholar]
  69. 69.
    Li C, Zhao J, Dong Z, Zhong C, Huang Y et al. 2015. Strain induced magnetic transitions and spin reorientations in quantum paraelectric EuTiO3 material. J. Magn. Magn. Mater. 382:193–201
    [Google Scholar]
  70. 70.
    Motti F, Vinai G, Petrov A, Davidson BA, Gobaut B et al. 2018. Strain-induced magnetization control in an oxide multiferroic heterostructure. Phys. Rev. B 97:094423
    [Google Scholar]
  71. 71.
    Romaguera-Barcelay Y, Figueiras FG, Agostinho Moreira J, Perez-de-la-Cruz J, Tavares PB, Almeida A 2018. Handling magnetic and structural properties of EuMnO3 thin films by the combined effect of Lu doping and substrate strain. J. Alloys Compd. 762:319–25
    [Google Scholar]
  72. 72.
    Xu T, Shimada T, Araki Y, Wang J, Kitamura T 2015. Defect-strain engineering for multiferroic and magnetoelectric properties in epitaxial (110) ferroelectric lead titanate. Phys. Rev. B 92:104106
    [Google Scholar]
  73. 73.
    Shimada T, Araki Y, Xu T, Wang J, Kitamura T 2016. Multiferroic transitions and misfit phase diagram in oxygen-deficient epitaxial (111) PbTiO3. Adv. Electron. Mater. 2:1600113
    [Google Scholar]
  74. 74.
    Zhang Y, Wang J, Sahoo MPK, Shimada T, Kitamura T 2015. Mechanical control of magnetism in oxygen deficient perovskite SrTiO3. Phys. Chem. Chem. Phys. 17:27136–44
    [Google Scholar]
  75. 75.
    Mehta VV, Biskup N, Jenkins C, Arenholz E, Varela M, Suzuki Y 2015. Long-range ferromagnetic order in LaCoO3–δ epitaxial films due to the interplay of epitaxial strain and oxygen vacancy ordering. Phys. Rev. B 91:144418
    [Google Scholar]
  76. 76.
    Landau LD, Lifshitz EM, King AL 1984. Electrodynamics of Continuous Media Oxford, UK: Pergamon
  77. 77.
    Yosida K, Okiji A, Chikazum S 1965. Magnetic anisotropy of localized state in metals. Prog. Theor. Phys. 33:559–74
    [Google Scholar]
  78. 78.
    Suzuki Y, Hwang HY, Cheong SW, vanDover RB 1997. The role of strain in magnetic anisotropy of manganite thin films. Appl. Phys. Lett. 71:140–42
    [Google Scholar]
  79. 79.
    O'Donnell J, Rzchowski MS, Eckstein JN, Bozovic I 1998. Magnetoelastic coupling and magnetic anisotropy in La0.67Ca0.33MnO3 films. Appl. Phys. Lett. 72:1775–77
    [Google Scholar]
  80. 80.
    Ranno L, Llobet A, Tiron R, Favre-Nicolin E 2002. Strain-induced magnetic anisotropy in epitaxial manganite films. Appl. Surf. Sci. 188:170–75
    [Google Scholar]
  81. 81.
    Lisfi A, Williams CM. 2003. Magnetic anisotropy and domain structure in epitaxial CoFe2O4 thin films. J. Appl. Phys. 93:8143–45
    [Google Scholar]
  82. 82.
    Huang W, Zhu J, Zeng HZ, Wei XH, Zhang Y, Li YR 2006. Strain induced magnetic anisotropy in highly epitaxial CoFe2O4 thin films. Appl. Phys. Lett. 89:262506
    [Google Scholar]
  83. 83.
    Heuver JA, Scaramucci A, Blickenstorfer Y, Matzen S, Spaldin NA et al. 2015. Strain-induced magnetic anisotropy in epitaxial thin films of the spinel CoCr2O4. Phys. Rev. B 92:214429
    [Google Scholar]
  84. 84.
    Du C, Adur R, Wang H, Hauser AJ, Yang F, Hammel PC 2013. Control of magnetocrystalline anisotropy by epitaxial strain in double perovskite Sr2FeMoO6 films. Phys. Rev. Lett. 110:147204
    [Google Scholar]
  85. 85.
    Tao K, Liu P, Guo Q, Shen L, Xue D et al. 2017. Engineering magnetic anisotropy and magnetization switching in multilayers by strain. Phys. Chem. Chem. Phys. 19:4125–30
    [Google Scholar]
  86. 86.
    Ong PV, Kioussis N, Amiri PK, Wang KL, Carman GP 2015. Strain control magnetocrystalline anisotropy of Ta/FeCo/MgO heterostructures. J. Appl. Phys. 117:17B518
    [Google Scholar]
  87. 87.
    Vaz CAF, Bland JAC. 2000. Strain-induced magnetic anisotropy in Cu/Co/Ni/Cu/Si(001) epitaxial structures. Phys. Rev. B 61:3098–102
    [Google Scholar]
  88. 88.
    Prokop J, Valdaitsev DA, Kukunin A, Pratzer M, Schonhense G, Elmers HJ 2004. Strain-induced magnetic anisotropies in Co films on Mo(110). Phys. Rev. B 70:184423
    [Google Scholar]
  89. 89.
    Braun A, Feldmann B, Wuttig M 1997. Strain-induced perpendicular magnetic anisotropy in ultrathin Ni films on Cu3Au(001). J. Magn. Magn. Mater. 171:16–28
    [Google Scholar]
  90. 90.
    Mougin A, Dufour C, Dumesnil K, Mangin P 2000. Strain-induced magnetic anisotropy in single-crystal RFe2(110) thin films (R = Dy, Er, Tb, Dy0.7Tb0.3, Sm, Y). Phys. Rev. B 62:9517–31
    [Google Scholar]
  91. 91.
    Lemaître A, Miard A, Travers L, Mauguin O, Largeau L et al. 2008. Strain control of the magnetic anisotropy in (Ga,Mn) (As,P) ferromagnetic semiconductor layers. Appl. Phys. Lett. 93:021123
    [Google Scholar]
  92. 92.
    Mathews M, Jansen R, Rijnders G, Lodder JC, Blank DHA 2009. Magnetic oxide nanowires with strain-controlled uniaxial magnetic anisotropy direction. Phys. Rev. B 80:064408
    [Google Scholar]
  93. 93.
    Hu J-M, Nan CW. 2009. Electric-field-induced magnetic easy-axis reorientation in ferromagnetic/ferroelectric layered heterostructures. Phys. Rev. B 80:224416
    [Google Scholar]
  94. 94.
    Sander D. 2004. The magnetic anisotropy and spin reorientation of nanostructures and nanoscale films. J. Phys. Condens. Matter 16:R603–36
    [Google Scholar]
  95. 95.
    Taniyama T. 2015. Electric-field control of magnetism via strain transfer across ferromagnetic/ferroelectric interfaces. J. Phys. Condens. Matter 27:504001
    [Google Scholar]
  96. 96.
    Hu J-M, Chen L-Q, Nan C-W 2016. Multiferroic heterostructures integrating ferroelectric and magnetic materials. Adv. Mater. 28:15–39
    [Google Scholar]
  97. 97.
    Vaz CAF. 2012. Electric field control of magnetism in multiferroic heterostructures. J. Phys. Condens. Matter 24:333201
    [Google Scholar]
  98. 98.
    Wang JJ, Hu J-M, Chen L-Q, Nan C-W 2013. Strain-domain structure and stability diagrams for single-domain magnetic thin films. Appl. Phys. Lett. 103:142413
    [Google Scholar]
  99. 99.
    Yuan J, Wang J. 2015. Magnetization states in epitaxial thin films subjected to misfit strains and demagnetization field. Physica B 457:62–65
    [Google Scholar]
  100. 100.
    Pertsev NA. 2013. Strain-mediated electric-field control of multiferroic domain structures in ferromagnetic films. Appl. Phys. Lett. 102:112407
    [Google Scholar]
  101. 101.
    Lahtinen THE, Franke KJA, van Dijken S 2012. Electric-field control of magnetic domain wall motion and local magnetization reversal. Sci. Rep. 2:258
    [Google Scholar]
  102. 102.
    Chung T-K, Carman GP, Mohanchandra KP 2008. Reversible magnetic domain-wall motion under an electric field in a magnetoelectric thin film. Appl. Phys. Lett. 92:112509
    [Google Scholar]
  103. 103.
    Dho J, Kim YN, Hwang YS, Kim JC, Hur NH 2003. Strain-induced magnetic stripe domains in La0.7Sr0.3MnO3 thin films. Appl. Phys. Lett. 82:1434–36
    [Google Scholar]
  104. 104.
    Wang JJ, Hu JM, Ma J, Zhang JX, Chen LQ, Nan CW 2014. Full 180 degrees magnetization reversal with electric fields. Sci. Rep. 4:7507
    [Google Scholar]
  105. 105.
    Zhao Z, Jamali M, D'Souza N, Zhang D, Bandyopadhyay S et al. 2016. Giant voltage manipulation of MgO-based magnetic tunnel junctions via localized anisotropic strain: a potential pathway to ultra-energy-efficient memory technology. Appl. Phys. Lett. 109:092403
    [Google Scholar]
  106. 106.
    Buzzi M, Chopdekar RV, Hockel JL, Bur A, Wu T et al. 2013. Single domain spin manipulation by electric fields in strain coupled artificial multiferroic nanostructures. Phys. Rev. Lett. 111:027204
    [Google Scholar]
  107. 107.
    Venkataiah G, Shirahata Y, Suzuki I, Itoh M, Taniyama T 2012. Strain-induced reversible and irreversible magnetization switching in Fe/BaTiO3 heterostructures. J. Appl. Phys. 111:033921
    [Google Scholar]
  108. 108.
    Hu J-M, Sheng G, Zhang JX, Nan CW, Chen LQ 2011. Phase-field simulation of strain-induced domain switching in magnetic thin films. Appl. Phys. Lett. 98:112505
    [Google Scholar]
  109. 109.
    Wang Q, Li X, Liang C-Y, Barra A, Domann J et al. 2017. Strain-mediated 180 degrees switching in CoFeB and Terfenol-D nanodots with perpendicular magnetic anisotropy. Appl. Phys. Lett. 110:102903
    [Google Scholar]
  110. 110.
    Cui J, Hockel JL, Nordeen PK, Pisani DM, Liang C-Y et al. 2013. A method to control magnetism in individual strain-mediated magnetoelectric islands. Appl. Phys. Lett. 103:232905
    [Google Scholar]
  111. 111.
    De Ranieri E, Roy PE, Fang D, Vehsthedt EK, Irvine AC et al. 2013. Piezoelectric control of the mobility of a domain wall driven by adiabatic and non-adiabatic torques. Nat. Mater. 12:808–14
    [Google Scholar]
  112. 112.
    Hockel JL, Bur A, Wu T, Wetzlar KP, Carman GP 2012. Electric field induced magnetization rotation in patterned Ni ring/Pb(Mg1/3Nb2/3)O3](1–0.32)-[PbTiO3](0.32) heterostructures. Appl. Phys. Lett. 100:022401
    [Google Scholar]
  113. 113.
    Parkes DE, Cavill SA, Hindmarch AT, Wadley P, McGee F et al. 2012. Non-volatile voltage control of magnetization and magnetic domain walls in magnetostrictive epitaxial thin films. Appl. Phys. Lett. 101:072402
    [Google Scholar]
  114. 114.
    Franke KJA, Van de Wiele B, Shirahata Y, Hamalainen SJ, Taniyama T, van Dijken S 2015. Reversible electric-field-driven magnetic domain-wall motion. Phys. Rev. X 5:011010
    [Google Scholar]
  115. 115.
    Lei N, Devolder T, Agnus G, Aubert P, Daniel L et al. 2013. Strain-controlled magnetic domain wall propagation in hybrid piezoelectric/ferromagnetic structures. Nat. Commun. 4:1378
    [Google Scholar]
  116. 116.
    Shinjo T, Okuno T, Hassdorf R, Shigeto K, Ono T 2000. Magnetic vortex core observation in circular dots of permalloy. Science 289:930–32
    [Google Scholar]
  117. 117.
    Zheng Y, Chen WJ. 2017. Characteristics and controllability of vortices in ferromagnetics, ferroelectrics, and multiferroics. Rep. Prog. Phys. 80:086501
    [Google Scholar]
  118. 118.
    Guslienko KY. 2008. Magnetic vortex state stability, reversal and dynamics in restricted geometries. J. Nanosci. Nanotechnol. 8:2745–60
    [Google Scholar]
  119. 119.
    Ostler TA, Cuadrado R, Chantrell RW, Rushforth AW, Cavill SA 2015. Strain induced vortex core switching in planar magnetostrictive nanostructures. Phys. Rev. Lett. 115:067202
    [Google Scholar]
  120. 120.
    Cui H, Cai L, Yang X, Wang S, Zhang M et al. 2018. Control of magnetic vortex polarity by the phase difference between voltage signals. Appl. Phys. Lett. 112:092404
    [Google Scholar]
  121. 121.
    Wang J, Zhang J, Shimada T, Kitamura T 2013. Effect of strain on the evolution of magnetic multi-vortices in ferromagnetic nano-platelets. J. Phys. Condens. Matter 25:226002
    [Google Scholar]
  122. 122.
    Wang J, Li G-P, Shimada T, Fang H, Kitamura T 2013. Control of the polarity of magnetization vortex by torsion. Appl. Phys. Lett. 103:242413
    [Google Scholar]
  123. 123.
    Li G-P, Wang J, Shimada T, Fang H, Kitamura T 2014. Strain-induced polarity switching of magnetic vortex in Fe1−xGax alloys with different compositions. J. Appl. Phys. 115:203911
    [Google Scholar]
  124. 124.
    Li Q, Tan A, Scholl A, Young AT, Yang M et al. 2017. Electrical switching of the magnetic vortex circulation in artificial multiferroic structure of Co/Cu/PMN-PT(011). Appl. Phys. Lett. 110:262405
    [Google Scholar]
  125. 125.
    Vogel J, Kuch W, Bonfim M, Camarero J, Pennec Y et al. 2003. Time-resolved magnetic domain imaging by X-ray photoemission electron microscopy. Appl. Phys. Lett. 82:2299–301
    [Google Scholar]
  126. 126.
    Sampath V, D'Souza N, Bhattacharya D, Atkinson GM, Bandyopadhyay S, Atulasimha J 2016. Acoustic-wave-induced magnetization switching of magnetostrictive nanomagnets from single-domain to nonvolatile vortex states. Nano Lett 16:5681–87
    [Google Scholar]
  127. 127.
    Finizio S, Wintz S, Kirk E, Suszka AK, Gliga S et al. 2017. Control of the gyration dynamics of magnetic vortices by the magnetoelastic effect. Phys. Rev. B 96:054438
    [Google Scholar]
  128. 128.
    Cui H, Cai L, Wang S, Yang X 2018. Voltage tunability of magnetic vortex gyrotropic mode frequency in an elliptical magnetostrictive nanodisk. IEEE Magn. Lett. 9:4100504
    [Google Scholar]
  129. 129.
    Yu XZ, Onose Y, Kanazawa N, Park JH, Han JH et al. 2010. Real-space observation of a two-dimensional skyrmion crystal. Nature 465:901–4
    [Google Scholar]
  130. 130.
    Wiesendanger R. 2016. Nanoscale magnetic skyrmions in metallic films and multilayers: a new twist for spintronics. Nat. Rev. Mater. 1:16044
    [Google Scholar]
  131. 131.
    Butenko AB, Leonov AA, Roessler UK, Bogdanov AN 2010. Stabilization of skyrmion textures by uniaxial distortions in noncentrosymmetric cubic helimagnets. Phys. Rev. B 82:052403
    [Google Scholar]
  132. 132.
    Chacon A, Bauer A, Adams T, Rucker F, Brandl G et al. 2015. Uniaxial pressure dependence of magnetic order in MnSi. Phys. Rev. Lett. 115:267202
    [Google Scholar]
  133. 133.
    Woo S, Litzius K, Krueger B, Im M-Y, Caretta L et al. 2016. Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 15:501–6
    [Google Scholar]
  134. 134.
    Shibata K, Iwasaki J, Kanazawa N, Aizawa S, Tanigaki T et al. 2015. Large anisotropic deformation of skyrmions in strained crystal. Nat. Nanotechnol. 10:589–92
    [Google Scholar]
  135. 135.
    Nii Y, Nakajima T, Kikkawa A, Yamasaki Y, Ohishi K et al. 2015. Uniaxial stress control of skyrmion phase. Nat. Commun. 6:8539
    [Google Scholar]
  136. 136.
    Wang J, Shi Y, Kamlah M 2018. Uniaxial strain modulation of the skyrmion phase transition in ferromagnetic thin films. Phys. Rev. B 97:024429
    [Google Scholar]
  137. 137.
    Wan X, Hu Y, Wang B 2018. Tunable surface configuration of skyrmions in cubic helimagnets. J. Phys. Condens. Matter 30:245001
    [Google Scholar]
  138. 138.
    Li Z, Zhang Y, Huang Y, Wang C, Zhang X et al. 2018. Strain-controlled skyrmion creation and propagation in ferroelectric/ferromagnetic hybrid wires. J. Magn. Magn. Mater. 455:19–24
    [Google Scholar]
  139. 139.
    Liu Y, Lei N, Zhao W, Liu W, Ruotolo A et al. 2017. Chopping skyrmions from magnetic chiral domains with uniaxial stress in magnetic nanowire. Appl. Phys. Lett. 111:022406
    [Google Scholar]
  140. 140.
    Schott M, Bernand-Mantel A, Ranno L, Pizzini S, Vogel J et al. 2017. The skyrmion switch: turning magnetic skyrmion off with an electric field. Nano Lett 17:3006–12
    [Google Scholar]
  141. 141.
    Chen J, Liang JJ, Yu JH, Qin MH, Fan Z et al. 2018. Dynamics of distorted skyrmions in strained chiral magnets. New J. Phys. 20:063050
    [Google Scholar]
  142. 142.
    Seki S, Okamura Y, Shibata K, Takagi R, Khanh ND et al. 2017. Stabilization of magnetic skyrmions by uniaxial tensile strain. Phys. Rev. B 96:220404
    [Google Scholar]
  143. 143.
    Okamura Y, Yamasaki Y, Morikawa D, Honda T, Ukleev V et al. 2017. Emergence and magnetic-field variation of chiral-soliton lattice and skyrmion lattice in the strained helimagnet Cu2OSeO3. Phys. Rev. B 96:174417
    [Google Scholar]
  144. 144.
    Fobes DM, Luo Y, Leon-Brito N, Bauer ED, Fanelli VR et al. 2017. Versatile strain-tuning of modulated long-period magnetic structures. Appl. Phys. Lett. 110:192409
    [Google Scholar]
  145. 145.
    Zhao X, Ren R, Xie G, Liu Y 2018. Single antiferromagnetic skyrmion transistor based on strain manipulation. Appl. Phys. Lett. 112:252402
    [Google Scholar]
  146. 146.
    Wu HC, Chandrasekhar KD, Wei TY, Hsieh KJ, Chen TY et al. 2015. Physical pressure and chemical expansion effects on the skyrmion phase in Cu2OSeO3. J. Phys. D Appl. Phys. 48:475001
    [Google Scholar]
  147. 147.
    Nepal R, Gungordu U, Kovalev AA 2018. Magnetic skyrmion bubble motion driven by surface acoustic waves. Appl. Phys. Lett. 112:112404
    [Google Scholar]
  148. 148.
    Chen G, Mascaraque A, N'Diaye AT, Schmid AK 2015. Room temperature skyrmion ground state stabilized through interlayer exchange coupling. Appl. Phys. Lett. 106:242404
    [Google Scholar]
  149. 149.
    Jin CM, Li ZA, Kovacs A, Caron J, Zheng FS et al. 2017. Control of morphology and formation of highly geometrically confined magnetic skyrmions. Nat. Commun. 8:15569
    [Google Scholar]
  150. 150.
    Shi YN, Wang J. 2018. Stabilizing skyrmions by nonuniform strain in ferromagnetic thin films without a magnetic field. Phys. Rev. B 97:224428
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-070218-010200
Loading
/content/journals/10.1146/annurev-matsci-070218-010200
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error