Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Electrochemical synthesis of hydrogen peroxide from water and oxygen

Abstract

H2O2 is important in large-scale industrial processes and smaller on-site activities. The present industrial route to H2O2 involves hydrogenation of an anthraquinone and O2 oxidation of the resulting dihydroanthraquinone — a costly method and one that is impractical for routine on-site use. Electrosynthesis of H2O2 is cost-effective and applicable on both large and small scales. This Review describes methods to design and assess electrode materials for H2O2 electrosynthesis. H2O2 can be prepared by oxidizing H2O at efficient anodic catalysts such as those based on BiVO4. Alternatively, H2O2 forms by partially reducing O2 at cathodes featuring either noble metal alloys or doped carbon. In addition to the catalyst materials used, one must also consider the form and geometry of the electrodes and the type of reactor in order to strike a balance between properties such as mass transport and electroactive area, both of which substantially affect both the selectivity and rate of reaction. Research into catalyst materials and reactor designs is arguably quite mature, such that the future of H2O2 electrosynthesis will instead depend on the design of complete and efficient electrosynthesis systems, in which the complementary properties of the catalysts and the reactor lead to optimal selectivity and overall yield.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Major developments in the chemical and electrochemical synthesis of H2O2.
Fig. 2: Interactions between intermediates and the catalyst surface strongly affect rates of H2O2 electrosynthesis.
Fig. 3: O2 reduction to H2O2 at metal electrodes.
Fig. 4: Selectivity in O2 reduction to H2O2 as a function of Pd content in PdxAu1−x.
Fig. 5: Metal-oxide-based electrodes and their performance in electrocatalytic and photoelectrocatalytic H2O2 production.
Fig. 6: Possible cell configurations for the electrosynthesis of H2O2.

Similar content being viewed by others

References

  1. Hage, R. & Lienke, A. Applications of transition-metal catalysts to textile and wood-pulp bleaching. Angew. Chem. Int. Ed. 45, 206–222 (2006).

    CAS  Google Scholar 

  2. Raj, C. B. C. & Li Quen, H. Advanced oxidation processes for wastewater treatment: pptimization of UV/H2O2 process through a statistical technique. Chem. Eng. Sci. 60, 5305–5311 (2005).

    CAS  Google Scholar 

  3. Kosaka, K. et al. Evaluation of the treatment performance of a multistage ozone/hydrogen peroxide process by decomposition by-products. Water Res. 35, 3587–3594 (2001).

    CAS  PubMed  Google Scholar 

  4. Alvarez-Gallegos, A. & Pletcher, D. The removal of low level organics via hydrogen peroxide formed in a reticulated vitreous carbon cathode cell, Part 1. The electrosynthesis of hydrogen peroxide in aqueous acidic solutions. Electrochim. Acta 44, 853–861 (1998).

    CAS  Google Scholar 

  5. Ponce de León, C. & Pletcher, D. Removal of formaldehyde from aqueous solutions via oxygen reduction using a reticulated vitreous carbon cathode cell. J. Appl. Electrochem. 25, 307–314 (1995).

    Google Scholar 

  6. Tanev, P. T., Chibwe, M. & Pinnavaia, T. J. Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds. Nature 368, 321–323 (1994).

    CAS  PubMed  Google Scholar 

  7. Clerici, M. G. & Ingallina, P. Epoxidation of lower olefins with hydrogen peroxide and titanium silicalite. J. Catal. 140, 71–83 (1993).

    CAS  Google Scholar 

  8. Noyori, R., Aoki, M. & Sato, K. Green oxidation with aqueous hydrogen peroxide. Chem. Commun. 1977–1986 (2003).

  9. Lane, B. S. & Burgess, K. Metal-catalyzed epoxidations of alkenes with hydrogen peroxide. Chem. Rev. 103, 2457–2474 (2003).

    CAS  PubMed  Google Scholar 

  10. Chua, S.-C., Xu, X. & Guo, Z. Emerging sustainable technology for epoxidation directed toward plant oil-based plasticizers. Process Biochem. 47, 1439–1451 (2012).

    CAS  Google Scholar 

  11. Ma, J., Choudhury, N. A. & Sahai, Y. A comprehensive review of direct borohydride fuel cells. Renew. Sustain. Energy Rev. 14, 183–199 (2010).

    CAS  Google Scholar 

  12. Ponce de León, C., Walsh, F. C., Pletcher, D., Browning, D. J. & Lakeman, J. B. Direct borohydride fuel cells. J. Power Sources 155, 172–181 (2006).

    Google Scholar 

  13. Campos-Martin, J. M., Blanco-Brieva, G. & Fierro, J. L. G. Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process. Angew. Chem. Int. Ed. 45, 6962–6984 (2006).

    CAS  Google Scholar 

  14. Santacesaria, E., Di Serio, M., Velotti, R. & Leone, U. Kinetics, mass transfer, and palladium catalyst deactivation in the hydrogenation step of the hydrogen peroxide synthesis via anthraquinone. Ind. Eng. Chem. Res. 33, 277–284 (1994).

    CAS  Google Scholar 

  15. Cheng, Y., Wang, L., Lü, S., Wang, Y. & Mi, Z. Gas–liquid–liquid three-phase reactive extraction for the hydrogen peroxide preparation by anthraquinone process. Ind. Eng. Chem. Res. 47, 7414–7418 (2008).

    CAS  Google Scholar 

  16. Edwards, J. K. & Hutchings, G. J. Palladium and gold–palladium catalysts for the direct synthesis of hydrogen peroxide. Angew. Chem. Int. Ed. 47, 9192–9198 (2008).

    CAS  Google Scholar 

  17. Palmer, M. J., Musker, A. J., Roberts, G. T. & Ponce de León, C. A. A method of ranking candidate catalyst for the decomposition of hydrogen peroxide. Presented at the 3rd–6th May 2010 Space Propulsion Conference in San Sebastian, Spain (2010).

  18. Kosydar, R., Drelinkiewicz, A. & Ganhy, J. P. Degradation reactions in anthraquinone process of hydrogen peroxide synthesis. Catal. Lett. 139, 105–113 (2010).

    CAS  Google Scholar 

  19. Sandelin, F., Oinas, P., Salmi, T., Paloniemi, J. & Haario, H. Kinetics of the recovery of active anthraquinones. Ind. Eng. Chem. Res. 45, 986–992 (2006).

    CAS  Google Scholar 

  20. Edwards, J. K. et al. Switching off hydrogen peroxide hydrogenation in the direct synthesis process. Science 323, 1037–1041 (2009).

    CAS  PubMed  Google Scholar 

  21. Edwards, J. K., Freakley, S. J., Lewis, R. J., Pritchard, J. C. & Hutchings, G. J. Advances in the direct synthesis of hydrogen peroxide from hydrogen and oxygen. Catal. Today 248, 3–9 (2015).

    CAS  Google Scholar 

  22. Samanta, C. Direct synthesis of hydrogen peroxide from hydrogen and oxygen: an overview of recent developments in the process. Appl. Catal. A 350, 133–149 (2008).

    CAS  Google Scholar 

  23. Dittmeyer, R., Grunwaldt, J.-D. & Pashkova, A. A review of catalyst performance and novel reaction engineering concepts in direct synthesis of hydrogen peroxide. Catal. Today 248, 149–159 (2015).

    CAS  Google Scholar 

  24. Adányi, N., Barna, T., Emri, T., Miskei, M. & Pócsi, I. in Industrial Enzymes: Structure, Function and Applications (eds Polaina, J. & MacCabe, A. P.) 441–459 (Springer Netherlands, 2007).

  25. Fantinato, S., Pollegioni, L. & Pilone, M. S. Engineering, expression and purification of a his-tagged chimeric d-amino acid oxidase from Rhodotorula gracilis. Enzyme Microb. Technol. 29, 407–412 (2001).

    Google Scholar 

  26. Smart, E. J. & Anderson, R. G. W. Alterations in membrane cholesterol that affect structure and function of caveolae. Methods Enzymol. 353, 131–139 (2002).

    CAS  PubMed  Google Scholar 

  27. Perry, S. C., Gateman, S. M., Sifakis, J., Pollegioni, L. & Mauzeroll, J. Enhancement of the enzymatic biosensor response through targeted electrode surface roughness. J. Electrochem. Soc. 165, G3074–G3079 (2018).

    CAS  Google Scholar 

  28. Polcari, D., Perry, S. C., Pollegioni, L., Geissler, M. & Mauzeroll, J. Localized detection of d-serine by using an enzymatic amperometric biosensor and scanning electrochemical microscopy. ChemElectroChem 4, 920–926 (2017).

    CAS  Google Scholar 

  29. Massa, S. et al. Growth inhibition by glucose oxidase system of enterotoxic Escherichia coli and Salmonella derby: in vitro studies world. J. Microbiol. Biotechnol. 17, 287–291 (2001).

    CAS  Google Scholar 

  30. Traube, M. Über die elektrolytische Entstehung des Wasserstoffhyperoxyds an der Kathode. Ber. Kgl. Akad. Wiss. 2, 1041–1050 (1887).

    Google Scholar 

  31. Manchot, W. & Herzog, J. Die autoxydation des hydrazobenzols. Justus Liebigs Ann. Chem. 316, 331–332 (1901).

    CAS  Google Scholar 

  32. Walton, J. H. & Filson, G. W. The direct preparation of hydrogen peroxide in a high concentration. J. Am. Chem. Soc. 54, 3228–3229 (1932).

    CAS  Google Scholar 

  33. Jones, C. W. in Applications of Hydrogen Peroxide and Derivatives (eds Clark, J. H. & Braithwaite, M. J.) 1–34 (Royal Society of Chemistry, 1999).

  34. Yi, Y., Wang, L., Li, G. & Guo, H. A review on research progress in the direct synthesis of hydrogen peroxide from hydrogen and oxygen: noble-metal catalytic method, fuel-cell method and plasma method. Catal. Sci. Technol. 6, 1593–1610 (2016).

    CAS  Google Scholar 

  35. Berl, E. A new cathodic process for the production of H2O2. Trans. Electrochem. Soc. 76, 359–369 (1939).

    Google Scholar 

  36. de Beco, P. Sur les réactions d’oxydation au pôle positif dans l’électrolyse par éntincelle. C. R. Acad. Sci. 207, 623–625 (1938).

    Google Scholar 

  37. de Beco, P. L’électrolyse par éntincelle II, reactions au pôle positif. Bull. Soc. Chim. Fr. 12, 789–792 (1945).

    Google Scholar 

  38. Davies, R. A. & Hickling, A. Glow-discharge electrolysis. Part I. The anodic formation of hydrogen peroxide in inert electrolytes. J. Chem. Soc. 1952, 3595–3602 (1952).

    Google Scholar 

  39. Berl, W. G. A reversible oxygen electrode. Trans. Electrochem. Soc. 83, 253–270 (1943).

    Google Scholar 

  40. Patrick, W. A. & Wagner, H. B. Mechanism of oxygen reduction at an iron cathode. Corrosion 6, 34–38 (1950).

    CAS  Google Scholar 

  41. Weisz, R. S. & Jaffe, S. S. The mechanism of the reduction of oxygen at the air electrode. J. Electrochem. Soc. 93, 128–141 (1948).

    CAS  Google Scholar 

  42. Mizuno, S. The electrolytic synthesis of hydrogen peroxide. II. On the electrolysis conditions. Electrochemistry 17, 288 (1949).

    CAS  Google Scholar 

  43. Mizuno, S. Studies on the electrolytic synthesis. I. Electrolytic synthesis of hydrogen peroxide. Electrochemistry 17, 262 (1949).

    CAS  Google Scholar 

  44. Giomo, M. et al. A small-scale pilot plant using an oxygen-reducing gas-diffusion electrode for hydrogen peroxide electrosynthesis. Electrochim. Acta 54, 808–815 (2008).

    CAS  Google Scholar 

  45. Kolyagin, G. A. & Kornienko, V. L. Pilot laboratory electrolyzer for electrosynthesis of hydrogen peroxide in acid and alkaline solutions. Russ. J. Appl. Chem. 84, 68–71 (2011).

    CAS  Google Scholar 

  46. Kolyagin, G. A., Kornienko, V. L., Kudenko, Y. A., Tikhomirov, A. A. & Trifonov, S. V. Electrosynthesis of hydrogen peroxide from oxygen in a gas-diffusion electrode in solutions of mineralized exometabolites. Russ. J. Electrochem. 49, 1004–1007 (2013).

    CAS  Google Scholar 

  47. Tang, M. C.-Y., Wong, K.-Y. & Chan, T. H. Electrosynthesis of hydrogen peroxide in room temperature ionic liquids and in situ epoxidation of alkenes. Chem. Commun. 1345–1347 (2005).

  48. Li, W., Tian, M., Du, H. & Liang, Z. A new approach for epoxidation of fatty acids by a paired electrosynthesis. Electrochem. Commun. 54, 46–50 (2015).

    Google Scholar 

  49. Chaenko, N. V., Kornienko, G. V. & Kornienko, V. L. Indirect electrosynthesis of peracetic acid using hydrogen peroxide generated in situ in a gas diffusion electrode. Russ. J. Electrochem. 47, 230–233 (2011).

    CAS  Google Scholar 

  50. González-García, J., Drouin, L., Banks, C. E., Šljukic, B. & Compton, R. G. At point of use sono-electrochemical generation of hydrogen peroxide for chemical synthesis: the green oxidation of benzonitrile to benzamide. Ultrason. Sonochem. 14, 113–116 (2007).

    PubMed  Google Scholar 

  51. Song, C. & Zhang, J. in PEM Fuel Cell Electrocatalysts and Catalyst Layers: Fundamentals and Applications (ed. Zhang, J.) 89–134 (Springer, 2008).

  52. Wroblowa, H. S., Yen Chi, P. & Razumney, G. Electroreduction of oxygen: a new mechanistic criterion. J. Electroanal. Chem. 69, 195–201 (1976).

    CAS  Google Scholar 

  53. Noël, J.-M., Latus, A., Lagrost, C., Volanschi, E. & Hapiot, P. Evidence for OH radical production during electrocatalysis of oxygen reduction on Pt surfaces: consequences and application. J. Am. Chem. Soc. 134, 2835–2841 (2012).

    PubMed  Google Scholar 

  54. Shao, M.-H., Liu, P. & Adžic, R. R. Superoxide anion is the intermediate in the oxygen reduction reaction on platinum electrodes. J. Am. Chem. Soc. 128, 7408–7409 (2006).

    CAS  PubMed  Google Scholar 

  55. Hoare, J. P. in Standard Potentials in Aqueous Solution (eds Bard, A. J., Parsons, R. & Jordan, J.) 49–68 (M. Dekker, 1985).

  56. Li, Y. et al. Superoxide decay pathways in oxygen reduction reaction on carbon-based catalysts evidenced by theoretical calculations. ChemSusChem 12, 1133–1138 (2019).

    CAS  PubMed  Google Scholar 

  57. Gara, M. et al. Oxygen reduction at sparse arrays of platinum nanoparticles in aqueous acid: hydrogen peroxide as a liberated two electron intermediate. Phys. Chem. Chem. Phys. 15, 19487–19495 (2013).

    CAS  PubMed  Google Scholar 

  58. Dong, J.-C. et al. In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces. Nat. Energy 4, 60–67 (2019).

    CAS  Google Scholar 

  59. Grgur, B. N., Markovic, N. M. & Ross, P. N. Temperature-dependent oxygen electrochemistry on platinum low-index single crystal surfaces in acid solutions. Can. J. Chem. 75, 1465–1471 (1997).

    CAS  Google Scholar 

  60. Keith, J. A. & Jacob, T. Theoretical studies of potential-dependent and competing mechanisms of the electrocatalytic oxygen reduction reaction on Pt(111). Angew. Chem. Int. Ed. 49, 9521–9525 (2010).

    CAS  Google Scholar 

  61. Sidik, R. A. & Anderson, A. B. Density functional theory study of O2 electroreduction when bonded to a Pt dual site. J. Electroanal. Chem. 528, 69–76 (2002).

    CAS  Google Scholar 

  62. Tripkovic, V. & Vegge, T. Potential- and rate-determining step for oxygen reduction on Pt(111). J. Phys. Chem. C 121, 26785–26793 (2017).

    CAS  Google Scholar 

  63. Jinnouchi, R., Kodama, K., Hatanaka, T. & Morimoto, Y. First principles based mean field model for oxygen reduction reaction. Phys. Chem. Chem. Phys. 13, 21070–21083 (2011).

    CAS  PubMed  Google Scholar 

  64. Viswanathan, V., Hansen, H. A., Rossmeisl, J. & Nørskov, J. K. Universality in oxygen reduction electrocatalysis on metal surfaces. ACS Catal. 2, 1654–1660 (2012).

    CAS  Google Scholar 

  65. Gómez-Marín, A. M., Rizo, R. & Feliu, J. M. Oxygen reduction reaction at Pt single crystals: a critical overview. Catal. Sci. Technol. 4, 1685–1698 (2014).

    Google Scholar 

  66. Ignaczak, A., Santos, E. & Schmickler, W. Oxygen reduction reaction on gold in alkaline solutions — the inner or outer sphere mechanisms in the light of recent achievements. Curr. Opin. Electrochem. https://doi.org/10.1016/j.coelec.2018.07.011 (2018).

    Article  Google Scholar 

  67. Griffith, J. S. On the magnetic properties of some haemoglobin complexes. Proc. R. Soc. A 235, 23 (1956).

    CAS  Google Scholar 

  68. Adžic, R. R. in Electrocatalysis (eds Lipkowski, J. & Ross, P. N.) 197–242 (John Wiley & Sons, 1998).

  69. Yeager, E., Razaq, M., Gervasio, D., Razaq, A. & Tryk, D. in Proceedings of the Workshop on Structural Effects in Electrocatalysis and Oxygen Electrochemistry (eds Scherson, D. et al.) 440–474 (Electrochemical Society, 1992).

  70. Gattrell, M. & MacDougall, B. in Handbook of Fuel Cells (eds Vielstich, W. et al.) 443–464 (John Wiley & Sons, 2010).

  71. Viswanathan, V., Hansen, H. A., Rossmeisl, J. & Nørskov, J. K. Unifying the 2e and 4e reduction of oxygen on metal surfaces. J. Phys. Chem. Lett. 3, 2948–2951 (2012).

    CAS  PubMed  Google Scholar 

  72. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Google Scholar 

  73. Perry, S. C. & Denuault, G. Transient study of the oxygen reduction reaction on reduced Pt and Pt alloys microelectrodes: evidence for the reduction of pre-adsorbed oxygen species linked to dissolved oxygen. Phys. Chem. Chem. Phys. 17, 30005–30012 (2015).

    CAS  PubMed  Google Scholar 

  74. Perry, S. C. & Denuault, G. The oxygen reduction reaction (ORR) on reduced metals: evidence for a unique relationship between the coverage of adsorbed oxygen species and adsorption energy. Phys. Chem. Chem. Phys. 18, 10218–10223 (2016).

    CAS  PubMed  Google Scholar 

  75. Greeley, J. et al. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 1, 552 (2009).

    CAS  PubMed  Google Scholar 

  76. Hammer, B. Special sites at noble and late transition metal catalysts. Top. Catal. 37, 3–16 (2006).

    CAS  Google Scholar 

  77. Kitchin, J. R., Nørskov, J. K., Barteau, M. A. & Chen, J. G. Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals. J. Chem. Phys. 120, 10240–10246 (2004).

    CAS  PubMed  Google Scholar 

  78. Stamenkovic, V., Schmidt, T. J., Ross, P. N. & Markovic, N. M. Surface composition effects in electrocatalysis: kinetics of oxygen reduction on well-defined Pt3Ni and Pt3Co alloy surfaces. J. Phys. Chem. B 106, 11970–11979 (2002).

    CAS  Google Scholar 

  79. Mukerjee, S., Srinivasan, S., Soriaga, M. P. & McBreen, J. Role of structural and electronic properties of Pt and Pt alloys on electrocatalysis of oxygen reduction: an in situ XANES and EXAFS investigation. J. Electrochem. Soc. 142, 1409–1422 (1995).

    CAS  Google Scholar 

  80. Spanos, I., Dideriksen, K., Kirkensgaard, J. J. K., Jelavic, S. & Arenz, M. Structural disordering of de-alloyed Pt bimetallic nanocatalysts: the effect on oxygen reduction reaction activity and stability. Phys. Chem. Chem. Phys. 17, 28044–28053 (2015).

    CAS  PubMed  Google Scholar 

  81. Jalan, V. & Taylor, E. J. Importance of interatomic spacing in catalytic reduction of oxygen in phosphoric acid. J. Electrochem. Soc. 130, 2299–2302 (1983).

    CAS  Google Scholar 

  82. Stamenkovic, V. R. et al. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 6, 241 (2007).

    CAS  PubMed  Google Scholar 

  83. Lee, K. R., Jung, Y. & Woo, S. I. Combinatorial screening of highly active Pd binary catalysts for electrochemical oxygen reduction. ACS Comb. Sci. 14, 10–16 (2012).

    CAS  PubMed  Google Scholar 

  84. Gentil, R. & Villullas, H. M. Oxygen reduction activity and methanol tolerance of carbon-supported PtV nanoparticles and the effects of heat treatment at low temperatures. J. Solid State Electrochem. 20, 1119–1129 (2016).

    CAS  Google Scholar 

  85. Xin, H., Holewinski, A. & Linic, S. Predictive structure–reactivity models for rapid screening of Pt-based multimetallic electrocatalysts for the oxygen reduction reaction. ACS Catal. 2, 12–16 (2012).

    CAS  Google Scholar 

  86. Stamenkovic, V. R. et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315, 493–497 (2007).

    CAS  PubMed  Google Scholar 

  87. Suntivich, J., May, K. J., Gasteiger, H. A., Goodenough, J. B. & Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383–1385 (2011).

    CAS  PubMed  Google Scholar 

  88. Vojvodic, A. & Nørskov, J. K. Optimizing perovskites for the water-splitting reaction. Science 334, 1355–1356 (2011).

    CAS  PubMed  Google Scholar 

  89. Verdaguer-Casadevall, A. et al. Trends in the electrochemical synthesis of H2O2: enhancing activity and selectivity by electrocatalytic site engineering. Nano Lett. 14, 1603–1608 (2014).

    CAS  PubMed  Google Scholar 

  90. Lu, Z. et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 1, 156–162 (2018).

    CAS  Google Scholar 

  91. Siahrostami, S. et al. Enabling direct H2O2 production through rational electrocatalyst design. Nat. Mater. 12, 1137 (2013).

    CAS  PubMed  Google Scholar 

  92. Hansen, H. A., Viswanathan, V. & Nørskov, J. K. Unifying kinetic and thermodynamic analysis of 2 e and 4 e reduction of oxygen on metal surfaces. J. Phys. Chem. C 118, 6706–6718 (2014).

    CAS  Google Scholar 

  93. Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017).

    PubMed  Google Scholar 

  94. Khorshidi, A., Violet, J., Hashemi, J. & Peterson, A. A. How strain can break the scaling relations of catalysis. Nat. Catal. 1, 263–268 (2018).

    Google Scholar 

  95. Montemore, M. M. & Medlin, J. W. Scaling relations between adsorption energies for computational screening and design of catalysts. Catal. Sci. Technol. 4, 3748–3761 (2014).

    CAS  Google Scholar 

  96. Calle-Vallejo, F., Krabbe, A. & García-Lastra, J. M. How covalence breaks adsorption–energy scaling relations and solvation restores them. Chem. Sci. 8, 124–130 (2017).

    CAS  PubMed  Google Scholar 

  97. Siahrostami, S., Björketun, M. E., Strasser, P., Greeley, J. & Rossmeisl, J. Tandem cathode for proton exchange membrane fuel cells. Phys. Chem. Chem. Phys. 15, 9326–9334 (2013).

    CAS  PubMed  Google Scholar 

  98. Singh, A. & Spiccia, L. Water oxidation catalysts based on abundant 1st row transition metals. Coord. Chem. Rev. 257, 2607–2622 (2013).

    CAS  Google Scholar 

  99. Walter, M. G. et al. Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010).

    CAS  PubMed  Google Scholar 

  100. Burke, M. S., Enman, L. J., Batchellor, A. S., Zou, S. & Boettcher, S. W. Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy)hydroxides: activity trends and design principles. Chem. Mater. 27, 7549–7558 (2015).

    CAS  Google Scholar 

  101. Reier, T., Oezaslan, M. & Strasser, P. Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials. ACS Catal. 2, 1765–1772 (2012).

    CAS  Google Scholar 

  102. Cheng, Y. & Jiang, S. P. Advances in electrocatalysts for oxygen evolution reaction of water electrolysis — from metal oxides to carbon nanotubes. Prog. Nat. Sci. Mater. 25, 545–553 (2015).

    CAS  Google Scholar 

  103. Busch, M. et al. Beyond the top of the volcano? A unified approach to electrocatalytic oxygen reduction and oxygen evolution. Nano Energy 29, 126–135 (2016).

    CAS  Google Scholar 

  104. Su, H.-Y. et al. Identifying active surface phases for metal oxide electrocatalysts: a study of manganese oxide bi-functional catalysts for oxygen reduction and water oxidation catalysis. Phys. Chem. Chem. Phys. 14, 14010–14022 (2012).

    CAS  PubMed  Google Scholar 

  105. Blakemore, J. D., Gray, H. B., Winkler, J. R. & Müller, A. M. Co3O4 nanoparticle water-oxidation catalysts made by pulsed-laser ablation in liquids. ACS Catal. 3, 2497–2500 (2013).

    CAS  Google Scholar 

  106. Maitra, U., Naidu, B. S., Govindaraj, A. & Rao, C. N. R. Importance of trivalency and the eg 1 configuration in the photocatalytic oxidation of water by Mn and Co oxides. Proc. Natl Acad. Sci. USA 110, 11704–11707 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Mattioli, G., Giannozzi, P., Amore Bonapasta, A. & Guidoni, L. Reaction pathways for oxygen evolution promoted by cobalt catalyst. J. Am. Chem. Soc. 135, 15353–15363 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Smith, R. D. L., Prévot, M. S., Fagan, R. D., Trudel, S. & Berlinguette, C. P. Water oxidation catalysis: electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron, cobalt, and nickel. J. Am. Chem. Soc. 135, 11580–11586 (2013).

    CAS  PubMed  Google Scholar 

  109. Busch, M., Ahlberg, E. & Panas, I. Validation of binuclear descriptor for mixed transition metal oxide supported electrocatalytic water oxidation. Catal. Today 202, 114–119 (2013).

    CAS  Google Scholar 

  110. Lee, Y., Suntivich, J., May, K. J., Perry, E. E. & Shao-Horn, Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 3, 399–404 (2012).

    CAS  PubMed  Google Scholar 

  111. Viswanathan, V., Hansen, H. A. & Nørskov, J. K. Selective electrochemical generation of hydrogen peroxide from water oxidation. J. Phys. Chem. Lett. 6, 4224–4228 (2015).

    CAS  PubMed  Google Scholar 

  112. Siahrostami, S., Li, G.-L., Viswanathan, V. & Nørskov, J. K. One- or two-electron water oxidation, hydroxyl radical, or H2O2 evolution. J. Phys. Chem. Lett. 8, 1157–1160 (2017).

    CAS  PubMed  Google Scholar 

  113. Mizuno, S. Activated carbon electrodes for the electrolytic synthesis of hydrogen peroxide. I. Conditions necessary for electrode production. Bull. Tokyo Inst. Technol. 13, 102 (1948).

    CAS  Google Scholar 

  114. Ignatenko, E. & Barmashenko, I. Cathode preparation of hydrogen peroxide. Zh. Prikl. Khim. 37, 2415 (1964).

    CAS  Google Scholar 

  115. Shi, X. et al. Understanding activity trends in electrochemical water oxidation to form hydrogen peroxide. Nat. Commun. 8, 701 (2017).

    PubMed  PubMed Central  Google Scholar 

  116. Rouhet, M., Bozdech, S., Bonnefont, A. & Savinova, E. R. Influence of the proton transport on the ORR kinetics and on the H2O2 escape in three-dimensionally ordered electrodes. Electrochem. Commun. 33, 111–114 (2013).

    CAS  Google Scholar 

  117. Maruyama, J., Inaba, M. & Ogumi, Z. Rotating ring-disk electrode study on the cathodic oxygen reduction at Nafion®-coated gold electrodes. J. Electroanal. Chem. 458, 175–182 (1998).

    CAS  Google Scholar 

  118. Markovic, N. M., Gasteiger, H. A. & Ross, P. N. Oxygen reduction on platinum low-index single-crystal surfaces in sulfuric acid solution: rotating ring–Pt(hkl) disk studies. J. Phys. Chem. 99, 3411–3415 (1995).

    CAS  Google Scholar 

  119. Zecevic, S., Dražic, D. M. & Gojkovic, S. Oxygen reduction on iron: part III. An analysis of the rotating disk-ring electrode measurements in near neutral solutions. J. Electroanal. Chem. 265, 179–193 (1989).

    CAS  Google Scholar 

  120. Shih, Y.-H., Sagar, G. V. & Lin, S. D. Effect of electrode Pt loading on the oxygen reduction reaction evaluated by rotating disk electrode and its implication on the reaction kinetics. J. Phys. Chem. C 112, 123–130 (2008).

    CAS  Google Scholar 

  121. Sánchez-Sánchez, C. M. & Bard, A. J. Hydrogen peroxide production in the oxygen reduction reaction at different electrocatalysts as quantified by scanning electrochemical microscopy. Anal. Chem. 81, 8094–8100 (2009).

    PubMed  Google Scholar 

  122. Sánchez-Sánchez, C. M., Rodríguez-López, J. & Bard, A. J. Scanning electrochemical microscopy. 60. Quantitative calibration of the SECM substrate generation/tip collection mode and its use for the study of the oxygen reduction mechanism. Anal. Chem. 80, 3254–3260 (2008).

    PubMed  Google Scholar 

  123. Shen, Y., Träuble, M. & Wittstock, G. Detection of hydrogen peroxide produced during electrochemical oxygen reduction using scanning electrochemical microscopy. Anal. Chem. 80, 750–759 (2008).

    CAS  PubMed  Google Scholar 

  124. Dobrzeniecka, A. et al. Application of SECM in tracing of hydrogen peroxide at multicomponent non-noble electrocatalyst films for the oxygen reduction reaction. Catal. Today 202, 55–62 (2013).

    CAS  Google Scholar 

  125. Johnson, L. & Walsh, D. A. Tip generation–substrate collection–tip collection mode scanning electrochemical microscopy of oxygen reduction electrocatalysts. J. Electroanal. Chem. 682, 45–52 (2012).

    CAS  Google Scholar 

  126. Pletcher, D. & Sotiropoulos, S. A study of cathodic oxygen reduction at platinum using microelectrodes. J. Electroanal. Chem. 356, 109–119 (1993).

    CAS  Google Scholar 

  127. Birkin, P. R., Elliott, J. M. & Watson, Y. E. Electrochemical reduction of oxygen on mesoporous platinum microelectrodes. Chem. Commun. 1693–1694 (2000).

  128. Sheng, H., Ji, H., Ma, W., Chen, C. & Zhao, J. Direct four-electron reduction of O2 to H2O on TiO2 surfaces by pendant proton relay. Angew. Chem. Int. Ed. 52, 9686–9690 (2013).

    CAS  Google Scholar 

  129. Liu, C. L., Hu, C.-C., Wu, S.-H. & Wu, T.-H. Electron transfer number control of the oxygen reduction reaction on nitrogen-doped reduced-graphene oxides using experimental design strategies. J. Electrochem. Soc. 160, H547–H552 (2013).

    CAS  Google Scholar 

  130. Zhou, R., Zheng, Y., Jaroniec, M. & Qiao, S.-Z. Determination of the electron transfer number for the oxygen reduction reaction: from theory to experiment. ACS Catal. 6, 4720–4728 (2016).

    CAS  Google Scholar 

  131. Chen, S. & Kucernak, A. Electrocatalysis under conditions of high mass transport rate: oxygen reduction on single submicrometer-sized Pt particles supported on carbon. J. Phys. Chem. B 108, 3262–3276 (2004).

    CAS  Google Scholar 

  132. Taylor, S., Fabbri, E., Levecque, P., Schmidt, T. J. & Conrad, O. The effect of platinum loading and surface morphology on oxygen reduction activity. Electrocatalysis 7, 287–296 (2016).

    CAS  Google Scholar 

  133. Ilea, P., Dorneanu, S. & Popescu, I. C. Electrosynthesis of hydrogen peroxide by partial reduction of oxygen in alkaline media. Part II. Wall-jet ring disc electrode for electroreduction of dissolved oxygen on graphite and glassy carbon. J. Appl. Electrochem. 30, 187–192 (2000).

    CAS  Google Scholar 

  134. von Weber, A., Baxter, E. T., White, H. S. & Anderson, S. L. Cluster size controls branching between water and hydrogen peroxide production in electrochemical oxygen reduction at Ptn/ITO. J. Phys. Chem. C 119, 11160–11170 (2015).

    Google Scholar 

  135. Pizzutilo, E. et al. Electrocatalytic synthesis of hydrogen peroxide on Au–Pd nanoparticles: from fundamentals to continuous production. Chem. Phys. Lett. 683, 436–442 (2017).

    CAS  Google Scholar 

  136. Félix-Navarro, R. M. et al. Pt–Pd bimetallic nanoparticles on MWCNTs: catalyst for hydrogen peroxide electrosynthesis. J. Nanopart. Res. 15, 1802 (2013).

    Google Scholar 

  137. Antonin, V. S. et al. W@Au nanostructures modifying carbon as materials for hydrogen peroxide electrogeneration. Electrochim. Acta 231, 713–720 (2017).

    CAS  Google Scholar 

  138. Erikson, H. et al. Oxygen electroreduction on electrodeposited PdAu nanoalloys. Electrocatalysis 6, 77–85 (2015).

    CAS  Google Scholar 

  139. Shao, M. Palladium-based electrocatalysts for hydrogen oxidation and oxygen reduction reactions. J. Power Sources 196, 2433–2444 (2011).

    CAS  Google Scholar 

  140. Rodriguez, P. & Koper, M. T. M. Electrocatalysis on gold. Phys. Chem. Chem. Phys. 16, 13583–13594 (2014).

    CAS  PubMed  Google Scholar 

  141. Markovic, N. M., Adic, R. R. & Vešovic, V. B. Structural effects in electrocatalysis: oxygen reduction on the gold single crystal electrodes with (110) and (111) orientations. J. Electroanal. Chem. 165, 121–133 (1984).

    CAS  Google Scholar 

  142. Liu, J., Bunes, B. R., Zang, L. & Wang, C. Supported single-atom catalysts: synthesis, characterization, properties, and applications Environ. Chem. Lett. 16, 477–505 (2018).

    CAS  Google Scholar 

  143. Choi, C. H. et al. Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. Nat. Commun. 7, 10922 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Yang, S., Kim, J., Tak, Y. J., Soon, A. & Lee, H. Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions. Angew. Chem. Int. Ed. 55, 2058–2062 (2016).

    CAS  Google Scholar 

  145. Jirkovský, J. S., Panas, I., Romani, S., Ahlberg, E. & Schiffrin, D. J. Potential-dependent structural memory effects in Au–Pd nanoalloys. J. Phys. Chem. Lett. 3, 315–321 (2012).

    Google Scholar 

  146. Miao, J., Zhu, H., Tang, Y., Chen, Y. & Wan, P. Graphite felt electrochemically modified in H2SO4 solution used as a cathode to produce H2O2 for pre-oxidation of drinking water. Chem. Eng. J. 250, 312–318 (2014).

    CAS  Google Scholar 

  147. Wang, Y. et al. Preparation and characterization of a novel KOH activated graphite felt cathode for the electro-Fenton process. Appl. Catal. B 165, 360–368 (2015).

    CAS  Google Scholar 

  148. Yu, F., Zhou, M. & Yu, X. Cost-effective electro-Fenton using modified graphite felt that dramatically enhanced on H2O2 electro-generation without external aeration. Electrochim. Acta 163, 182–189 (2015).

    CAS  Google Scholar 

  149. Zhou, L. et al. Electrogeneration of hydrogen peroxide for electro-Fenton system by oxygen reduction using chemically modified graphite felt cathode. Sep. Purif. Technol. 111, 131–136 (2013).

    CAS  Google Scholar 

  150. Zhao, Z., Li, M., Zhang, L., Dai, L. & Xia, Z. Design principles for heteroatom-doped carbon nanomaterials as highly efficient catalysts for fuel cells and metal–air batteries. Adv. Mater. 27, 6834–6840 (2015).

    CAS  PubMed  Google Scholar 

  151. Zhao, Z. & Xia, Z. Design principles for dual-element-doped carbon nanomaterials as efficient bifunctional catalysts for oxygen reduction and evolution reactions. ACS Catal. 6, 1553–1558 (2016).

    CAS  Google Scholar 

  152. Zhao, Z., Zhang, L. & Xia, Z. Electron transfer and catalytic mechanism of organic molecule-adsorbed graphene nanoribbons as efficient catalysts for oxygen reduction and evolution reactions. J. Phys. Chem. C 120, 2166–2175 (2016).

    CAS  Google Scholar 

  153. Gong, K., Du, F., Xia, Z., Durstock, M. & Dai, L. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323, 760–764 (2009).

    CAS  PubMed  Google Scholar 

  154. Zhang, X., Fu, J., Zhang, Y. & Lei, L. A nitrogen functionalized carbon nanotube cathode for highly efficient electrocatalytic generation of H2O2 in electro-Fenton system. Sep. Purif. Technol. 64, 116–123 (2008).

    CAS  Google Scholar 

  155. Kozlova, L. S., Novikov, V. T., Garaeva, G. R., Gol’din, M. M. & Kolesnikov, V. A. Electrodes modified with carbon materials in electrosynthesis of the dissolved hydrogen peroxide solutions and their medical properties. Prot. Met. Phys. Chem. Surf. 51, 985–989 (2015).

    CAS  Google Scholar 

  156. Sun, Y. et al. Efficient electrochemical hydrogen peroxide production from molecular oxygen on nitrogen-doped mesoporous carbon catalysts. ACS Catal. 8, 2844–2856 (2018).

    CAS  Google Scholar 

  157. Chen, S. et al. Defective carbon-based materials for the electrochemical synthesis of hydrogen peroxide. ACS Sustain. Chem. Eng. 6, 311–317 (2018).

    CAS  Google Scholar 

  158. Valim, R. B. et al. Electrogeneration of hydrogen peroxide in gas diffusion electrodes modified with tert-butyl-anthraquinone on carbon black support. Carbon 61, 236–244 (2013).

    CAS  Google Scholar 

  159. Lobyntseva, E., Kallio, T., Alexeyeva, N., Tammeveski, K. & Kontturi, K. Electrochemical synthesis of hydrogen peroxide: rotating disk electrode and fuel cell studies. Electrochim. Acta 52, 7262–7269 (2007).

    CAS  Google Scholar 

  160. Pérez, J. F. et al. Electrochemical jet-cell for the in-situ generation of hydrogen peroxide. Electrochem. Commun. 71, 65–68 (2016).

    Google Scholar 

  161. Ilea, P., Dorneanu, S. & Nicoara, A. Hydrogen peroxide electrosynthesis by partial oxygen reduction in alkaline media. I: voltammetric study on unmodified carbonaceous materials. Rev. Roum. Chim. 44, 555–561 (1999).

    CAS  Google Scholar 

  162. Park, J., Nabae, Y., Hayakawa, T. & Kakimoto, M.-A. Highly selective two-electron oxygen reduction catalyzed by mesoporous nitrogen-doped carbon. ACS Catal. 4, 3749–3754 (2014).

    CAS  Google Scholar 

  163. Potapova, G. F., Kasatkin, E. V., Panesh, A. M., Lozovskii, A. D. & Kozlova, N. V. Hydrogen peroxide electrosynthesis on nonplatinum materials. Russ. J. Electrochem. 40, 1193–1197 (2004).

    CAS  Google Scholar 

  164. Vlaic, C. & Dorneanu, S. Galvanostatic graphite electroactivation for hydrogen peroxide electrosynthesis by multi-sequence and auto-adaptive techniques. Studia UBB Chemia 60, 141–150 (2015).

    CAS  Google Scholar 

  165. Pérez, J. F. et al. Improving the efficiency of carbon cloth for the electrogeneration of H2O2: role of polytetrafluoroethylene and carbon black loading. Ind. Eng. Chem. Res. 56, 12588–12595 (2017).

    Google Scholar 

  166. Chai, G.-L., Hou, Z., Ikeda, T. & Terakura, K. Two-electron oxygen reduction on carbon materials catalysts: mechanisms and active sites. J. Phys. Chem. C 121, 14524–14533 (2017).

    CAS  Google Scholar 

  167. Chen, S. et al. Designing boron nitride islands in carbon materials for efficient electrochemical synthesis of hydrogen peroxide. J. Am. Chem. Soc. 140, 7851–7859 (2018).

    CAS  PubMed  Google Scholar 

  168. Coria, G., Pérez, T., Sirés, I. & Nava, J. L. Mass transport studies during dissolved oxygen reduction to hydrogen peroxide in a filter-press electrolyzer using graphite felt, reticulated vitreous carbon and boron-doped diamond as cathodes. J. Electroanal. Chem. 757, 225–229 (2015).

    CAS  Google Scholar 

  169. Xia, G., Lu, Y. & Xu, H. Electrogeneration of hydrogen peroxide for electro-Fenton via oxygen reduction using polyacrylonitrile-based carbon fiber brush cathode. Electrochim. Acta 158, 390–396 (2015).

    CAS  Google Scholar 

  170. Peng, L.-Z. et al. Highly effective electrosynthesis of hydrogen peroxide from oxygen on a redox-active cationic covalent triazine network. Chem. Commun. 54, 4433–4436 (2018).

    CAS  Google Scholar 

  171. Iglesias, D. et al. N-Doped graphitized carbon nanohorns as a forefront electrocatalyst in highly selective O2 reduction to H2O2. Chem 4, 106–123 (2018).

    CAS  Google Scholar 

  172. Perazzolo, V. et al. Nitrogen and sulfur doped mesoporous carbon as metal-free electrocatalysts for the in situ production of hydrogen peroxide. Carbon 95, 949–963 (2015).

    CAS  Google Scholar 

  173. Zhao, K. et al. Enhanced H2O2 production by selective electrochemical reduction of O2 on fluorine-doped hierarchically porous carbon. J. Catal. 357, 118–126 (2018).

    Google Scholar 

  174. Nabae, Y. et al. The role of Fe in the preparation of carbon alloy cathode catalysts. ECS Trans. 25, 463–467 (2009).

    CAS  Google Scholar 

  175. Lefèvre, M. & Dodelet, J.-P. Fe-based catalysts for the reduction of oxygen in polymer electrolyte membrane fuel cell conditions: determination of the amount of peroxide released during electroreduction and its influence on the stability of the catalysts. Electrochim. Acta 48, 2749–2760 (2003).

    Google Scholar 

  176. Nallathambi, V., Lee, J.-W., Kumaraguru, S. P., Wu, G. & Popov, B. N. Development of high performance carbon composite catalyst for oxygen reduction reaction in PEM proton exchange membrane fuel cells. J. Power Sources 183, 34–42 (2008).

    CAS  Google Scholar 

  177. Bezerra, C. W. B. et al. A review of Fe–N/C and Co–N/C catalysts for the oxygen reduction reaction. Electrochim. Acta 53, 4937–4951 (2008).

    CAS  Google Scholar 

  178. Kusoru, T., Nakamatsu, S., Nishiki, Y., Tanaka, M. & Wakita, S. Process for producing acidic water containing dissolved hydrogen peroxide and electrolytic cell therefor. European Patent 0949205A1 (1999).

  179. Fellinger, T.-P., Hasché, F., Strasser, P. & Antonietti, M. Mesoporous nitrogen-doped carbon for the electrocatalytic synthesis of hydrogen peroxide. J. Am. Chem. Soc. 134, 4072–4075 (2012).

    CAS  PubMed  Google Scholar 

  180. Sidik, R. A., Anderson, A. B., Subramanian, N. P., Kumaraguru, S. P. & Popov, B. N. O2 reduction on graphite and nitrogen-doped graphite: experiment and theory. J. Phys. Chem. B 110, 1787–1793 (2006).

    CAS  PubMed  Google Scholar 

  181. Muthukrishnan, A., Nabae, Y., Okajima, T. & Ohsaka, T. Kinetic approach to investigate the mechanistic pathways of oxygen reduction reaction on Fe-containing N-doped carbon catalysts. ACS Catal. 5, 5194–5202 (2015).

    CAS  Google Scholar 

  182. Barros, W. R. P., Reis, R. M., Rocha, R. S. & Lanza, M. R. V. Electrogeneration of hydrogen peroxide in acidic medium using gas diffusion electrodes modified with cobalt(ii) phthalocyanine. Electrochim. Acta 104, 12–18 (2013).

    CAS  Google Scholar 

  183. Silva, F. L., Reis, R. M., Barros, W. R. P., Rocha, R. S. & Lanza, M. R. V. Electrogeneration of hydrogen peroxide in gas diffusion electrodes: application of iron(ii) phthalocyanine as a modifier of carbon black. J. Electroanal. Chem. 722–723, 32–37 (2014).

    Google Scholar 

  184. Yamanaka, I. et al. Electrocatalysis of heat-treated cobalt-porphyrin/carbon for hydrogen peroxide formation. Electrochim. Acta 108, 321–329 (2013).

    CAS  Google Scholar 

  185. Schulenburg, H. et al. Catalysts for the oxygen reduction from heat-treated iron(iii) tetramethoxyphenylporphyrin chloride: structure and stability of active sites. J. Phys. Chem. B 107, 9034–9041 (2003).

    CAS  Google Scholar 

  186. Wang, L., Duan, L., Tong, L. & Sun, L. Visible light-driven water oxidation catalyzed by mononuclear ruthenium complexes. J. Catal. 306, 129–132 (2013).

    CAS  Google Scholar 

  187. Badiei, Y. M. et al. Water oxidation with mononuclear ruthenium(ii) polypyridine complexes involving a direct RuIV=O pathway in neutral and alkaline media. Inorg. Chem. 52, 8845–8850 (2013).

    CAS  PubMed  Google Scholar 

  188. McDonnell-Worth, C. & MacFarlane, D. R. Ion effects in water oxidation to hydrogen peroxide. RSC Adv. 4, 30551–30557 (2014).

    CAS  Google Scholar 

  189. Guan, J. et al. Synthesis and demonstration of subnanometric iridium oxide as highly efficient and robust water oxidation catalyst. ACS Catal. 7, 5983–5986 (2017).

    CAS  Google Scholar 

  190. Kim, S., Cho, M. & Lee, Y. Iridium oxide dendrite as a highly efficient dual electro-catalyst for water splitting and sensing of H2O2. J. Electrochem. Soc. 164, B3029–B3035 (2017).

    CAS  Google Scholar 

  191. Iqbal, M. N. et al. Mesoporous ruthenium oxide: a heterogeneous catalyst for water oxidation. ACS Sustain. Chem. Eng. 5, 9651–9656 (2017).

    CAS  Google Scholar 

  192. Gustafson, K. P. J. et al. Water oxidation mediated by ruthenium oxide nanoparticles supported on siliceous mesocellular foam. Catal. Sci. Technol. 7, 293–299 (2017).

    CAS  Google Scholar 

  193. Izgorodin, A., Izgorodina, E. & MacFarlane, D. R. Low overpotential water oxidation to hydrogen peroxide on a MnOx catalyst. Energy Environ. Sci. 5, 9496–9501 (2012).

    CAS  Google Scholar 

  194. Fuku, K. et al. Photoelectrochemical hydrogen peroxide production from water on a WO3/BiVO4 photoanode and from O2 on an Au cathode without external bias. Chem. Asian J. 12, 1111–1119 (2017).

    CAS  PubMed  Google Scholar 

  195. Fuku, K., Miyase, Y., Miseki, Y., Gunji, T. & Sayama, K. Enhanced oxidative hydrogen peroxide production on conducting glass anodes modified with metal oxides. ChemistrySelect 1, 5721–5726 (2016).

    CAS  Google Scholar 

  196. Fuku, K. & Sayama, K. Efficient oxidative hydrogen peroxide production and accumulation in photoelectrochemical water splitting using a tungsten trioxide/bismuth vanadate photoanode. Chem. Commun. 52, 5406–5409 (2016).

    CAS  Google Scholar 

  197. Goto, H., Hanada, Y., Ohno, T. & Matsumura, M. Quantitative analysis of superoxide ion and hydrogen peroxide produced from molecular oxygen on photoirradiated TiO2 particles. J. Catal. 225, 223–229 (2004).

    CAS  Google Scholar 

  198. Hirakawa, T., Yawata, K. & Nosaka, Y. Photocatalytic reactivity for O2 and OH radical formation in anatase and rutile TiO2 suspension as the effect of H2O2 addition. Appl. Catal. A 325, 105–111 (2007).

    CAS  Google Scholar 

  199. Cai, R., Kubota, Y. & Fujishima, A. Effect of copper ions on the formation of hydrogen peroxide from photocatalytic titanium dioxide particles. J. Catal. 219, 214–218 (2003).

    CAS  Google Scholar 

  200. Zhang, J. & Nosaka, Y. Quantitative detection of OH radicals for investigating the reaction mechanism of various visible-light TiO2 photocatalysts in aqueous suspension. J. Phys. Chem. C 117, 1383–1391 (2013).

    CAS  Google Scholar 

  201. Sánchez-Quiles, D. & Tovar-Sánchez, A. Sunscreens as a source of hydrogen peroxide production in coastal waters. Environ. Sci. Technol. 48, 9037–9042 (2014).

    PubMed  Google Scholar 

  202. Mase, K., Yoneda, M., Yamada, Y. & Fukuzumi, S. Efficient photocatalytic production of hydrogen peroxide from water and dioxygen with bismuth vanadate and a cobalt(ii) chlorin complex. ACS Energy Lett. 1, 913–919 (2016).

    CAS  Google Scholar 

  203. Hong, A. P., Bahnemann, D. W. & Hoffmann, M. R. Cobalt(ii) tetrasulfophthalocyanine on titanium dioxide: a new efficient electron relay for the photocatalytic formation and depletion of hydrogen peroxide in aqueous suspensions. J. Phys. Chem. 91, 2109–2117 (1987).

    CAS  Google Scholar 

  204. Harbour, J. R., Tromp, J. & Hair, M. L. Photogeneration of hydrogen peroxide in aqueous TiO2 dispersions. Can. J. Chem. 63, 204–208 (1985).

    CAS  Google Scholar 

  205. Rao, M. V., Rajeshwar, K., Verneker, V. R. P. & DuBow, J. Photosynthetic production of hydrogen and hydrogen peroxide on semiconducting oxide grains in aqueous solutions. J. Phys. Chem. 84, 1987–1991 (1980).

    CAS  Google Scholar 

  206. Cai, R., Hashimoto, K., Fujishima, A. & Kubota, Y. Conversion of photogenerated superoxide anion into hydrogen peroxide in TiO2 suspension system. J. Electroanal. Chem. 326, 345–350 (1992).

    CAS  Google Scholar 

  207. Park, S. Y. et al. CaSnO3: an electrocatalyst for two-electron water oxidation reaction to form H2O2. ACS Energy Lett. 4, 352–357 (2019).

    CAS  Google Scholar 

  208. Assumpção, M. H. M. T. et al. Low tungsten content of nanostructured material supported on carbon for the degradation of phenol. Appl. Catal. B 142–143, 479–486 (2013).

    Google Scholar 

  209. Assumpção, M. H. M. T. et al. Comparative study of different methods for the preparation of CoxOy/C for the electrosynthesis of hydrogen peroxide. Int. J. Electrochem. Sci. 6, 1586–1596 (2011).

    Google Scholar 

  210. Cui, L., Ding, P., Zhou, M. & Jing, W. Energy efficiency improvement on in situ generating H2O2 in a double-compartment ceramic membrane flow reactor using cerium oxide modified graphite felt cathode. Chem. Eng. J. 330, 1316–1325 (2017).

    CAS  Google Scholar 

  211. Xu, F. et al. A new cathode using CeO2/MWNT for hydrogen peroxide synthesis through a fuel cell. J. Rare Earth. 27, 128–133 (2009).

    Google Scholar 

  212. Assumpção, M. H. M. T. et al. Low content cerium oxide nanoparticles on carbon for hydrogen peroxide electrosynthesis. Appl. Catal. A 411–412, 1–6 (2012).

    Google Scholar 

  213. Xu, A. et al. Electrogeneration of hydrogen peroxide using Ti/IrO2–Ta2O5 anode in dual tubular membranes electro-Fenton reactor for the degradation of tricyclazole without aeration. Chem. Eng. J. 295, 152–159 (2016).

    CAS  Google Scholar 

  214. Carneiro, J. F., Rocha, R. S., Hammer, P., Bertazzoli, R. & Lanza, M. R. V. Hydrogen peroxide electrogeneration in gas diffusion electrode nanostructured with Ta2O5. Appl. Catal. A 517, 161–167 (2016).

    CAS  Google Scholar 

  215. Carneiro, J. F., Paulo, M. J., Siaj, M., Tavares, A. C. & Lanza, M. R. V. Nb2O5 nanoparticles supported on reduced graphene oxide sheets as electrocatalyst for the H2O2 electrogeneration. J. Catal. 332, 51–61 (2015).

    CAS  Google Scholar 

  216. Moraes, A. et al. Use of a vanadium nanostructured material for hydrogen peroxide electrogeneration. J. Electroanal. Chem. 719, 127–132 (2014).

    CAS  Google Scholar 

  217. Li, M. F., Liao, L. W., Yuan, D. F., Mei, D. & Chen, Y.-X. pH effect on oxygen reduction reaction at Pt(III) electrode. Electrochim. Acta 110, 780–789 (2013).

    CAS  Google Scholar 

  218. Markovic, N. M. & Ross, P. N. Surface science studies of model fuel cell electrocatalysts. Surf. Sci. Rep. 45, 117–229 (2002).

    CAS  Google Scholar 

  219. Duke, F. R. & Haas, T. W. The homogeneous base-catalyzed decomposition of hydrogen peroxide. J. Phys. Chem. 65, 304–306 (1961).

    CAS  Google Scholar 

  220. Kolyagin, G. A. & Kornienko, V. L. Kinetics of hydrogen peroxide accumulation in electrosynthesis from oxygen in gas-diffusion electrode in acidic and alkaline solutions. Russ. J. Appl. Chem. 76, 1070–1075 (2003).

    CAS  Google Scholar 

  221. Jebaraj, A. J. J., Georgescu, N. S. & Scherson, D. A. Oxygen and hydrogen peroxide reduction on polycrystalline platinum in acid electrolytes: effects of bromide adsorption. J. Phys. Chem. C 120, 16090–16099 (2016).

    CAS  Google Scholar 

  222. Katsounaros, I. et al. The impact of spectator species on the interaction of H2O2 with platinum — implications for the oxygen reduction reaction pathways. Phys. Chem. Chem. Phys. 15, 8058–8068 (2013).

    CAS  PubMed  Google Scholar 

  223. Shinozaki, K., Zack, J. W., Richards, R. M., Pivovar, B. S. & Kocha, S. S. Oxygen reduction reaction measurements on platinum electrocatalysts utilizing rotating disk electrode technique: I. Impact of impurities, measurement protocols and applied corrections. J. Electrochem. Soc. 162, F1144–F1158 (2015).

    CAS  Google Scholar 

  224. Yano, H., Uematsu, T., Omura, J., Watanabe, M. & Uchida, H. Effect of adsorption of sulfate anions on the activities for oxygen reduction reaction on Nafion®-coated Pt/carbon black catalysts at practical temperatures. J. Electroanal. Chem. 747, 91–96 (2015).

    CAS  Google Scholar 

  225. Ciapina, E. G. et al. Surface spectators and their role in relationships between activity and selectivity of the oxygen reduction reaction in acid environments. Electrochem. Commun. 60, 30–33 (2015).

    CAS  Google Scholar 

  226. Mo, Y. & Scherson, D. A. Platinum-based electrocatalysts for generation of hydrogen peroxide in aqueous acidic electrolytes: rotating ring–disk studies. J. Electrochem. Soc. 150, E39–E46 (2003).

    CAS  Google Scholar 

  227. Choi, C. H. et al. Hydrogen peroxide synthesis via enhanced two-electron oxygen reduction pathway on carbon-coated Pt surface. J. Phys. Chem. C 118, 30063–30070 (2014).

    CAS  Google Scholar 

  228. Kolyagin, G. A. & Kornienko, V. L. Effect of trialkylammonium salts and current density on the electrosynthesis of hydrogen peroxide from oxygen in a gas-diffusion electrode in acid solutions. Russ. J. Appl. Chem. 79, 746–751 (2006).

    CAS  Google Scholar 

  229. Stucki, S., Kötz, R., Carcer, B. & Suter, W. Electrochemical waste water treatment using high overvoltage anodes part II: anode performance and applications. J. Appl. Electrochem. 21, 99–104 (1991).

    CAS  Google Scholar 

  230. Puértolas, B., Hill, A. K., García, T., Solsona, B. & Torrente-Murciano, L. In-situ synthesis of hydrogen peroxide in tandem with selective oxidation reactions: a mini-review. Catal. Today 248, 115–127 (2015).

    Google Scholar 

  231. von Sonntag, C. Advanced oxidation processes: mechanistic aspects. Water Sci. Technol. 58, 1015–1021 (2008).

    Google Scholar 

  232. Oh, D., Zhou, L., Chang, D. & Lee, W. A novel hydrogen peroxide stabilizer in descaling process of metal surface. Chem. Eng. J. 334, 1169–1175 (2018).

    CAS  Google Scholar 

  233. Croft, S., Gilbert, B. C., Smith, J. R. L., Stell, J. K. & Sanderson, W. R. Mechanisms of peroxide stabilization. An investigation of some reactions of hydrogen peroxide in the presence of aminophosphonic acids. J. Chem. Soc. Perk. Trans. 2, 153–160 (1992).

    Google Scholar 

  234. Watts, R. J., Finn, D. D., Cutler, L. M., Schmidt, J. T. & Teel, A. L. Enhanced stability of hydrogen peroxide in the presence of subsurface solids. J. Contam. Hydrol. 91, 312–326 (2007).

    CAS  PubMed  Google Scholar 

  235. Schumb, W. Stabilization of concentrated solutions of hydrogen peroxide. Ind. Eng. Chem. 49, 1759–1762 (1957).

    CAS  Google Scholar 

  236. Haber, F. & Weiss, J. The catalytic decomposition of hydrogen peroxide by iron salts. Proc. R. Soc. A 147, 332–351 (1934).

    CAS  Google Scholar 

  237. Davies, D. M., Dunn, D., Haydarali, M., Jones, R. M. & Lawther, J. M. The formation and radical scavenging properties of ethylenediaminetetra-acetic acid N,N′-dioxide in aqueous m-chloroperbenzoic acid. J. Chem. Soc. Chem. Commun. 13, 987 (1986).

    Google Scholar 

  238. Davies, D. M. & Jones, R. M. Kinetics and mechanism of the oxidation of some chelating agents by perbenzoic acids. J. Chem. Soc. Perk. Trans. 2, 1323–1326 (1989).

    Google Scholar 

  239. Baxendale, J. H. & Wilson, J. A. The photolysis of hydrogen peroxide at high light intensities. Trans. Faraday Soc. 53, 344–356 (1957).

    CAS  Google Scholar 

  240. Titova, K. V., Nikol’skaya, V. P., Buyanov, V. V. & Suprun, I. P. A study of stability of potassium fluoride peroxosolvates KF·nH2O2 (n = 1, 2) in solid state and in aqueous solutions. Russ. J. Appl. Chem. 74, 907–911 (2001).

    CAS  Google Scholar 

  241. Kolyagin, G. A. & Kornienko, V. L. Electrosynthesis of hydrogen peroxide in solutions of salts that form molecular addition products (peroxo solvates) with it. Russ. J. Electrochem. 50, 798–803 (2014).

    CAS  Google Scholar 

  242. Cravotto, G., Carlo, S. D., Ondruschka, B., Tumiatti, V. & Roggero, C. M. Decontamination of soil containing pops by the combined action of solid Fenton-like reagents and microwaves. Chemosphere 69, 1326–1329 (2007).

    CAS  PubMed  Google Scholar 

  243. Luo, H., Li, C., Wu, C. & Dong, X. In situ electrosynthesis of hydrogen peroxide with an improved gas diffusion cathode by rolling carbon black and PTFE. RSC Adv. 5, 65227–65235 (2015).

    CAS  Google Scholar 

  244. Walsh, F. C. & Ponce de León, C. Progress in electrochemical flow reactors for laboratory and pilot scale processing. Electrochim. Acta 280, 121–148 (2018).

    CAS  Google Scholar 

  245. González-García, J., Banks, C. E., Šljukic, B. & Compton, R. G. Electrosynthesis of hydrogen peroxide via the reduction of oxygen assisted by power ultrasound. Ultrason. Sonochem. 14, 405–412 (2007).

    PubMed  Google Scholar 

  246. Oloman, C. Trickle bed electrochemical reactors. J. Electrochem. Soc. 126, 1885–1892 (1979).

    CAS  Google Scholar 

  247. Oloman, C. & Watkinson, A. P. Hydrogen peroxide production in trickle-bed electrochemical reactors. J. Appl. Electrochem. 9, 117–123 (1979).

    CAS  Google Scholar 

  248. Abdullah, G. H. & Xing, Y. Hydrogen peroxide generation in divided-cell trickle bed electrochemical reactor. Ind. Eng. Chem. Res. 56, 11058–11064 (2017).

    CAS  Google Scholar 

  249. Foller, P. C. & Bombard, R. T. Processes for the production of mixtures of caustic soda and hydrogen peroxide via the reduction of oxygen. J. Appl. Electrochem. 25, 613–627 (1995).

    CAS  Google Scholar 

  250. Lei, Y., Liu, H., Jiang, C., Shen, Z. & Wang, W. A trickle bed electrochemical reactor for generation of hydrogen peroxide and degradation of an azo dye in water. J. Adv. Oxid. Technol. 18, 47 (2015).

    CAS  Google Scholar 

  251. McIntyre, J. A. & Phillips, R. F. in Proceedings of the Symposium on Electrochemical Process and Plant Design (eds Alkire, R. C., Beck, T. R. & Varjian, R. D.) 79–97 (Electrochemical Society, 1983).

  252. Yamada, N., Yaguchi, T., Otsuka, H. & Sudoh, M. Development of trickle-bed electrolyzer for on-site electrochemical production of hydrogen peroxide. J. Electrochem. Soc. 146, 2587–2591 (1999).

    CAS  Google Scholar 

  253. Otsuka, K. & Yamanaka, I. One step synthesis of hydrogen peroxide through fuel cell reaction. Electrochim. Acta 35, 319–322 (1990).

    CAS  Google Scholar 

  254. Jirkovský, J. S., Busch, M., Ahlberg, E., Panas, I. & Krtil, P. Switching on the electrocatalytic ethene epoxidation on nanocrystalline RuO2. J. Am. Chem. Soc. 133, 5882–5892 (2011).

    PubMed  Google Scholar 

  255. Walsh, F. C. A First Course in Electrochemical Engineering (Electrochemical Consultancy, 1996).

  256. Steckhan, E. et al. Environmental protection and economization of resources by electroorganic and electroenzymatic syntheses. Chemosphere 43, 63–73 (2001).

    CAS  PubMed  Google Scholar 

  257. Babu, K. F., Sivasubramanian, R., Noel, M. & Kulandainathan, M. A. A homogeneous redox catalytic process for the paired synthesis of l-cysteine and l-cysteic acid from l-cystine. Electrochim. Acta 56, 9797–9801 (2011).

    CAS  Google Scholar 

  258. Matthessen, R., Fransaer, J., Binnemans, K. & De Vos, D. E. Paired electrosynthesis of diacid and diol precursors using dienes and CO2 as the carbon source. ChemElectroChem 2, 73–76 (2015).

    CAS  Google Scholar 

  259. Tatapudi, P. & Fenton, J. M. Simultaneous synthesis of ozone and hydrogen peroxide in a proton-exchange-membrane electrochemical reactor. J. Electrochem. Soc. 141, 1174–1178 (1994).

    CAS  Google Scholar 

  260. Espinoza-Montero, P. J., Vasquez-Medrano, R., Ibanez, J. G. & Frontana-Uribe, B. A. Efficient anodic degradation of phenol paired to improved cathodic production of H2O2 at BDD electrodes. J. Electrochem. Soc. 160, G3171–G3177 (2013).

    CAS  Google Scholar 

  261. Paddon, C. A. et al. Towards paired and coupled electrode reactions for clean organic microreactor electrosyntheses. J. Appl. Electrochem. 36, 617 (2006).

    CAS  Google Scholar 

  262. Ito, S., Katayama, R., Kunai, A. & Sasaki, K. A novel paired electrosynthesis of p-benzoquinone and hydroquinone from benzene. Tetrahedron Lett. 30, 205–206 (1989).

    CAS  Google Scholar 

  263. Ri-Yao, C., Zhen-Xia, H., Xi, Z. & Zhen, C. Paired electro-generation of glyoxylic acid using bipolar membrane made from sodium alginate and chitosan. Chem. Eng. Commun. 197, 1476–1484 (2010).

    Google Scholar 

  264. Bisselink, R. J. M. & van Erkel, J. Electrochemical production of hydrogen peroxide. European Patent WO2015034354A1 (2015).

  265. Chhim, N. et al. Gas diffusion electrode, apparatus and process for the production of hydrogen peroxide. European Patent 1568801A1 (2005).

  266. Nakajima, Y., Nishiki, Y., Uno, M., Katsumoto, A. & Nishimura, K. Process for the production of hydrogen peroxide solution. US Patent 20020130048A1 (2004).

  267. Buschmann, W. E. & James, P. I. Methods and apparatus for the on-site production of hydrogen peroxide. US Patent 20070074975A1 (2010).

  268. Mathur, I., James, A. & Bissett, D. Bipolar electrolyzer. US Patent 4927509 (1990).

  269. Nakajima, Y. et al. Electrolytic cell and process for the production of hydrogen peroxide solution and hypochlorous acid. US Patent 6773575B2 (2004).

  270. Uno, M., Wakita, S., Sekimoto, M., Furuta, T. & Nishiki, Y. Electrolytic cell for hydrogen peroxide production and process for producing hydrogen peroxide. US Patent 6767447B2 (2004).

  271. Jirkovský, J. S. et al. Single atom hot-spots at Au–Pd nanoalloys for electrocatalytic H2O2 production. J. Am. Chem. Soc. 133, 19432–19441 (2011).

    PubMed  Google Scholar 

  272. Grigoropoulou, G., Clark, J. H. & Elings, J. A. Recent developments on the epoxidation of alkenes using hydrogen peroxide as an oxidant. Green Chem. 5, 1–7 (2003).

    CAS  Google Scholar 

  273. Ibanez, J. G., Frontana-Uribe, B. A. & Vasquez-Medrano, R. Paired electrochemical processes: overview, systematization, selection criteria, design strategies, and projection. J. Mex. Chem. Soc. 60, 247–260 (2016).

    CAS  Google Scholar 

  274. Pletcher, D. The cathodic reduction of carbon dioxide — what can it realistically achieve? A mini review. Electrochem. Commun. 61, 97–101 (2015).

    CAS  Google Scholar 

  275. Wu, J. & Zhou, X.-D. Catalytic conversion of CO2 to value added fuels: current status, challenges, and future directions. Chin. J. Catal. 37, 999–1015 (2016).

    CAS  Google Scholar 

  276. Lu, H.-F., Chen, H.-F., Kao, C.-L., Chao, I. & Chen, H.-Y. A computational study of the Fenton reaction in different pH ranges. Phys. Chem. Chem. Phys. 20, 22890–22901 (2018).

    CAS  PubMed  Google Scholar 

  277. Kremer, M. L. The Fenton reaction. Dependence of the rate on pH. J. Phys. Chem. A 107, 1734–1741 (2003).

    CAS  Google Scholar 

  278. Castañeda, L. F., Walsh, F. C., Nava, J. L. & Ponce de León, C. Graphite felt as a versatile electrode material: properties, reaction environment, performance and applications. Electrochim. Acta 258, 1115–1139 (2017).

    Google Scholar 

  279. Walsh, F. C., Arenas, L. F. & Ponce de León, C. Developments in electrode design: structure, decoration and applications of electrodes for electrochemical technology. J. Chem. Technol. Biotechnol. 93, 3073–3090 (2018).

    CAS  Google Scholar 

  280. Walsh, F. C. et al. The continued development of reticulated vitreous carbon as a versatile electrode material: structure, properties and applications. Electrochim. Acta 215, 566–591 (2016).

    CAS  Google Scholar 

  281. Thénard, L. J. Observations sur des nouvelles combinaisons entre l’oxigène et divers acides. Ann. Chim. Phys. 8, 306–312 (1818).

    Google Scholar 

  282. Bredig, G. & von Berneck, R. M. Über anorganische Fermente. I. Über Platinkatalyse Chemische Dynamik Wasserstoffsuperoxyds. Z. Phys. Chem. 31, 258 (1899).

    Google Scholar 

  283. Schönbein, C. F. Die Zersetzungsverhältnisse des ersten Salpetersäurehydrats, verglichen mit denen des Wasserstoffsuperoxyds und des Ozons. J. Prakt. Chem. 37, 129–143 (1846).

    Google Scholar 

  284. Schönbein, C. F. Ueber die chemische Polarisation des Sauerstoffs. J. Prakt. Chem. 78, 63–93 (1859).

    Google Scholar 

  285. Schönbein, C. F. Chemische mittheilungen. J. Prakt. Chem. 86, 65–99 (1862).

    Google Scholar 

  286. Schönbein, C. F. Weitere beiträge zur nähern Kenntniss des Sauerstoffs. J. Prakt. Chem. 93, 24–60 (1864).

    Google Scholar 

  287. Traube, M. Ueber Aktivirung des Sauerstoffs. Ber. Dtsch. Chem. Ges. 15, 659–675 (1882).

    Google Scholar 

  288. Traube, M. Ueber die Aktivirung des Sauerstoffs. Ber. Dtsch. Chem. Ges. 15, 2434–2443 (1882).

    Google Scholar 

  289. Comyns, A. E. (ed) Encyclopedic Dictionary of Named Processes in Chemical Technology 4th edn 32 (CRC Press, 2014).

  290. Henkel, H. & Weber, W. Manufacture of hydrogen peroxide. US Patent 77405413A (1914).

  291. Henkel, H. Cathodic production of hydrogen peroxide. German Patent 266516 (1913).

  292. Oloman, C. & Watkinson, A. P. The electroreduction of oxygen to hydrogen peroxide on fluidized cathodes. Can. J. Chem. Eng. 53, 268–273 (1975).

    CAS  Google Scholar 

  293. Balej, J., Balogh, K. & Špalek, O. Possibility of producing hydrogen peroxide by cathodic reduction of oxygen. Chem. Zvesti 30, 384–392 (1976).

    CAS  Google Scholar 

  294. McIntyre, J. A. & Phillips, R. F. Method for electrolytic production of alkaline peroxide solutions. US Patent 4384931A (1984).

  295. Fuku, K., Miyase, Y., Miseki, Y., Gunji, T. & Sayama, K. WO3/BiVO4 photoanode coated with mesoporous al2o3 layer for oxidative production of hydrogen peroxide from water with high selectivity. RSC Adv. 7, 47619–47623 (2017).

    CAS  Google Scholar 

  296. Kornienko, V. L., Kolyagin, G. A., Kornienko, G. V., Parfenov, V. A. & Ponomarenko, I. V. Electrosynthesis of H2O2 from O2 in a gas-diffusion electrode based on mesostructured carbon CMK-3. Russ. J. Electrochem. 54, 258–264 (2018).

    CAS  Google Scholar 

  297. Thostenson, J. O. et al. Enhanced H2O2 production at reductive potentials from oxidized boron-doped ultrananocrystalline diamond electrodes. ACS Appl. Mater. Interfaces 9, 16610–16619 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  298. Antonin, V. S. et al. Synthesis and characterization of nanostructured electrocatalysts based on nickel and tin for hydrogen peroxide electrogeneration. Electrochim. Acta 109, 245–251 (2013).

    CAS  Google Scholar 

  299. Pinheiro, V. S. et al. Ceria high aspect ratio nanostructures supported on carbon for hydrogen peroxide jelectrogeneration. Electrochim. Acta 259, 865–872 (2018).

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported as part of the CO2-based electrosynthesis of ethylene oxide (CO2EXIDE) project, which receives funding from the European Union’s Horizon 2020 research and innovation programme in co-operation with the sustainable process industry through resource and energy efficiency (SPIRE) initiative under grant agreement no. 768789.

Author information

Authors and Affiliations

Authors

Contributions

S.C.P. contributed to the writing, research and editing of this manuscript. All other authors contributed to the discussion and reviewing/editing of the manuscript before submission.

Corresponding author

Correspondence to Samuel C. Perry.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perry, S.C., Pangotra, D., Vieira, L. et al. Electrochemical synthesis of hydrogen peroxide from water and oxygen. Nat Rev Chem 3, 442–458 (2019). https://doi.org/10.1038/s41570-019-0110-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-019-0110-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing