1932

Abstract

Surface plasmon resonance microscopy and imaging are optical methods that enable observation and quantification of interactions of nano- and microscale objects near a metal surface in a temporally and spatially resolved manner. This review describes the principles of surface plasmon resonance microscopy and imaging and discusses recent advances in these methods, in particular, in optical platforms and functional coatings. In addition, the biological applications of these methods are reviewed. These include the detection of a broad variety of analytes (nucleic acids, proteins, bacteria), the investigation of biological systems (bacteria and cells), and biomolecular interactions (drug–receptor, protein–protein, protein–DNA, protein–cell).

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061318-115106
2019-06-12
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ac/12/1/annurev-anchem-061318-115106.html?itemId=/content/journals/10.1146/annurev-anchem-061318-115106&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Nirschl M, Reuter F, Voros J 2011. Review of transducer principles for label-free biomolecular interaction analysis. Biosensors 1:70–92
    [Google Scholar]
  2. 2.
    Gordon JG, Ernst S. 1980. Surface-plasmons as a probe of the electrochemical interface. Surf. Sci. 101:499–506
    [Google Scholar]
  3. 3.
    Nylander C, Liedberg B, Lind T 1982. Gas-detection by means of surface-plasmon resonance. Sens. Actuators 3:79–88
    [Google Scholar]
  4. 4.
    Löfås S, Malmqvist M, Rönnberg I, Stenberg E, Liedberg B, Lundstrom I 1991. Bioanalysis with surface-plasmon resonance. Sens. Actuators B 5:79–84
    [Google Scholar]
  5. 5.
    Yeatman E, Ash EA. 1987. Surface-plasmon microscopy. Electron. Lett. 23:1091–92
    [Google Scholar]
  6. 6.
    Rothenhäusler B, Knoll W. 1988. Surface-plasmon microscopy. Nature 332:615–17
    [Google Scholar]
  7. 7.
    Zeng YJ, Hu R, Wang L, Gu DY, He JN et al. 2017. Recent advances in surface plasmon resonance imaging: detection speed, sensitivity, and portability. Nanophotonics 6:1017–30
    [Google Scholar]
  8. 8.
    Wong CL, Olivo M. 2014. Surface plasmon resonance imaging sensors: a review. Plasmonics 9:809–24
    [Google Scholar]
  9. 9.
    Abbas A, Linman MJ, Cheng Q 2011. New trends in instrumental design for surface plasmon resonance-based biosensors. Biosens. Bioelectron. 26:1815–24
    [Google Scholar]
  10. 10.
    D'Agata R, Spoto G. 2013. Surface plasmon resonance imaging for nucleic acid detection. Anal. Bioanal. Chem. 405:573–84
    [Google Scholar]
  11. 11.
    Liu CJ, Hu FC, Yang W, Xu JY, Chen Y 2017. A critical review of advances in surface plasmon resonance imaging sensitivity. Trends Anal. Chem. 97:354–62
    [Google Scholar]
  12. 12.
    Puiu M, Bala C. 2016. SPR and SPR imaging: recent trends in developing nanodevices for detection and real-time monitoring of biomolecular events. Sensors 16:870
    [Google Scholar]
  13. 13.
    Scarano S, Mascini M, Turner APF, Minunni M 2010. Surface plasmon resonance imaging for affinity-based biosensors. Biosens. Bioelectron. 25:957–66
    [Google Scholar]
  14. 14.
    Maier SA. 2007. Plasmonics: Fundamentals and Applications Berlin/Heidelberg: Springer Sci. & Bus. Media
  15. 15.
    Homola J. 2006. Surface Plasmon Resonance Based Sensors Berlin/Heidelberg: Springer
  16. 16.
    Špačková B, Wróbel P, Bocková M, Homola J 2016. Optical biosensors based on plasmonic nanostructures: a review. Proc. IEEE 104:2380–408
    [Google Scholar]
  17. 17.
    Berini P. 2009. Long-range surface plasmon polaritons. Adv. Opt. Photon. 1:484–588
    [Google Scholar]
  18. 18.
    Vecchi G, Giannini V, Rivas JG 2009. Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas. Phys. Rev. B 80:201401
    [Google Scholar]
  19. 19.
    Li XK, Soler M, Ozdemir CI, Belushkin A, Yesilkoy F, Altug H 2017. Plasmonic nanohole array biosensor for label-free and real-time analysis of live cell secretion. Lab Chip 17:2208–17
    [Google Scholar]
  20. 20.
    Guo H, Guo JP. 2015. Hybrid plasmon photonic crystal resonance grating for integrated spectrometer biosensor. Opt. Lett. 40:249–52
    [Google Scholar]
  21. 21.
    Seiler ST, Rich IS, Lindquist NC 2016. Direct spectral imaging of plasmonic nanohole arrays for real-time sensing. Nanotechnology 27:184001
    [Google Scholar]
  22. 22.
    Rampazzi S, Danese G, Leporati F, Marabelli F 2016. A localized surface plasmon resonance-based portable instrument for quick on-site biomolecular detection. IEEE Trans. Instrum. Meas. 65:317–27
    [Google Scholar]
  23. 23.
    Schasfoort RBM. 2017. Examples of SPR imaging instruments. Handbook of Surface Plasmon Resonance RBM Schasfoort 89–97 Cambridge, UK: R. Soc. Chem. , 2nd ed..
    [Google Scholar]
  24. 24.
    Corso AJ, Zuccon S, Zuppella P, Pelizzo MG 2015. Flexible SPR system able to switch between Kretschmann and SPRi. Proc. SPIE 9506 Opt. Sens., 95061D. https://doi.org/10.1117/12.2181223
    [Crossref] [Google Scholar]
  25. 25.
    Shao YH, Li Y, Gu DY, Zhang K, Qu JL et al. 2013. Wavelength-multiplexing phase-sensitive surface plasmon imaging sensor. Opt. Lett. 38:1370–72
    [Google Scholar]
  26. 26.
    Zeng YJ, Wang L, Wu SY, He JA, Qu JL et al. 2017. Wavelength-scanning SPR imaging sensors based on an acousto-optic tunable filter and a white light laser. Sensors 17:90
    [Google Scholar]
  27. 27.
    Laplatine L, Leroy L, Calemczuk R, Baganizi D, Marche PN et al. 2014. Spatial resolution in prism-based surface plasmon resonance microscopy. Opt. Expr. 22:22771–85
    [Google Scholar]
  28. 28.
    Bottazzi B, Fornasari L, Frangolho A, Giudicatti S, Mantovani A et al. 2014. Multiplexed label-free optical biosensor for medical diagnostics. J. Biomed. Opt. 19:017006
    [Google Scholar]
  29. 29.
    Gomez-Cruz J, Nair S, Manjarrez-Hernandez A, Gavilanes-Parra S, Ascanio G, Escobedo C 2018. Cost-effective flow-through nanohole array-based biosensing platform for the label-free detection of uropathogenic E. coli in real time. Biosens. Bioelectron. 106:105–10
    [Google Scholar]
  30. 30.
    Guner H, Ozgur E, Kokturk G, Celik M, Esen E et al. 2017. A smartphone based surface plasmon resonance imaging (SPRi) platform for on-site biodetection. Sens. Actuators B 239:571–77
    [Google Scholar]
  31. 31.
    Lee KL, You ML, Tsai CH, Lin EH, Hsieh SY et al. 2016. Nanoplasmonic biochips for rapid label-free detection of imidacloprid pesticides with a smartphone. Biosens. Bioelectron. 75:88–95
    [Google Scholar]
  32. 32.
    Cappi G, Spiga FM, Moncada Y, Ferretti A, Beyeler M et al. 2015. Label-free detection of tobramycin in serum by transmission-localized surface plasmon resonance. Anal. Chem. 87:5278–85
    [Google Scholar]
  33. 33.
    Ruemmele JA, Hall WP, Ruvuna LK, Van Duyne RP 2013. A localized surface plasmon resonance imaging instrument for multiplexed biosensing. Anal. Chem. 85:4560–66
    [Google Scholar]
  34. 34.
    Lee KL, Tsai JT, Chih MJ, Yao YD, Wei PK 2013. High-throughput label-free detection using a gold nanoslit array with 2-D spectral images and spectral integration methods. IEEE J. Sel. Top. Quantum Electron. 19: https://doi.org/10.1109/JSTQE.2012.2234444
    [Crossref] [Google Scholar]
  35. 35.
    Banville FA, Moreau J, Sarkar M, Besbes M, Canva M, Charette PG 2018. Spatial resolution versus contrast trade-off enhancement in high-resolution surface plasmon resonance imaging (SPRI) by metal surface nanostructure design. Opt. Expr. 26:10616–30
    [Google Scholar]
  36. 36.
    Banville FA, Söllradl T, Zermatten PJ, Grandbois M, Charette PG 2015. Improved resolution in SPR and MCWG microscopy by combining images acquired with distinct mode propagation directions. Opt. Lett. 40:1165–68
    [Google Scholar]
  37. 37.
    Son T, Lee C, Seo J, Choi IH, Kim D 2018. Surface plasmon microscopy by spatial light switching for label-free imaging with enhanced resolution. Opt. Lett. 43:959–62
    [Google Scholar]
  38. 38.
    Tan HM, Pechprasarn S, Zhang J, Pitter MC, Somekh MG 2016. High resolution quantitative angle-scanning widefield surface plasmon microscopy. Sci. Rep. 6:20195
    [Google Scholar]
  39. 39.
    Watanabe K, Matsuura K, Kawata F, Nagata K, Ning J, Kano H 2012. Scanning and non-scanning surface plasmon microscopy to observe cell adhesion sites. Biomed. Opt. Expr. 3:354–59
    [Google Scholar]
  40. 40.
    Berguiga L, Streppa L, Boyer-Provera E, Martinez-Torres C, Schaeffer L et al. 2016. Time-lapse scanning surface plasmon microscopy of living adherent cells with a radially polarized beam. Appl. Opt. 55:1216–27
    [Google Scholar]
  41. 41.
    Mandracchia B, Pagliarulo V, Paturzo M, Ferraro P 2016. Through-the-objective holographic surface plasmon resonance imaging for quantitative measurement of thin film thickness. Proc. SPIE 9718, Quant. Phase Imaging 2, 97182W. https://doi.org/10.1117/12.2218419
    [Crossref] [Google Scholar]
  42. 42.
    Zhang J, Dai S, Ma C, Di J, Zhao J 2017. Common-path digital holographic microscopy for near-field phase imaging based on surface plasmon resonance. Appl. Opt. 56:3223–28
    [Google Scholar]
  43. 43.
    Zhang J, Dai S, Ma C, Di J, Zhao J 2017. Compact surface plasmon holographic microscopy for near-field film mapping. Opt. Lett. 42:3462–65
    [Google Scholar]
  44. 44.
    Gao YK, Xin ZM, Gan QQ, Cheng XH, Bartoli FJ 2013. Plasmonic interferometers for label-free multiplexed sensing. Opt. Expr. 21:5859–71
    [Google Scholar]
  45. 45.
    Chen PY, Chung MT, McHugh W, Nidetz R, Li YW et al. 2015. Multiplex serum cytokine immunoassay using nanoplasmonic biosensor microarrays. ACS Nano 9:4173–81
    [Google Scholar]
  46. 46.
    Soler M, Belushkin A, Cavallini A, Kebbi-Beghdadi C, Greub G, Altug H 2017. Multiplexed nanoplasmonic biosensor for one-step simultaneous detection of Chlamydia trachomatis and Neisseria gonorrhoeae in urine. Biosens. Bioelectron. 94:560–67
    [Google Scholar]
  47. 47.
    Liu XJ, Zhang QQ, Tu Y, Zhao WF, Gai HW 2013. Single gold nanoparticle localized surface plasmon resonance spectral imaging for quantifying binding constant of carbohydrate-protein interaction. Anal. Chem. 85:11851–57
    [Google Scholar]
  48. 48.
    Schasfoort RBM. 2017. Handbook of Surface Plasmon Resonance Cambridge, UK: R. Soc. Chem. , 2nd ed..
  49. 49.
    Romanov V, Davidoff SN, Miles AR, Grainger DW, Gale BK, Brooks BD 2014. A critical comparison of protein microarray fabrication technologies. Analyst 139:1303–26
    [Google Scholar]
  50. 50.
    Vaisocherova H, Brynda E, Homola J 2015. Functionalizable low-fouling coatings for label-free biosensing in complex biological media: advances and applications. Anal. Bioanal. Chem. 407:3927–53
    [Google Scholar]
  51. 51.
    Syal K, Iriya R, Yang YZ, Yu H, Wang SP et al. 2016. Antimicrobial susceptibility test with plasmonic imaging and tracking of single bacterial motions on nanometer scale. ACS Nano 10:845–52
    [Google Scholar]
  52. 52.
    Bulard E, Bouchet-Spinelli A, Chaud P, Roget A, Calemczuk R et al. 2015. Carbohydrates as new probes for the identification of closely related Escherichia coli strains using surface plasmon resonance imaging. Anal. Chem. 87:1804–11
    [Google Scholar]
  53. 53.
    Simon L, Lautner G, Gyurcsanyi RE 2015. Reliable microspotting methodology for peptide-nucleic acid layers with high hybridization efficiency on gold SPR imaging chips. Anal. Methods 7:6077–82
    [Google Scholar]
  54. 54.
    Nand A, Singh V, Perez JB, Tyagi D, Cheng ZQ, Zhu JS 2014. In situ protein microarrays capable of real-time kinetics analysis based on surface plasmon resonance imaging. Anal. Biochem. 464:30–35
    [Google Scholar]
  55. 55.
    Manuel G, Lupták A, Corn RM 2016. A microwell-printing fabrication strategy for the on-chip templated biosynthesis of protein microarrays for surface plasmon resonance imaging. J. Phys. Chem. C 120:20984–90
    [Google Scholar]
  56. 56.
    Kruis IC, Lowik D, Boelens WC, van Hest JCM, Pruijn GJM 2016. An integrated, peptide-based approach to site-specific protein immobilization for detection of biomolecular interactions. Analyst 141:5321–28
    [Google Scholar]
  57. 57.
    Wood JB, Szyndler MW, Halpern AR, Cho K, Corn RM 2013. Fabrication of DNA microarrays on polydopamine-modified gold thin films for SPR imaging measurements. Langmuir 29:10868–73
    [Google Scholar]
  58. 58.
    Belushkin A, Yesilkoy F, Altug H 2018. Nanoparticle-enhanced plasmonic biosensor for digital biomarker detection in a microarray. ACS Nano 12:4453–61
    [Google Scholar]
  59. 59.
    Escobedo C, Chou YW, Rahman M, Duan XB, Gordon R et al. 2013. Quantification of ovarian cancer markers with integrated microfluidic concentration gradient and imaging nanohole surface plasmon resonance. Analyst 138:1450–58
    [Google Scholar]
  60. 60.
    Hu WH, Chen HM, Shi ZZ, Yu L 2014. Dual signal amplification of surface plasmon resonance imaging for sensitive immunoassay of tumor marker. Anal. Biochem. 453:16–21
    [Google Scholar]
  61. 61.
    Hu WH, He GL, Zhang HH, Wu XS, Li JL et al. 2014. Polydopamine-functionalization of graphene oxide to enable dual signal amplification for sensitive surface plasmon resonance imaging detection of biomarker. Anal. Chem. 86:4488–93
    [Google Scholar]
  62. 62.
    Liu CJ, Wang X, Xu JY, Chen Y 2016. Chemical strategy to stepwise amplification of signals in surface plasmon resonance imaging detection of saccharides and glycoconjugates. Anal. Chem. 88:10011–18
    [Google Scholar]
  63. 63.
    Monteiro JP, Predabon SM, Bonafé EG, Martins AF, Brolo AG et al. 2017. SPR platform based on image acquisition for HER2 antigen detection. Nanotechnology 28: https://doi.org/10.1088/1361-6528/28/4/045206
    [Crossref] [Google Scholar]
  64. 64.
    Gorodkiewicz E, Sienczyk M, Regulska E, Grzywa R, Pietrusewicz E et al. 2012. Surface plasmon resonance imaging biosensor for cathepsin G based on a potent inhibitor: Development and applications. Anal. Biochem. 423:218–23
    [Google Scholar]
  65. 65.
    Grzywa R, Gorodkiewicz E, Burchacka E, Lesner A, Laudanski P et al. 2014. Determination of cathepsin G in endometrial tissue using a surface plasmon resonance imaging biosensor with tailored phosphonic inhibitor. Eur. J. Obstet. Gynecol. Reprod. Biol. 182:38–42
    [Google Scholar]
  66. 66.
    Sankiewicz A, Romanowicz L, Laudanski P, Zelazowska-Rutkowska B, Puzan B et al. 2016. SPR imaging biosensor for determination of laminin-5 as a potential cancer marker in biological material. Anal. Bioanal. Chem. 408:5269–76
    [Google Scholar]
  67. 67.
    Sankiewicz A, Lukaszewski Z, Trojanowska K, Gorodkiewicz E 2016. Determination of collagen type IV by Surface Plasmon Resonance Imaging using a specific biosensor. Anal. Biochem. 515:40–46
    [Google Scholar]
  68. 68.
    Tokarzewicz A, Romanowicz L, Sveklo I, Gorodkiewicz E 2016. The development of a matrix metalloproteinase-1 biosensor based on the surface plasmon resonance imaging technique. Anal. Methods 8:6428–35
    [Google Scholar]
  69. 69.
    Hendriks J, Stojanovic I, Schasfoort RBM, Saris DBF, Kaiperien M 2018. Nanoparticle enhancement cascade for sensitive multiplex measurements of biomarkers in complex fluids with surface plasmon resonance imaging. Anal. Chem. 90:6563–71
    [Google Scholar]
  70. 70.
    Oh BR, Chen P, Nidetz R, McHugh W, Fu J et al. 2016. Multiplexed nanoplasmonic temporal profiling of T-cell response under immunomodulatory agent exposure. ACS Sens 1:941–48
    [Google Scholar]
  71. 71.
    Rosman C, Prasad J, Neiser A, Henkel A, Edgar J, Sonnichsen C 2013. Multiplexed plasmon sensor for rapid label-free analyte detection. Nano Lett 13:3243–47
    [Google Scholar]
  72. 72.
    Hu FC, Xu JY, Chen Y 2017. Surface plasmon resonance imaging detection of sub-femtomolar microRNA. Anal. Chem. 89:10071–77
    [Google Scholar]
  73. 73.
    Vaisocherová H, Šipová H, Visová I, Bocková M, Springer T et al. 2015. Rapid and sensitive detection of multiple microRNAs in cell lysate by low-fouling surface plasmon resonance biosensor. Biosens. Bioelectron. 70:226–31
    [Google Scholar]
  74. 74.
    Mariani S, Ermini ML, Scarano S, Bellissima F, Bonini M et al. 2013. Improving surface plasmon resonance imaging of DNA by creating new gold and silver based surface nanostructures. Microchim. Acta 180:1093–99
    [Google Scholar]
  75. 75.
    Wu JL, Huang Y, Bian XT, Li DD, Cheng Q, Ding SJ 2016. Biosensing of BCR/ABL fusion gene using an intensity-interrogation surface plasmon resonance imaging system. Opt. Commun. 377:24–32
    [Google Scholar]
  76. 76.
    Foudeh AM, Daoud JT, Faucher SP, Veres T, Tabrizian M 2014. Sub-femtomole detection of 16s rRNA from Legionella pneumophila using surface plasmon resonance imaging. Biosens. Bioelectron. 52:129–35
    [Google Scholar]
  77. 77.
    Melaine F, Tabrizian M. 2016. Functionalized gold nanoparticles for surface plasmon resonance detection of Legionella pneumophila 16s rRNA. IEEE Sens https://doi.org/10.1109/ICSENS.2016.7808696
    [Crossref] [Google Scholar]
  78. 78.
    Melaine F, Saad M, Faucher S, Tabrizian M 2017. Selective and high dynamic range assay format for multiplex detection of pathogenic Pseudomonas aeruginosa, Salmonella typhimurium, and Legionella pneumophila RNAs using surface plasmon resonance imaging. Anal. Chem. 89:7802–7
    [Google Scholar]
  79. 79.
    Aura AM, D'Agata R, Spoto G 2017. Ultrasensitive detection of Staphylococcus aureus and Listeria monocytogenes genomic DNA by nanoparticle-enhanced surface plasmon resonance imaging. Chem. Select 2:7024–30
    [Google Scholar]
  80. 80.
    Bouguelia S, Roupioz Y, Slimani S, Mondani L, Casabona MG et al. 2013. On-chip microbial culture for the specific detection of very low levels of bacteria. Lab Chip 13:4024–32
    [Google Scholar]
  81. 81.
    Mondani L, Roupioz Y, Delannoy S, Fach P, Livache T 2014. Simultaneous enrichment and optical detection of low levels of stressed Escherichia coli O157:H7 in food matrices. J. Appl. Microbiol. 117:537–46
    [Google Scholar]
  82. 82.
    Morlay A, Piat F, Mercey T, Roupioz Y 2016. Immunological detection of Cronobacter and Salmonella in powdered infant formula by plasmonic label-free assay. Lett. Appl. Microbiol. 62:459–65
    [Google Scholar]
  83. 83.
    Yodmongkol S, Thaweboon S, Thaweboon B, Puttharugsa C, Sutapun B et al. 2016. Application of surface plasmon resonance biosensor for the detection of Candida albicans. Jpn. J. Appl. Phys 55:02BE03
    [Google Scholar]
  84. 84.
    Shpacovitch V, Temchura V, Matrosovich M, Hamacher J, Skolnik J et al. 2015. Application of surface plasmon resonance imaging technique for the detection of single spherical biological submicrometer particles. Anal. Biochem. 486:62–69
    [Google Scholar]
  85. 85.
    Zhu L, Wang K, Cui J, Liu H, Bu XL et al. 2014. Label-free quantitative detection of tumor-derived exosomes through surface plasmon resonance imaging. Anal. Chem. 86:8857–64
    [Google Scholar]
  86. 86.
    Syal K, Wang W, Shan XN, Wang SP, Chen HY, Tao NJ 2015. Plasmonic imaging of protein interactions with single bacterial cells. Biosens. Bioelectron. 63:131–37
    [Google Scholar]
  87. 87.
    Abadian PN, Tandogan N, Jamieson JJ, Goluch ED 2014. Using surface plasmon resonance imaging to study bacterial biofilms. Biomicrofluidics 8:021804
    [Google Scholar]
  88. 88.
    Abadian PN, Goluch ED. 2015. Surface plasmon resonance imaging (SPRi) for multiplexed evaluation of bacterial adhesion onto surface coatings. Anal. Methods 7:115–22
    [Google Scholar]
  89. 89.
    Mallevre F, Templier V, Mathey R, Leroy L, Roupioz Y et al. 2016. Real-time toxicity testing of silver nanoparticles to Salmonella Enteritidis using surface plasmon resonance imaging: a proof of concept. NanoImpact 1:55–59
    [Google Scholar]
  90. 90.
    Streppa L, Berguiga L, Provera EB, Ratti F, Goillot E et al. 2016. Tracking in real time the crawling dynamics of adherent living cells with a high resolution surface plasmon microscope. Proc. SPIE 9724, Plasm. Biol. Med. 13, 97240G. https://doi.org/10.1117/12.2211331
    [Crossref] [Google Scholar]
  91. 91.
    Tu L, Li XZ, Bian ST, Yu YT, Li JX et al. 2017. Label-free and real-time monitoring of single cell attachment on template-stripped plasmonic nano-holes. Sci. Rep. 7:11020
    [Google Scholar]
  92. 92.
    Yang YZ, Yu H, Shan XN, Wang W, Liu XW et al. 2015. Label-free tracking of single organelle transportation in cells with nanometer precision using a plasmonic imaging technique. Small 11:2878–84
    [Google Scholar]
  93. 93.
    Shinohara H, Sakai Y, Mir TA 2013. Real-time monitoring of intracellular signal transduction in PC12 cells by two-dimensional surface plasmon resonance imager. Anal. Biochem. 441:185–89
    [Google Scholar]
  94. 94.
    Mir TA, Shinohara H. 2013. Two-dimensional surface plasmon resonance imager: an approach to study neuronal differentiation. Anal. Biochem. 443:46–51
    [Google Scholar]
  95. 95.
    Zhang LL, Chen X, Wei HT, Li H, Sun JH et al. 2014. Development of dual-channel surface plasmon resonance imaging system applied to living tumour cell analyses. IET Micro Nano Lett 9:382–85
    [Google Scholar]
  96. 96.
    Zhang LL, Chen X, Du Y, Zhang Q, Li H et al. 2015. A surface plasmon resonance imaging system for the stimulated living cell analysis. Optoelectron. Lett. 11:77–80
    [Google Scholar]
  97. 97.
    Zhang FN, Wang SP, Yin LL, Yang YZ, Guan Y et al. 2015. Quantification of epidermal growth factor receptor expression level and binding kinetics on cell surfaces by surface plasmon resonance imaging. Anal. Chem. 87:9960–65
    [Google Scholar]
  98. 98.
    Xiong B, Huang ZR, Zou HY, Qiao CY, He Y, Yeung ES 2017. Single plasmonic nanosprings for visualizing reactive-oxygen-species-activated localized mechanical force transduction in live cells. ACS Nano 11:541–48
    [Google Scholar]
  99. 99.
    Berthuy OI, Blum LJ, Marquette CA 2016. Cancer-cells on chip for label-free detection of secreted molecules. Biosensors 6:2
    [Google Scholar]
  100. 100.
    Raghu D, Christodoulides JA, Delehanty JB, Byers JM, Raphael MP 2015. A label-free technique for the spatio-temporal imaging of single cell secretions. J. Vis. Exp. 105:53120
    [Google Scholar]
  101. 101.
    Li SP, Yang M, Zhou WF, Johnston TG, Wang R, Zhu JS 2015. Dextran hydrogel coated surface plasmon resonance imaging (SPRi) sensor for sensitive and label-free detection of small molecule drugs. Appl. Surf. Sci. 355:570–76
    [Google Scholar]
  102. 102.
    Zhou WF, Yang M, Li SP, Zhu JS 2018. Surface plasmon resonance imaging validation of small molecule drugs binding on target protein microarrays. Appl. Surf. Sci. 450:328–35
    [Google Scholar]
  103. 103.
    Pillet F, Sanchez A, Formosa C, Séverac M, Trévisiol E et al. 2013. Dendrimer functionalization of gold surface improves the measurement of protein-DNA interactions by surface plasmon resonance imaging. Biosens. Bioelectron. 43:148–54
    [Google Scholar]
  104. 104.
    Rubio MJ, Svobodová M, Mairal T, O'Sullivan CK 2016. Surface plasmon resonance imaging (SPRi) for analysis of DNA aptamer: β-conglutin interactions. Methods 97:20–26
    [Google Scholar]
  105. 105.
    Miyachi K, Wakao M, Suda Y 2015. Syntheses of chondroitin sulfate tetrasaccharide structures containing 4,6-disulfate patterns and analysis of their interaction with glycosaminoglycan-binding protein. Bioorg. Med. Chem. Lett. 25:1552–55
    [Google Scholar]
  106. 106.
    Zhao S, Yang M, Zhou WF, Zhang BC, Cheng ZQ et al. 2017. Kinetic and high-throughput profiling of epigenetic interactions by 3D-carbene chip-based surface plasmon resonance imaging technology. PNAS 114:E7245–54
    [Google Scholar]
  107. 107.
    Wang W, Yin LL, Gonzalez-Malerva L, Wang SP, Yu XB et al. 2014. In situ drug-receptor binding kinetics in single cells: a quantitative label-free study of anti-tumor drug resistance. Sci. Rep. 4:6609
    [Google Scholar]
  108. 108.
    Yin LL, Yang YZ, Wang SP, Wang W, Zhang ST, Tao NJ 2015. Measuring binding kinetics of antibody-conjugated gold nanoparticles with intact cells. Small 11:3782–88
    [Google Scholar]
  109. 109.
    Cheng XR, Hau BYH, Veloso AJ, Martic S, Kraatz HB, Kerman K 2013. Surface plasmon resonance imaging of amyloid-β aggregation kinetics in the presence of epigallocatechin gallate and metals. Anal. Chem. 85:2049–55
    [Google Scholar]
  110. 110.
    Li MX, Xu CH, Zhang N, Qian GS, Zhao W et al. 2018. Exploration of the kinetics of toehold mediated strand displacement via plasmon rulers. ACS Nano 12:3341–50
    [Google Scholar]
  111. 111.
    Qian GS, Zhang TT, Zhao W, Xu JJ, Chen HY 2017. Single-molecule imaging of telomerase activity via linear plasmon rulers. Chem. Commun. 53:4710–13
    [Google Scholar]
  112. 112.
    Jia WC, Li H, Wilkop T, Liu XH, Yu XD et al. 2018. Silver decahedral nanoparticles empowered SPR imaging-SELEX for high throughput screening of aptamers with real-time assessment. Biosens. Bioelectron. 109:206–13
    [Google Scholar]
  113. 113.
    Cetin AE, Iyidogan P, Hayashi Y, Wallen M, Vijayan K et al. 2018. Plasmonic sensor could enable label-free DNA sequencing. ACS Sens 3:561–68
    [Google Scholar]
  114. 114.
    Yu H, Shan XN, Wang SP, Chen HY, Tao NJ 2014. Plasmonic imaging and detection of single DNA molecules. ACS Nano 8:3427–33
    [Google Scholar]
  115. 115.
    Cho K, Fasoli JB, Yoshimatsu K, Shea KJ, Corn RM 2015. Measuring melittin uptake into hydrogel nanoparticles with near-infrared single nanoparticle surface plasmon resonance microscopy. Anal. Chem. 87:4973–79
    [Google Scholar]
  116. 116.
    Maley AM, Terada Y, Onogi S, Shea KJ, Miura Y, Corn RM 2016. Measuring protein binding to individual hydrogel nanoparticles with single-nanoparticle surface plasmon resonance imaging microscopy. J. Phys. Chem. C 120:16843–49
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-061318-115106
Loading
/content/journals/10.1146/annurev-anchem-061318-115106
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error