1932

Abstract

Electrochemical measurements of neurotransmitters provide insight into the dynamics of neurotransmission. In this review, we describe the development of electrochemical measurements of neurotransmitters and how they started with extrasynaptic measurements but now are pushing toward synaptic measurements. Traditionally, biosensors or fast-scan cyclic voltammetry have monitored extrasynaptic levels of neurotransmitters, such as dopamine, serotonin, adenosine, glutamate, and acetylcholine. Amperometry and electrochemical cytometry techniques have revealed mechanisms of exocytosis, suggesting partial release. Advances in nanoelectrodes now allow spatially resolved, electrochemical measurements in a synapse, which is only 20–100 nm wide. Synaptic measurements of dopamine and acetylcholine have been made. In this article, electrochemical measurements are also compared to optical imaging and mass spectrometry measurements, and while these other techniques provide enhanced spatial or chemical information, electrochemistry is best at monitoring real-time neurotransmission. Future challenges include combining electrochemistry with these other techniques in order to facilitate multisite and multianalyte monitoring.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061318-115434
2019-06-12
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ac/12/1/annurev-anchem-061318-115434.html?itemId=/content/journals/10.1146/annurev-anchem-061318-115434&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Eroglu C, Barres BA 2015. Regulation of synaptic connectivity by glia. Nature 468:7321223–31
    [Google Scholar]
  2. 2.
    Südhof TC 2012. The presynaptic active zone. Neuron 75:111–25
    [Google Scholar]
  3. 3.
    Roth G, Dicke U 2005. Evolution of the brain and intelligence. Trends Cogn. Sci. 9:5250–57
    [Google Scholar]
  4. 4.
    Rossi DJ, Hamann M 1998. Spillover-mediated transmission at inhibitory synapses promoted by high affinity α6 subunit GABAA receptors and glomerular geometry. Neuron 20:4783–95
    [Google Scholar]
  5. 5.
    Trueta C, Méndez B, De-Miguel FF 2003. Somatic exocytosis of serotonin mediated by L-type calcium channels in cultured leech neurones. J. Physiol. 547:2405–16
    [Google Scholar]
  6. 6.
    Ford CP, Gantz SC, Phillips PEM, Williams JT 2010. Control of extracellular dopamine at dendrite and axon terminals. J. Neurosci. 30:206975–83
    [Google Scholar]
  7. 7.
    Jaquins-Gerstl A, Michael AC 2015. A review of the effects of FSCV and microdialysis measurements on dopamine release in the surrounding tissue. Analyst 140:113696–708
    [Google Scholar]
  8. 8.
    Cans AS, Wittenberg N, Eves D, Karlsson R, Karlsson A et al. 2003. Amperometric detection of exocytosis in an artificial synapse. Anal. Chem. 75:164168–75
    [Google Scholar]
  9. 9.
    Li Y-T, Zhang S-H, Wang L, Xiao R-R, Liu W et al. 2014. Nanoelectrode for amperometric monitoring of individual vesicular exocytosis inside single synapses. Angew. Chem. Int. Ed. 53:4612456–60
    [Google Scholar]
  10. 10.
    Huffman ML, Venton BJ 2009. Carbon-fiber microelectrodes for in vivo applications. Analyst 134:118–24
    [Google Scholar]
  11. 11.
    Bath BD, Michael DJ, Trafton BJ, Joseph JD, Runnels PL, Wightman RM 2000. Subsecond adsorption and desorption of dopamine at carbon-fiber microelectrodes. Anal. Chem. 72:245994–6002
    [Google Scholar]
  12. 12.
    Takmakov P, Zachek MK, Keithley RB, Walsh PL, Donley C et al. 2010. Carbon microelectrodes with a renewable surface. Anal. Chem. 82:52020–28
    [Google Scholar]
  13. 13.
    Keithley RB, Takmakov P, Bucher ES, Belle AM, Owesson-White CA et al. 2011. Higher sensitivity dopamine measurements with faster-scan cyclic voltammetry. Anal. Chem. 83:93563–71
    [Google Scholar]
  14. 14.
    Puthongkham P, Yang C, Venton BJ 2018. Carbon nanohorn-modified carbon fiber microelectrodes for dopamine detection. Electroanalysis 30:61073–81
    [Google Scholar]
  15. 15.
    Guitchounts G, Markowitz JE, Liberti WA, Gardner TJ 2013. A carbon-fiber electrode array for long-term neural recording. J. Neural Eng. 10:4046016
    [Google Scholar]
  16. 16.
    Wightman RM, Heien MLA V, Wassum KM, Sombers LA, Aragona BJ et al. 2007. Dopamine release is heterogeneous within microenvironments of the rat nucleus accumbens. Eur. J. Neurosci. 26:72046–54
    [Google Scholar]
  17. 17.
    Cacciapaglia F, Saddoris MP, Wightman RM, Carelli RM 2012. Differential dopamine release dynamics in the nucleus accumbens core and shell track distinct aspects of goal-directed behavior for sucrose. Neuropharmacology 62:5–62050–56
    [Google Scholar]
  18. 18.
    Fox ME, Mikhailova MA, Bass CE, Takmakov P, Gainetdinov RR et al. 2016. Cross-hemispheric dopamine projections have functional significance. PNAS 113:256985–90
    [Google Scholar]
  19. 19.
    Adamantidis AR, Tsai H-C, Boutrel B, Zhang F, Stuber GD et al. 2011. Optogenetic interrogation of dopaminergic modulation of the multiple phases of reward-seeking behavior. J. Neurosci. 31:3010829–35
    [Google Scholar]
  20. 20.
    Wang KH, Penmatsa A, Gouaux E 2015. Neurotransmitter and psychostimulant recognition by the dopamine transporter. Nature 521:7552322–27
    [Google Scholar]
  21. 21.
    Covey DP, Bunner KD, Schuweiler DR, Cheer JF, Garris PA 2016. Amphetamine elevates nucleus accumbens dopamine via an action potential-dependent mechanism that is modulated by endocannabinoids. Eur. J. Neurosci. 43:121661–73
    [Google Scholar]
  22. 22.
    Venton BJ, Seipel AT, Phillips PE, Wetsel WC, Gitler D et al. 2006. Cocaine increases dopamine release by mobilization of a synapsin-dependent reserve pool. J Neurosci 26:123206–9
    [Google Scholar]
  23. 23.
    Siciliano CA, Ferris MJ, Jones SR 2015. Cocaine self-administration disrupts mesolimbic dopamine circuit function and attenuates dopaminergic responsiveness to cocaine. Eur. J. Neurosci. 42:42091–96
    [Google Scholar]
  24. 24.
    Cameron CM, Wightman RM, Carelli RM 2016. One month of cocaine abstinence potentiates rapid dopamine signaling in the nucleus accumbens core. Neuropharmacology 111:223–30
    [Google Scholar]
  25. 25.
    Vander Weele CM, Porter-Stransky KA, Mabrouk OS, Lovic V, Singer BF et al. 2014. Rapid dopamine transmission within the nucleus accumbens: dramatic difference between morphine and oxycodone delivery. Eur. J. Neurosci. 40:73041–54
    [Google Scholar]
  26. 26.
    Fox ME, Rodeberg NT, Wightman RM 2017. Reciprocal catecholamine changes during opiate exposure and withdrawal. Neuropsychopharmacology 42:3671–81
    [Google Scholar]
  27. 27.
    Garris PA, Kilpatrick M, Bunin MA, Michael D, Walker QD, Wightman RM 1999. Dissociation of dopamine release in the nucleus accumbens from intracranial self-stimulation. Nature 398:672267–69
    [Google Scholar]
  28. 28.
    Rodeberg NT, Johnson JA, Bucher ES, Wightman RM 2016. Dopamine dynamics during continuous intracranial self-stimulation: effect of waveform on fast-scan cyclic voltammetry data. ACS Chem. Neurosci. 7:111508–18
    [Google Scholar]
  29. 29.
    Roitman MF, Stuber GD, Phillips PEM, Wightman RM, Carelli RM 2004. Dopamine operates as a subsecond modulator of food seeking. J. Neurosci. 24:61265–71
    [Google Scholar]
  30. 30.
    Shnitko TA, Robinson DL 2015. Regional variation in phasic dopamine release during alcohol and sucrose self-administration in rats. ACS Chem. Neurosci. 6:1147–54
    [Google Scholar]
  31. 31.
    Saddoris MP, Sugam JA, Stuber GD, Witten IB, Deisseroth K, Carelli RM 2015. Mesolimbic dopamine dynamically tracks, and is causally linked to, discrete aspects of value-based decision making. Biol. Psychiatry 77:10903–11
    [Google Scholar]
  32. 32.
    Fiorenza AM, Shnitko TA, Sullivan KM, Vemuru SR, Gomez-A A et al. 2018. Ethanol exposure history and alcoholic reward differentially alter dopamine release in the nucleus accumbens to a reward-predictive cue. Alcohol. Clin. Exp. Res. 42:61051–61
    [Google Scholar]
  33. 33.
    Clark JJ, Sandberg SG, Wanat MJ, Gan JO, Horne EA et al. 2010. Chronic microsensors for longitudinal, subsecond dopamine detection in behaving animals. Nat. Methods 7:2126–29
    [Google Scholar]
  34. 34.
    Hart AS, Clark JJ, Phillips PEM 2015. Dynamic shaping of dopamine signals during probabilistic Pavlovian conditioning. Neurobiol. Learn. Mem. 117:84–92
    [Google Scholar]
  35. 35.
    Takmakov P, McKinney CJ, Carelli RM, Wightman RM 2011. Instrumentation for fast-scan cyclic voltammetry combined with electrophysiology for behavioral experiments in freely moving animals. Rev. Sci. Instrum. 82:7074302
    [Google Scholar]
  36. 36.
    Belle AM, Owesson-White C, Herr NR, Carelli RM, Wightman RM 2013. Controlled iontophoresis coupled with fast-scan cyclic voltammetry/electrophysiology in awake, freely moving animals. ACS Chem. Neurosci. 4:5761–71
    [Google Scholar]
  37. 37.
    Owesson-White C, Belle AM, Herr NR, Peele JL, Gowrishankar P et al. 2016. Cue-evoked dopamine release rapidly modulates D2 neurons in the nucleus accumbens during motivated behavior. J. Neurosci. 36:226011–21
    [Google Scholar]
  38. 38.
    Onaka T, Yagi K 1998. Role of noradrenergic projections to the bed nucleus of the stria terminalis in neuroendocrine and behavioral responses to fear-related stimuli in rats. Brain Res 788:1–2287–93
    [Google Scholar]
  39. 39.
    Park J, Kile BM, Wightman RM 2009. In vivo voltammetric monitoring of norepinephrine release in the rat ventral bed nucleus of the stria terminalis and anteroventral thalamic nucleus. Eur. J. Neurosci. 30:112121–33
    [Google Scholar]
  40. 40.
    Robertson SD, Plummer NW, de Marchena J, Jensen P 2013. Developmental origins of central nor-epinephrine neuron diversity. Nat. Neurosci. 16:81016–23
    [Google Scholar]
  41. 41.
    Park J, Takmakov P, Wightman RM 2011. In vivo comparison of norepinephrine and dopamine release in rat brain by simultaneous measurements with fast-scan cyclic voltammetry. J. Neurochem. 119:5932–44
    [Google Scholar]
  42. 42.
    Park J, Bucher ES, Budygin EA, Wightman RM 2015. Norepinephrine and dopamine transmission in two limbic regions differentially respond to acute noxious stimulation. Pain 156:2318–27
    [Google Scholar]
  43. 43.
    Jackson BP, Wightman RM 1995. Dynamics of 5-hydroxytryptamine released from dopamine neurons in the caudate putamen of the rat. Brain Res 674:1163–66
    [Google Scholar]
  44. 44.
    Hashemi P, Dankoski EC, Petrovic J, Keithley RB, Wightman RM 2009. Voltammetric detection of 5-hydroxytryptamine release in the rat brain. Anal. Chem. 81:229462–71
    [Google Scholar]
  45. 45.
    Hashemi P, Dankoski EC, Lama R, Wood KM, Takmakov P, Wightman RM 2012. Brain dopamine and serotonin differ in regulation and its consequences. PNAS 109:2911510–15
    [Google Scholar]
  46. 46.
    Wood KM, Zeqja A, Nijhout HF, Reed MC, Best J, Hashemi P 2014. Voltammetric and mathematical evidence for dual transport mediation of serotonin clearance in vivo. J. Neurochem 130:3351–59
    [Google Scholar]
  47. 47.
    Dankoski EC, Wightman RM 2013. Monitoring serotonin signaling on a subsecond time scale. Front. Integr. Neurosci. 7:44
    [Google Scholar]
  48. 48.
    Dankoski EC, Carroll S, Wightman RM 2016. Acute selective serotonin reuptake inhibitors regulate the dorsal raphe nucleus causing amplification of terminal serotonin release. J. Neurochem. 136:61131–41
    [Google Scholar]
  49. 49.
    Samaranayake S, Abdalla A, Robke R, Nijhout HF, Reed MC et al. 2016. A voltammetric and mathematical analysis of histaminergic modulation of serotonin in the mouse hypothalamus. J. Neurochem. 138:3374–83
    [Google Scholar]
  50. 50.
    Atcherley CW, Laude ND, Parent KL, Heien ML 2013. Fast-scan controlled-adsorption voltammetry for the quantification of absolute concentrations and adsorption dynamics. Langmuir 29:4814885–92
    [Google Scholar]
  51. 51.
    Atcherley CW, Wood KM, Parent KL, Hashemi P, Heien ML 2015. The coaction of tonic and phasic dopamine dynamics. Chem. Commun. 51:122235–38
    [Google Scholar]
  52. 52.
    Abdalla A, Atcherley CW, Pathirathna P, Samaranayake S, Qiang B et al. 2017. In vivo ambient serotonin measurements at carbon-fiber microelectrodes. Anal. Chem. 89:189703–11
    [Google Scholar]
  53. 53.
    Street SE, Walsh PL, Sowa NA, Taylor-Blake B, Guillot TS et al. 2011. PAP and NT5E inhibit nociceptive neurotransmission by rapidly hydrolyzing nucleotides to adenosine. Mol. Pain 7:2780
    [Google Scholar]
  54. 54.
    Nguyen MD, Lee ST, Ross AE, Ryals M, Choudhry VI, Venton BJ 2014. Characterization of spontaneous, transient adenosine release in the caudate-putamen and prefrontal cortex. PLOS ONE 9:1e87165
    [Google Scholar]
  55. 55.
    Swamy BEK, Venton BJ 2007. Subsecond detection of physiological adenosine concentrations using fast-scan cyclic voltammetry. Anal. Chem. 79:2744–50
    [Google Scholar]
  56. 56.
    Wang Y, Venton BJ 2017. Correlation of transient adenosine release and oxygen changes in the caudate-putamen. J. Neurochem. 140:113–23
    [Google Scholar]
  57. 57.
    Ross AE, Venton BJ 2012. Nafion-CNT coated carbon-fiber microelectrodes for enhanced detection of adenosine. Analyst 137:133045–51
    [Google Scholar]
  58. 58.
    Spanos M, Gras-Najjar J, Letchworth JM, Sanford AL, Toups JV, Sombers LA 2013. Quantitation of hydrogen peroxide fluctuations and their modulation of dopamine dynamics in the rat dorsal striatum using fast-scan cyclic voltammetry. ACS Chem. Neurosci. 4:5782–89
    [Google Scholar]
  59. 59.
    Cechova S, Venton BJ 2008. Transient adenosine efflux in the rat caudate-putamen. J. Neurochem. 105:41253–63
    [Google Scholar]
  60. 60.
    Ross AE, Nguyen MD, Privman E, Venton BJ 2014. Mechanical stimulation evokes rapid increases in extracellular adenosine concentration in the prefrontal cortex. J. Neurochem. 130:150–60
    [Google Scholar]
  61. 61.
    Nguyen MD, Wang Y, Ganesana M, Venton BJ 2017. Transient adenosine release is modulated by NMDA and GABAB receptors. ACS Chem. Neurosci. 8:2376–85
    [Google Scholar]
  62. 62.
    Nguyen MD, Ross AE, Ryals M, Lee ST, Venton BJ 2015. Clearance of rapid adenosine release is regulated by nucleoside transporters and metabolism. Pharmacol. Res. Perspect. 3:6e00189
    [Google Scholar]
  63. 63.
    Ross AE, Venton BJ 2015. Adenosine transiently modulates stimulated dopamine release in the caudate-putamen via A1 receptors. J. Neurochem. 132:151–60
    [Google Scholar]
  64. 64.
    Ganesana M, Venton BJ 2018. Early changes in transient adenosine during cerebral ischemia and reperfusion injury. PLOS ONE 13:5e0196932
    [Google Scholar]
  65. 65.
    Tian F, Gourine AV, Huckstepp RTR, Dale N 2009. A microelectrode biosensor for real time monitoring of l-glutamate release. Anal. Chim. Acta 645:1–286–91
    [Google Scholar]
  66. 66.
    Özel RE, Ispas C, Ganesana M, Leiter JC, Andreescu S 2014. Glutamate oxidase biosensor based on mixed ceria and titania nanoparticles for the detection of glutamate in hypoxic environments. Biosens. Bioelectron. 52:397–402
    [Google Scholar]
  67. 67.
    Weltin A, Kieninger J, Urban GA 2016. Microfabricated, amperometric, enzyme-based biosensors for in vivo applications. Anal. Bioanal. Chem. 408:174503–21
    [Google Scholar]
  68. 68.
    Malvaez M, Greenfield VY, Wang AS, Yorita AM, Feng L et al. 2015. Basolateral amygdala rapid glutamate release encodes an outcome-specific representation vital for reward-predictive cues to selectively invigorate reward-seeking actions. Sci. Rep. 5:12511
    [Google Scholar]
  69. 69.
    Ryu IS, Kim J, Seo SY, Yang JH, Oh JH et al. 2018. Repeated administration of cigarette smoke condensate increases glutamate levels and behavioral sensitization. Front. Behav. Neurosci. 12:47
    [Google Scholar]
  70. 70.
    Asri R, O'Neill B, Patel JC, Siletti KA, Rice ME 2016. Detection of evoked acetylcholine release in mouse brain slices. Analyst 141:236416–21
    [Google Scholar]
  71. 71.
    Moreira FTC, Sale MGF, Di Lorenzo M 2017. Towards timely Alzheimer diagnosis: a self-powered amperometric biosensor for the neurotransmitter acetylcholine. Biosens. Bioelectron. 87:607–14
    [Google Scholar]
  72. 72.
    Parikh V,St. Peters M, Blakely RD, Sarter M 2013. The presynaptic choline transporter imposes limits on sustained cortical acetylcholine release and attention. J. Neurosci. 33:62326–37
    [Google Scholar]
  73. 73.
    Teles-Grilo Ruivo LM, Baker KL, Conway MW, Kinsley PJ, Gilmour G et al. 2017. Coordinated acetylcholine release in prefrontal cortex and hippocampus is associated with arousal and reward on distinct timescales. Cell Rep 18:4905–17
    [Google Scholar]
  74. 74.
    Ren L, Mellander LJ, Keighron J, Cans A-S, Kurczy ME et al. 2016. The evidence for open and closed exocytosis as the primary release mechanism. Q. Rev. Biophys. 49:e12
    [Google Scholar]
  75. 75.
    Leszczyszyn DJ, Jankowski JA, Viveros OH, Diliberto EJ, Near JA, Wightman RM 1990. Nicotinic receptor-mediated catecholamine secretion from individual chromaffin cells. Chemical evidence for exocytosis. J. Biol. Chem. 265:2514736–37
    [Google Scholar]
  76. 76.
    Chow RH, von Rüden L, Neher E 1992. Delay in vesicle fusion revealed by electrochemical monitoring of single secretory events in adrenal chromaffin cells. Nature 356:636460–63
    [Google Scholar]
  77. 77.
    Mellander LJ, Trouillon R, Svensson MI, Ewing AG 2012. Amperometric post spike feet reveal most exocytosis is via extended kiss-and-run fusion. Sci. Rep. 2:907
    [Google Scholar]
  78. 78.
    Amatore C, Oleinick AI, Svir I 2010. Reconstruction of aperture functions during full fusion in vesicular exocytosis of neurotransmitters. Chem. Phys. Chem. 11:1159–74
    [Google Scholar]
  79. 79.
    Staal RGW, Mosharov E V, Sulzer D 2004. Dopamine neurons release transmitter via a flickering fusion pore. Nat. Neurosci. 7:341–46
    [Google Scholar]
  80. 80.
    Omiatek DM, Santillo MF, Heien ML, Ewing AG 2009. Hybrid capillary-microfluidic device for the separation, lysis, and electrochemical detection of vesicles. Anal. Chem. 81:62294–302
    [Google Scholar]
  81. 81.
    Omiatek DM, Bressler AJ, Cans A-S, Andrews AM, Heien ML, Ewing AG 2013. The real catecholamine content of secretory vesicles in the CNS revealed by electrochemical cytometry. Sci. Rep. 3:11447
    [Google Scholar]
  82. 82.
    Omiatek DM, Dong Y, Heien ML, Ewing AG 2010. Only a fraction of quantal content is released during exocytosis as revealed by electrochemical cytometry of secretory vesicles. ACS Chem. Neurosci. 1:3234–45
    [Google Scholar]
  83. 83.
    Dunevall J, Fathali H, Najafinobar N, Lovric J, Wigstrom J et al. 2015. Characterizing the catecholamine content of single mammalian vesicles by collision-adsorption events at an electrode. J. Am. Chem. Soc. 137:134344–46
    [Google Scholar]
  84. 84.
    Lovrić J, Najafinobar N, Dunevall J, Majdi S, Svir I et al. 2016. On the mechanism of electrochemical vesicle cytometry: chromaffin cell vesicles and liposomes. Faraday Discuss 193:65–79
    [Google Scholar]
  85. 85.
    Li X, Dunevall J, Ren L, Ewing AG 2017. Mechanistic aspects of vesicle opening during analysis with vesicle impact electrochemical cytometry. Anal. Chem. 89:179416–23
    [Google Scholar]
  86. 86.
    Najafinobar N, Lovrić J, Majdi S, Dunevall J, Cans A, Ewing A 2016. Excited fluorophores enhance the opening of vesicles at electrode surfaces in vesicle electrochemical cytometry. Angew. Chem. Int. Ed. 55:4815081–85
    [Google Scholar]
  87. 87.
    Li X, Majdi S, Dunevall J, Fathali H, Ewing AG 2015. Quantitative measurement of transmitters in individual vesicles in the cytoplasm of single cells with nanotip electrodes. Angew. Chem. Int. Ed. 54:4111978–82
    [Google Scholar]
  88. 88.
    Li X, Ren L, Dunevall J, Ye D, White HS et al. 2018. Nanopore opening at flat and nanotip conical electrodes during vesicle impact electrochemical cytometry. ACS Nano 12:33010–19
    [Google Scholar]
  89. 89.
    Trouillon R, Ewing AG 2013. Amperometric measurements at cells support a role for dynamin in the dilation of the fusion pore during exocytosis. Chem. Phys. Chem. 14:2295–301
    [Google Scholar]
  90. 90.
    Trouillon R, Ewing AG 2013. Single cell amperometry reveals glycocalyx hinders the release of neurotransmitters during exocytosis. Anal. Chem. 85:94822–28
    [Google Scholar]
  91. 91.
    Trouillon R, Ewing AG 2014. Actin controls the vesicular fraction of dopamine released during extended kiss and run exocytosis. ACS Chem. Biol. 9:3812–20
    [Google Scholar]
  92. 92.
    Najafinobar N, Mellander LJ, Kurczy ME, Dunevall J, Angerer TB et al. 2016. Cholesterol alters the dynamics of release in protein independent cell models for exocytosis. Sci. Rep. 6:133702
    [Google Scholar]
  93. 93.
    Li X, Mohammadi AS, Ewing AG 2016. Single cell amperometry reveals curcuminoids modulate the release of neurotransmitters during exocytosis from PC12 cells. J. Electroanal. Chem. 781:30–35
    [Google Scholar]
  94. 94.
    Ye D, Ewing A 2018. On the action of general anesthetics on cellular function: barbiturate alters the exocytosis of catecholamines in a model cell system. Chem. Phys. Chem. 19:101173–79
    [Google Scholar]
  95. 95.
    Ye D, Gu C, Ewing A 2018. Using single-cell amperometry and intracellular vesicle impact electrochemical cytometry to shed light on the biphasic effects of lidocaine on exocytosis. ACS Chem. Neurosci. 9:122941–47
    [Google Scholar]
  96. 96.
    Ren L, Pour MD, Majdi S, Li X, Malmberg P, Ewing AG 2017. Zinc regulates chemical-transmitter storage in nanometer vesicles and exocytosis dynamics as measured by amperometry. Angew. Chem. Int. Ed. 56:184970–75
    [Google Scholar]
  97. 97.
    Qiu Q, Zhang F, Tang Y, Zhang X, Jiang H et al. 2018. Real‐time monitoring of exocytotic glutamate release from single neuron by amperometry at an enzymatic biosensor. Electroanalysis 30:61054–59
    [Google Scholar]
  98. 98.
    Zhang X-W, Qiu Q-F, Jiang H, Zhang F-L, Liu Y-L et al. 2017. Real-time intracellular measurements of ROS and RNS in living cells with single core-shell nanowire electrodes. Angew. Chem. Int. Ed. 129:4213177–80
    [Google Scholar]
  99. 99.
    Pan R, Xu M, Burgess JD, Jiang D, Chen H-Y 2018. Direct electrochemical observation of glucosidase activity in isolated single lysosomes from a living cell. PNAS 115:164087–92
    [Google Scholar]
  100. 100.
    Mellander LJ, Kurczy ME, Najafinobar N, Dunevall J, Ewing AG, Cans A-S 2014. Two modes of exocytosis in an artificial cell. Sci. Rep. 4:3847
    [Google Scholar]
  101. 101.
    Li Y-T, Zhang S-H, Wang X-Y, Zhang X-W, Oleinick AI et al. 2015. Real-time monitoring of discrete synaptic release events and excitatory potentials within self-reconstructed neuromuscular junctions. Angew. Chem. Int. Ed. 54:329313–18
    [Google Scholar]
  102. 102.
    Colombo ML, Sweedler JV, Shen M 2015. Nanopipet-based liquid-liquid interface probes for the electrochemical detection of acetylcholine, tryptamine, and serotonin via ionic transfer. Anal. Chem. 87:105095–100
    [Google Scholar]
  103. 103.
    Iwai NT, Kramaric M, Crabbe D, Wei Y, Chen R, Shen M 2018. GABA detection with nano-ITIES pipet electrode: a new mechanism, water/DCE-octanoic acid interface. Anal. Chem. 90:53067–72
    [Google Scholar]
  104. 104.
    Welle TM, Alanis K, Colombo ML, Sweedler JV, Shen M 2018. A high spatiotemporal study of somatic exocytosis with scanning electrochemical microscopy and nanoITIES electrodes. Chem. Sci. 9:224937–41
    [Google Scholar]
  105. 105.
    Shen M, Qu Z, DesLaurier J, Welle TM, Sweedler JV, Chen R 2018. Single synaptic observation of cholinergic neurotransmission on living neurons: concentration and dynamics. J. Am. Chem. Soc. 140:257764–68
    [Google Scholar]
  106. 106.
    Gubernator NG, Zhang H, Staal RGW, Mosharov EV, Pereira DB et al. 2009. Fluorescent false neurotransmitters visualize dopamine release from individual presynaptic terminals. Science 324:59331441–44
    [Google Scholar]
  107. 107.
    Dunn M, Henke A, Clark S, Kovalyova Y, Kempadoo KA et al. 2018. Designing a norepinephrine optical tracer for imaging individual noradrenergic synapses and their activity in vivo. Nat. Commun. 9:12838
    [Google Scholar]
  108. 108.
    Hettie KS, Glass TE 2016. Turn-on near-infrared fluorescent sensor for selectively imaging serotonin. ACS Chem. Neurosci. 7:121–25
    [Google Scholar]
  109. 109.
    Beyene AG, Delevich K, Del Bonis-O'Donnell JT, Piekarski DJ, Lin WC et al. 2018. Imaging striatal dopamine release using a non-genetically encoded near-infrared fluorescent catecholamine nanosensor. bioRxiv 356543
  110. 110.
    Patriarchi T, Cho JR, Merten K, Howe MW, Marley A et al. 2018. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science 360:6396eaat4422
    [Google Scholar]
  111. 111.
    Sun F, Zeng J, Jing M, Zhou J, Feng J et al. 2018. A genetically encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, fish, and mice. Cell 174:2481–96
    [Google Scholar]
  112. 112.
    Jing M, Zhang P, Wang G, Feng J, Mesik L et al. 2018. A genetically encoded fluorescent acetylcholine indicator for in vitro and in vivo studies. Nat. Biotechnol. 36:726–37
    [Google Scholar]
  113. 113.
    Selimi F, Cristea IM, Heller E, Chait BT, Heintz N 2009. Proteomic studies of a single CNS synapse type: the parallel fiber/Purkinje cell synapse. PLOS Biol 7:4e1000083
    [Google Scholar]
  114. 114.
    Brinkmalm A, Brinkmalm G, Honer WG, Moreno JA, Jakobsson J et al. 2014. Targeting synaptic pathology with a novel affinity mass spectrometry approach. Mol. Cell. Proteom. 13:102584–92
    [Google Scholar]
  115. 115.
    Ramos-Ortolaza DL, Bushlin I, Abul-Husn N, Annangudi SP, Sweedler J, Devi LA 2010. Quantitative neuroproteomics of the synapse. Methods Mol. Biol. 615:227–46
    [Google Scholar]
  116. 116.
    Dieterich DC, Kreutz MR 2016. Proteomics of the synapse—a quantitative approach to neuronal plasticity. Mol. Cell. Proteom. 15:2368–81
    [Google Scholar]
  117. 117.
    Lovrić J, Dunevall J, Larsson A, Ren L, Andersson S et al. 2017. Nano secondary ion mass spectrometry imaging of dopamine distribution across nanometer vesicles. ACS Nano 11:43446–55
    [Google Scholar]
  118. 118.
    Mohammadi AS, Phan NTN, Fletcher JS, Ewing AG 2016. Intact lipid imaging of mouse brain samples: MALDI, nanoparticle-laser desorption ionization, and 40 keV argon cluster secondary ion mass spectrometry. Anal. Bioanal. Chem. 408:246857–68
    [Google Scholar]
  119. 119.
    Mohammadi AS, Li X, Ewing AG 2018. Mass spectrometry imaging suggests that cisplatin affects exocytotic release by alteration of cell membrane lipids. Anal. Chem. 90:148509–16
    [Google Scholar]
  120. 120.
    Wu Q, Comi TJ, Li B, Rubakhin SS, Sweedler JV 2016. On-tissue derivatization via electrospray deposition for matrix-assisted laser desorption/ionization mass spectrometry imaging of endogenous fatty acids in rat brain tissues. Anal. Chem. 88:115988–905
    [Google Scholar]
  121. 121.
    Strein TG, Ewing AG 1992. Characterization of submicron-sized carbon electrodes insulated with a phenol-allylphenol copolymer. Anal. Chem. 64:131368–73
    [Google Scholar]
  122. 122.
    Strand AM, Venton BJ 2008. Flame etching enhances the sensitivity of carbon-fiber microelectrodes. Anal. Chem. 80:103708–15
    [Google Scholar]
  123. 123.
    Rees HR, Anderson SE, Privman E, Bau HH, Venton BJ 2015. Carbon nanopipette electrodes for dopamine detection in Drosophila. Anal. Chem 87:73849–55
    [Google Scholar]
  124. 124.
    Schrlau MG, Dun NJ, Bau HH 2009. Cell electrophysiology with carbon nanopipettes. ACS Nano 3:3563–68
    [Google Scholar]
  125. 125.
    Actis P, Tokar S, Clausmeyer J, Babakinejad B, Mikhaleva S et al. 2014. Electrochemical nanoprobes for single-cell analysis. ACS Nano 8:1875–84
    [Google Scholar]
  126. 126.
    Yu Y, Noël J-M, Mirkin MV, Gao Y, Mashtalir O et al. 2014. Carbon pipette-based electrochemical nanosampler. Anal. Chem. 86:73365–72
    [Google Scholar]
  127. 127.
    Chen R, Hu K, Yu Y, Mirkin MV, Amemiya S 2016. Focused-ion-beam-milled carbon nanoelectrodes for scanning electrochemical microscopy. J. Electrochem. Soc. 163:4H3032–37
    [Google Scholar]
  128. 128.
    Hao R, Zhang B. 2016. Nanopipette-based electroplated nanoelectrodes. Anal. Chem. 88:1614–20
    [Google Scholar]
  129. 129.
    Yang M, Qu F, Lu Y, He Y, Shen G, Yu R 2006. Platinum nanowire nanoelectrode array for the fabrication of biosensors. Biomaterials 27:355944–50
    [Google Scholar]
  130. 130.
    Nakatsuka N, Yang KA, Abendroth JM, Cheung KM, Xu X et al. 2018. Aptamer-field-effect transistors overcome Debye length limitations for small-molecule sensing. Science 362:319–24
    [Google Scholar]
  131. 131.
    Huidobro-Toro JP, Donoso MV 2004. Sympathetic co-transmission: the coordinated action of ATP and noradrenaline and their modulation by neuropeptide Y in human vascular neuroeffector junctions. Eur. J. Pharmacol. 500:27–35
    [Google Scholar]
  132. 132.
    Carta M, Carlsson T, Muñoz A, Kirik D, Björklund A 2010. Role of serotonin neurons in the induction of levodopa- and graft-induced dyskinesias in Parkinson's disease. Mov. Disord. 25:S174–79
    [Google Scholar]
  133. 133.
    Keithley RB, Wightman RM 2011. Assessing principal component regression prediction of neurochemicals detected with fast-scan cyclic voltammetry. ACS Chem. Neurosci. 2:9514–25
    [Google Scholar]
  134. 134.
    Kishida KT, Saez I, Lohrenz T, Witcher MR, Laxton AW et al. 2016. Subsecond dopamine fluctuations in human striatum encode superposed error signals about actual and counterfactual reward. PNAS 113:1200–5
    [Google Scholar]
  135. 135.
    Moran RJ, Kishida KT, Lohrenz T, Saez I, Laxton AW et al. 2018. The protective action encoding of serotonin transients in the human brain. Neuropsychopharmacology 43:61425–35
    [Google Scholar]
  136. 136.
    Wang J, Trouillon R, Lin Y, Svensson MI, Ewing AG 2013. Individually addressable thin-film ultramicroelectrode array for spatial measurements of single vesicle release. Anal. Chem. 85:115600–8
    [Google Scholar]
  137. 137.
    Demuru S, Nela L, Marchack N, Holmes SJ, Farmer DB et al. 2018. Scalable nanostructured carbon electrode arrays for enhanced dopamine detection. ACS Sens 3:4799–805
    [Google Scholar]
  138. 138.
    Li S, Guo J, Chan M, Yuan J 2014. Multi-walled carbon nanotube coated microelectrode array for high-throughput, sensitive dopamine detection. 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems643–46 New York: IEEE
    [Google Scholar]
  139. 139.
    Clark J, Chen Y, Hinder S, Silva SRP 2017. Highly sensitive dopamine detection using a bespoke functionalised carbon nanotube microelectrode array. Electroanalysis 29:102365–76
    [Google Scholar]
  140. 140.
    Suzuki I, Fukuda M, Shirakawa K, Jiko H, Gotoh M 2013. Carbon nanotube multi-electrode array chips for noninvasive real-time measurement of dopamine, action potentials, and postsynaptic potentials. Biosens. Bioelectron. 49:270–75
    [Google Scholar]
  141. 141.
    Parent KL, Hill DF, Crown LM, Wiegand JP, Gies KF et al. 2017. Platform to enable combined measurement of dopamine and neural activity. Anal. Chem. 89:52790–99
    [Google Scholar]
  142. 142.
    Zachek MK, Park J, Takmakov P, Wightman RM, McCarty GS 2010. Microfabricated FSCV-compatible microelectrode array for real-time monitoring of heterogeneous dopamine release. Analyst 135:71556–63
    [Google Scholar]
  143. 143.
    Belle AM, Enright HA, Mukerjee EV, Soscia DA, Osburn JJ et al. 2017. Measurement of glutamate in dorsal root ganglion cell culture with integrated electrochemical biosensors.. 2017 IEEE International Symposium Medical Measurements and Applications453–57 New York: IEEE
    [Google Scholar]
  144. 144.
    Kruss S, Salem DP, Vuković L, Lima B, Vander Ende E et al. 2017. High-resolution imaging of cellular dopamine efflux using a fluorescent nanosensor array. PNAS 114:81789–94
    [Google Scholar]
  145. 145.
    Xie C, Hanson L, Xie W, Lin Z, Cui B, Cui Y 2010. Noninvasive neuron pinning with nanopillar arrays. Nano Lett 10:104020–24
    [Google Scholar]
  146. 146.
    Comstock DJ, Elam JW, Pellin MJ, Hersam MC 2010. Integrated ultramicroelectrode-nanopipet probe for concurrent scanning electrochemical microscopy and scanning ion conductance microscopy. Anal. Chem. 82:41270–76
    [Google Scholar]
  147. 147.
    Budai D, Vizvári AD, Bali ZK, Márki B, Nagy LV et al. 2018. A novel carbon tipped single micro-optrode for combined optogenetics and electrophysiology. PLOS ONE 13:3e0193836
    [Google Scholar]
  148. 148.
    Sgobio C, Kupferschmidt DA, Cui G, Sun L, Li Z et al. 2014. Optogenetic measurement of presynaptic calcium transients using conditional genetically encoded calcium indicator expression in dopaminergic neurons. PLOS ONE 9:10e111749
    [Google Scholar]
  149. 149.
    Van Spronsen M, Hoogenraad CC 2010. Synapse pathology in psychiatric and neurologic disease. Curr. Neurol. Neurosci. Rep. 10:3207–14
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-061318-115434
Loading
/content/journals/10.1146/annurev-anchem-061318-115434
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error