1932

Abstract

The microfluidics field is at a critical crossroads. The vast majority of microfluidic devices are presently manufactured using micromolding processes that work very well for a reduced set of biocompatible materials, but the time, cost, and design constraints of micromolding hinder the commercialization of many devices. As a result, the dissemination of microfluidic technology—and its impact on society—is in jeopardy. Digital manufacturing (DM) refers to a family of computer-centered processes that integrate digital three-dimensional (3D) designs, automated (additive or subtractive) fabrication, and device testing in order to increase fabrication efficiency. Importantly, DM enables the inexpensive realization of 3D designs that are impossible or very difficult to mold. The adoption of DM by microfluidic engineers has been slow, likely due to concerns over the resolution of the printers and the biocompatibility of the resins. In this article, we review and discuss the various printer types, resolution, biocompatibility issues, DM microfluidic designs, and the bright future ahead for this promising, fertile field.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-092618-020341
2019-06-04
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/21/1/annurev-bioeng-092618-020341.html?itemId=/content/journals/10.1146/annurev-bioeng-092618-020341&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Zhou Z, Xie S, Chen D 2012. Fundamentals of Digital Manufacturing Science Berlin: Springer
  2. 2.
    Xu X. 2012. From cloud computing to cloud manufacturing. Robot. Comput. Integr. Manuf. 28:75–86
    [Google Scholar]
  3. 3.
    Lipson H, Kurman M. 2013. Fabricated: The New World of 3D Printing Indianapolis: Wiley
  4. 4.
    Xia YN, Whitesides GM. 1998. Soft lithography. Angew. Chem. Int. Ed. Engl. 37:551
    [Google Scholar]
  5. 5.
    Chen Y, Zhang L, Chen G 2008. Fabrication, modification, and application of poly(methyl methacrylate) microfluidic chips. Electrophoresis 29:1801–14
    [Google Scholar]
  6. 6.
    Jena RK, Yue CY, Lam YC 2012. Micro fabrication of cyclic olefin copolymer (COC) based microfluidic devices. Microsyst. Technol. 18:159–66
    [Google Scholar]
  7. 7.
    Young EWK, Berthier E, Guckenberger DJ, Sackmann E, Lamers C et al. 2011. Rapid prototyping of arrayed microfluidic systems in polystyrene for cell-based assays. Anal. Chem. 83:1408–17
    [Google Scholar]
  8. 8.
    McDonald JC, Whitesides GM. 2002. Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc. Chem. Res. 35:491–99
    [Google Scholar]
  9. 9.
    Becker H, Locascio LE. 2002. Polymer microfluidic devices. Talanta 56:267–87
    [Google Scholar]
  10. 10.
    Brassard D, Clime L, Li K, Miville-Godin C, Roy E, Veres T 2011. 3D thermoplastic elastomer microfluidic devices for biological probe immobilization. Lab Chip 11:4099–107
    [Google Scholar]
  11. 11.
    Roy E, Galas J-C, Veres T 2011. Thermoplastic elastomers for microfluidics: towards a high-throughput fabrication method of multilayered microfluidic devices. Lab Chip 11:3193–96
    [Google Scholar]
  12. 12.
    Guillemette MD, Roy E, Auger FA, Veres T 2011. Rapid isothermal substrate microfabrication of a biocompatible thermoplastic elastomer for cellular contact guidance. Acta Biomater 7:2492–98
    [Google Scholar]
  13. 13.
    Roy E, Geissler M, Galas J-C, Veres T 2011. Prototyping of microfluidic systems using a commercial thermoplastic elastomer. Microfluid. Nanofluidics 11:235–44
    [Google Scholar]
  14. 14.
    Martinez AW, Phillips ST, Carrilho E, Thomas SW 3rd, Sindi H, Whitesides GM 2008. Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Anal. Chem. 80:3699–707
    [Google Scholar]
  15. 15.
    Diao J, Young L, Kim S, Fogarty EA, Heilman SM et al. 2006. A three-channel microfluidic device for generating static linear gradients and its application to the quantitative analysis of bacterial chemotaxis. Lab Chip 6:381–88
    [Google Scholar]
  16. 16.
    Fu E, Ramsey SA, Kauffman P, Lutz B, Yager P 2011. Transport in two-dimensional paper networks. Microfluid. Nanofluidics 10:29–35
    [Google Scholar]
  17. 17.
    He Y, Wu Y, Fu J-Z, Wu W-B 2015. Fabrication of paper-based microfluidic analysis devices: a review. RSC Adv 5:78109–27
    [Google Scholar]
  18. 18.
    Reches M, Mirica KA, Dasgupta R, Dickey MD, Butte MJ, Whitesides GM 2010. Thread as a matrix for biomedical assays. ACS Appl. Mater. Interfaces 2:1722–28
    [Google Scholar]
  19. 19.
    Li X, Tian J, Shen W 2010. Thread as a versatile material for low-cost microfluidic diagnostics. ACS Appl. Mater. Interfaces 2:1–6
    [Google Scholar]
  20. 20.
    Safavieh R, Zhou GZ, Juncker D 2011. Microfluidics made of yarns and knots: from fundamental properties to simple networks and operations. Lab Chip 11:2618–24
    [Google Scholar]
  21. 21.
    Bhandari P, Narahari T, Dendukuri D 2011. ‘Fab-Chips’: a versatile, fabric-based platform for low-cost, rapid and multiplexed diagnostics. Lab Chip 11:2493–99
    [Google Scholar]
  22. 22.
    Nilghaz A, Wicaksono DH, Gustiono D, Abdul Majid FA, Supriyanto E, Abdul Kadir MR 2012. Flexible microfluidic cloth–based analytical devices using a low-cost wax patterning technique. Lab Chip 12:209–18
    [Google Scholar]
  23. 23.
    Nilghaz A, Ballerini DR, Shena W, Shen W, Shena W 2013. Exploration of microfluidic devices based on multi-filament threads and textiles: a review. Biomicrofluidics 7:51501
    [Google Scholar]
  24. 24.
    Yamada K, Shibata H, Suzuki K, Citterio D 2017. Toward practical application of paper-based microfluidics for medical diagnostics: state-of-the-art and challenges. Lab Chip 17:1206–49
    [Google Scholar]
  25. 25.
    Li X, Ballerini DR, Shen W 2012. A perspective on paper-based microfluidics: current status and future trends. Biomicrofluidics 6:11301
    [Google Scholar]
  26. 26.
    Yetisen AK, Akram MS, Lowe CR 2013. Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 13:2210–51
    [Google Scholar]
  27. 27.
    Hu J, Wang S, Wang L, Li F, Pingguan-Murphy B et al. 2014. Advances in paper-based point-of-care diagnostics. Biosens. Bioelectron. 54:585–97
    [Google Scholar]
  28. 28.
    Manz A, Harrison DJ, Verpoorte EMJ, Fettinger JC, Paulus A et al. 1992. Planar chips technology for miniaturization and integration of separation techniques into monitoring systems—capillary electrophoresis on a chip. J. Chromatogr. A 593:253
    [Google Scholar]
  29. 29.
    Harrison DJ, Fluri K, Seiler K, Fan Z, Effenhauser CS, Manz A 1993. Micromachining a miniaturized capillary electrophoresis–based chemical analysis system on a chip. Science 261:895–97
    [Google Scholar]
  30. 30.
    Guckenberger DJ, de Groot TE, Wan AMD, Beebe DJ, Young EWK 2015. Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices. Lab Chip 15:2364–78
    [Google Scholar]
  31. 31.
    Walsh DI III, Kong DS, Murthy SK, Carr PA 2017. Enabling microfluidics: from clean rooms to makerspaces. Trends Biotechnol 35:383–92
    [Google Scholar]
  32. 32.
    Therriault D, White SR, Lewis JA 2003. Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly. Nat. Mater. 2:265–71
    [Google Scholar]
  33. 33.
    Miller JS, Stevens KR, Yang MT, Baker BM, Nguyen D-HT et al. 2012. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat. Mater. 11:768–74
    [Google Scholar]
  34. 34.
    Gelber MK, Bhargava R. 2015. Monolithic multilayer microfluidics via sacrificial molding of 3D-printed isomalt. Lab Chip 15:1736–41
    [Google Scholar]
  35. 35.
    Kim DS, Lee SH, Ahn CH, Lee JY, Kwon TH 2006. Disposable integrated microfluidic biochip for blood typing by plastic microinjection moulding. Lab Chip 6:794–802
    [Google Scholar]
  36. 36.
    Hansen TS, Selmeczi D, Larsen NB 2010. Fast prototyping of injection molded polymer microfluidic chips. J. Micromech. Microeng. 20:15020
    [Google Scholar]
  37. 37.
    Rajaguru J, Duke M, Au C 2015. Development of rapid tooling by rapid prototyping technology and electroless nickel plating for low-volume production of plastic parts. Int. J. Adv. Manuf. Technol. 78:31–40
    [Google Scholar]
  38. 38.
    Hwang Y, Paydar OH, Candler RN 2015. 3D printed molds for non-planar PDMS microfluidic channels. Sens. Actuators A 226:137–42
    [Google Scholar]
  39. 39.
    Glick CC, Srimongkol MT, Schwartz AJ, Zhuang WS, Lin JC et al. 2016. Rapid assembly of multilayer microfluidic structures via 3D-printed transfer molding and bonding. Microsyst. Nanoeng. 2:16063
    [Google Scholar]
  40. 40.
    Hsieh Y-F, Yang A-S, Chen J-W, Liao S-K, Su T-W et al. 2014. A Lego®-like swappable fluidic module for bio-chem applications. Sens. Actuators B 204:489–96
    [Google Scholar]
  41. 41.
    Lee UN, Su X, Guckenberger DJ, Dostie AM, Zhang T et al. 2018. Fundamentals of rapid injection molding for microfluidic cell-based assays. Lab Chip 18:496–504
    [Google Scholar]
  42. 42.
    Hull C. 1988. Stereolithography: plastic prototype from CAD data without tooling. Mod. Cast. 78:38
    [Google Scholar]
  43. 43.
    Waldbaur A, Rapp H, Länge K, Rapp BE 2011. Let there be chip—towards rapid prototyping of microfluidic devices: one-step manufacturing processes. Anal. Methods 3:2681
    [Google Scholar]
  44. 44.
    Gross BC, Erkal JL, Lockwood SY, Chen C, Spence DM 2014. Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal. Chem. 86:3240–53
    [Google Scholar]
  45. 45.
    Au AK, Lee W, Folch A 2014. Mail-order microfluidics: evaluation of stereolithography for the production of microfluidic devices. Lab Chip 14:1294–301
    [Google Scholar]
  46. 46.
    Fang N, Sun C, Zhang X 2004. Diffusion-limited photopolymerization in scanning micro-stereolithography. Appl. Phys. A 79:1839–42
    [Google Scholar]
  47. 47.
    Urrios A, Parra-Cabrera C, Bhattacharjee N, Gonzalez-Suarez AM, Rigat Brugarolas LG et al. 2016. 3D-printing of transparent bio-microfluidic devices in PEG-DA. Lab Chip 16:2287–94
    [Google Scholar]
  48. 48.
    Bertsch A, Bernhard P, Vogt C, Renaud P 2000. Rapid prototyping of small size objects. Rapid Prototyp. J. 6:259–266
    [Google Scholar]
  49. 49.
    Kang H-W, Lee IH, Cho D-W 2004. Development of an assembly-free process based on virtual environment for fabricating 3D microfluidic systems using microstereolithography technology. J. Manuf. Sci. Eng. 126:766–71
    [Google Scholar]
  50. 50.
    Bertsch A, Heimgartner S, Cousseau P, Renaud P 2001. Static micromixers based on large-scale industrial mixer geometry. Lab Chip 1:56–60
    [Google Scholar]
  51. 51.
    Shallan AI, Smejkal P, Corban M, Guijt RM, Breadmore MC 2014. Cost-effective three-dimensional printing of visibly transparent microchips within minutes. Anal. Chem. 86:3124–30
    [Google Scholar]
  52. 52.
    Kotz F, Arnold K, Bauer W, Schild D, Keller N et al. 2017. Three-dimensional printing of transparent fused silica glass. Nature 544:337–39
    [Google Scholar]
  53. 53.
    Kotz F, Risch P, Helmer D, Rapp BE 2018. Highly fluorinated methacrylates for optical 3D printing of microfluidic devices. Micromachines 9:115
    [Google Scholar]
  54. 54.
    Kadimisetty K, Song J, Doto AM, Hwang Y, Peng J et al. 2018. Fully 3D printed integrated reactor array for point-of-care molecular diagnostics. Biosens. Bioelectron. 109:156–63
    [Google Scholar]
  55. 55.
    Chan HN, Tan MJA, Wu H 2017. Point-of-care testing: applications of 3D printing. Lab Chip 17:2713–39
    [Google Scholar]
  56. 56.
    Kadimisetty K, Malla S, Rusling JF 2017. Automated 3-D printed arrays to evaluate genotoxic chemistry: e-cigarettes and water samples. ACS Sens 2:670–78
    [Google Scholar]
  57. 57.
    Kadimisetty K, Malla S, Bhalerao KS, Mosa IM, Bhakta S et al. 2018. Automated 3D-printed microfluidic array for rapid nanomaterial-enhanced detection of multiple proteins. Anal. Chem. 90:7569–77
    [Google Scholar]
  58. 58.
    Plevniak K, Campbell M, Myers T, Hodges A, He M 2016. 3D printed auto-mixing chip enables rapid smartphone diagnosis of anemia. Biomicrofluidics 10:17–19
    [Google Scholar]
  59. 59.
    Fraser LA, Kinghorn AB, Dirkzwager RM, Liang S, Cheung Y-W et al. 2018. A portable microfluidic aptamer-tethered enzyme capture (APTEC) biosensor for malaria diagnosis. Biosens. Bioelectron. 100:591–96
    [Google Scholar]
  60. 60.
    Liu C, Liao S-C, Song J, Mauk MG, Li X et al. 2016. A high-efficiency superhydrophobic plasma separator. Lab Chip 16:553–60
    [Google Scholar]
  61. 61.
    Tang CK, Vaze A, Rusling JF 2017. Automated 3D-printed unibody immunoarray for chemiluminescence detection of cancer biomarker proteins. Lab Chip 17:484–89
    [Google Scholar]
  62. 62.
    Hampson SM, Rowe W, Christie SDR, Platt M 2018. 3D printed microfluidic device with integrated optical sensing for particle analysis. Sens. Actuators B 256:1030–37
    [Google Scholar]
  63. 63.
    Park C, Lee J, Kim Y, Kim J, Lee J, Park S 2017. 3D-printed microfluidic magnetic preconcentrator for the detection of bacterial pathogen using an ATP luminometer and antibody-conjugated magnetic nanoparticles. J. Microbiol. Methods 132:128–33
    [Google Scholar]
  64. 64.
    Su CK, Peng PJ, Sun YC 2015. Fully 3D-printed preconcentrator for selective extraction of trace elements in seawater. Anal. Chem. 87:6945–50
    [Google Scholar]
  65. 65.
    Kalsoom U, Nesterenko PN, Paull B 2018. Current and future impact of 3D printing on the separation sciences. Trends Anal. Chem. 105:492–502
    [Google Scholar]
  66. 66.
    Wang H, Cocovi-Solberg DJ, Hu B, Miró M 2017. 3D-printed microflow injection analysis platform for online magnetic nanoparticle sorptive extraction of antimicrobials in biological specimens as a front end to liquid chromatographic assays. Anal. Chem. 89:12541–49
    [Google Scholar]
  67. 67.
    Mattio E, Robert-Peillard F, Vassalo L, Branger C, Margaillan A et al. 2018. 3D-printed lab-on-valve for fluorescent determination of cadmium and lead in water. Talanta 183:201–8
    [Google Scholar]
  68. 68.
    Ovsianikov A, Chichkov B, Mente P, Monteiro-Piviere NA, Doraiswamy A, Narayan RJ 2007. Two photon polymerization of polymer–ceramic hybrid materials for transdermal drug delivery. Int. J. Appl. Ceram. Technol. 4:22–29
    [Google Scholar]
  69. 69.
    Yuen PK. 2008. SmartBuild—a truly plug-n-play modular microfluidic system. Lab Chip 8:1374–78
    [Google Scholar]
  70. 70.
    Yuen PK, Bliss JT, Thompson CC, Peterson RC 2009. Multidimensional modular microfluidic system. Lab Chip 9:3303–5
    [Google Scholar]
  71. 71.
    Bhargava KC, Thompson B, Malmstadt N 2014. Discrete elements for 3D microfluidics. PNAS 111:15013–18
    [Google Scholar]
  72. 72.
    Lee KG, Park KJ, Seok S, Kim DH, Park JY et al. 2014. 3D printed modules for integrated microfluidic devices. RSC Adv 4:32876–80
    [Google Scholar]
  73. 73.
    Nie J, Gao G, Qiu J-J, Sun M, Liu A et al. 2018. 3D printed Lego®-like modular microfluidic devices based on capillary driving. Biofabrication 10:035001
    [Google Scholar]
  74. 74.
    Ohtani K, Tsuchiya M, Sugiyama H, Katakura T, Hayakawa M, Kanai T 2014. Surface treatment of flow channels in microfluidic devices fabricated by stereolithography. J. Oleo Sci. 63:93–96
    [Google Scholar]
  75. 75.
    Femmer T, Jans A, Eswein R, Anwar N, Moeller M et al. 2015. High-throughput generation of emulsions and microgels in parallelized microfluidic drop-makers prepared by rapid prototyping. ACS Appl. Mater. Interfaces 7:12635–38
    [Google Scholar]
  76. 76.
    Zhang JM, Aguirre-Pablo AA, Li EQ, Buttner U, Thoroddsen ST 2016. Droplet generation in cross-flow for cost-effective 3D-printed ‘plug-and-play’ microfluidic devices. RSC Adv 6:81120–29
    [Google Scholar]
  77. 77.
    Lee W, Kwon D, Chung B, Jung GY, Au A et al. 2014. Ultrarapid detection of pathogenic bacteria using a 3D immunomagnetic flow assay. Anal. Chem. 86:6683–88
    [Google Scholar]
  78. 78.
    Lee W, Kwon D, Choi W, Jung GY, Au AK et al. 2015. 3D-printed microfluidic device for the detection of pathogenic bacteria using size-based separation in helical channel with trapezoid cross-section. Sci. Rep. 5:7717
    [Google Scholar]
  79. 79.
    Lim J, Maes F, Taly V, Baret JC 2014. The microfluidic puzzle: chip-oriented rapid prototyping. Lab Chip 14:1669–72
    [Google Scholar]
  80. 80.
    Owens CE, Hart AJ. 2017. High-precision modular microfluidics by micromilling of interlocking injection-molded blocks. Lab Chip 18:890–901
    [Google Scholar]
  81. 81.
    Toh AGG, Wang Z, Wang Z 2016. Modular membrane valves for universal integration within thermoplastic devices. Microfluid. Nanofluidics 20:85
    [Google Scholar]
  82. 82.
    Chen A, Pan T. 2011. Fit-to-flow (F2F) interconnects: universal reversible adhesive-free microfluidic adaptors for lab-on-a-chip systems. Lab Chip 11:727–32
    [Google Scholar]
  83. 83.
    Wilhelm E, Neumann C, Duttenhofer T, Pires L, Rapp BE 2013. Connecting microfluidic chips using a chemically inert, reversible, multichannel chip-to-world-interface. Lab Chip 13:4343–51
    [Google Scholar]
  84. 84.
    Scott A, Au AK, Vinckenbosch E, Folch A 2013. A microfluidic D-subminiature connector. Lab Chip 13:2036–39
    [Google Scholar]
  85. 85.
    Cooksey GA, Sip CG, Folch A 2009. A multi-purpose microfluidic perfusion system with combinatorial choice of inputs, mixtures, gradient patterns, and flow rates. Lab Chip 9:417–26
    [Google Scholar]
  86. 86.
    Rafeie M, Zhang J, Asadnia M, Li W, Warkiani ME 2016. Multiplexing slanted spiral microchannels for ultra-fast blood plasma separation. Lab Chip 16:2791–802
    [Google Scholar]
  87. 87.
    Gong H, Woolley AT, Nordin GP 2018. 3D printed high density, reversible, chip-to-chip microfluidic interconnects. Lab Chip 18:639–47
    [Google Scholar]
  88. 88.
    Van Den Driesche S, Lucklum F, Bunge F, Vellekoop MJ 2018. 3D printing solutions for microfluidic chip-to-world connections. Micromachines 9:71
    [Google Scholar]
  89. 89.
    Robinson CD, Auchtung JM, Collins J, Britton RA 2014. Epidemic Clostridium difficile strains demonstrate increased competitive fitness compared to nonepidemic isolates. Infect. Immun. 82:2815–25
    [Google Scholar]
  90. 90.
    Nichols DA, Sondh IS, Little SR, Zunino P, Gottardi R 2018. Design and validation of an osteochondral bioreactor for the screening of treatments for osteoarthritis. Biomed. Microdevices 20:18
    [Google Scholar]
  91. 91.
    Brennan MD, Rexius-Hall ML, Eddington DT 2015. A 3D-printed oxygen control insert for a 24-well plate. PLOS ONE 10:e0137631
    [Google Scholar]
  92. 92.
    Au AK, Lai H, Utela BR, Folch A 2011. Microvalves and micropumps for BioMEMS. Micromachines 2:179–220
    [Google Scholar]
  93. 93.
    Unger MA. 2000. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288:113–16
    [Google Scholar]
  94. 94.
    Thorsen T, Maerkl SJ, Quake SR 2002. Microfluidic large-scale integration. Science 298:580–84
    [Google Scholar]
  95. 95.
    Hosokawa K, Maeda R. 2000. A pneumatically-actuated three-way microvalve fabricated with polydimethylsiloxane using the membrane transfer technique. J. Micromech. Microeng. 10:415
    [Google Scholar]
  96. 96.
    Hong JW, Chen Y, Anderson WF, Quake SR 2006. Molecular biology on a microfluidic chip. J. Phys. Condens. Matter 18:S691–701
    [Google Scholar]
  97. 97.
    Folch A. 2013. Introduction to BioMEMS Boca Raton, FL: CRC
  98. 98.
    Beebe DJ, Moore JS, Bauer JM, Yu Q, Liu RH et al. 2000. Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404:588–90
    [Google Scholar]
  99. 99.
    Dendukuri D, Pregibon DC, Collins J, Hatton TA, Doyle PS 2006. Continuous-flow lithography for high-throughput microparticle synthesis. Nat. Mater. 5:365–69
    [Google Scholar]
  100. 100.
    Dendukuri D, Gu SS, Pregibon DC, Hatton TA, Doyle PS 2007. Stop-flow lithography in a microfluidic device. Lab Chip 7:818–28
    [Google Scholar]
  101. 101.
    Bong KW, Pregibon DC, Doyle PS 2009. Lock release lithography for 3D and composite microparticles. Lab Chip 9:863–66
    [Google Scholar]
  102. 102.
    Attia R, Pregibon DC, Doyle PS, Viovy J-L, Bartolo D 2009. Soft microflow sensors. Lab Chip 9:1213–18
    [Google Scholar]
  103. 103.
    Cheung YK, Gillette BM, Zhong M, Ramcharan S, Sia SK 2007. Direct patterning of composite biocompatible microstructures using microfluidics. Lab Chip 7:574–79
    [Google Scholar]
  104. 104.
    Chung SE, Park W, Shin S, Lee SA, Kwon S 2008. Guided and fluidic self-assembly of microstructures using railed microfluidic channels. Nat. Mater. 7:581–87
    [Google Scholar]
  105. 105.
    Kim P, Jeong HE, Khademhosseini A, Suh KY 2006. Fabrication of non-biofouling polyethylene glycol micro- and nanochannels by ultraviolet-assisted irreversible sealing. Lab Chip 6:1432–37
    [Google Scholar]
  106. 106.
    Rogers CI, Oxborrow JB, Anderson RR, Tsai L-F, Nordin GP et al. 2014. Microfluidic valves made from polymerized polyethylene glycol diacrylate. Sens. Actuators B 191:438–44
    [Google Scholar]
  107. 107.
    Rogers CI, Qaderi K, Woolley AT, Nordin GP 2015. 3D printed microfluidic devices with integrated valves. Biomicrofluidics 9:16501
    [Google Scholar]
  108. 108.
    Gong H, Beauchamp M, Perry S, Woolley AT, Nordin GP 2015. Optical approach to resin formulation for 3D printed microfluidics. RSC Adv 5:106621–32
    [Google Scholar]
  109. 109.
    Gong H, Woolley AT, Nordin GP 2016. High density 3D printed microfluidic valves, pumps, and multiplexers. Lab Chip 16:2450–58
    [Google Scholar]
  110. 110.
    Au AK, Bhattacharjee N, Horowitz LF, Chang TC, Folch A 2015. 3D-printed microfluidic automation. Lab Chip 15:1934–41
    [Google Scholar]
  111. 111.
    Chantarapanich N, Puttawibul P, Jeamwatthanachai P, Sittheriseripratip LK, Sucharitpwatskul S, Laohaprapanon A 2011. Optimal matrix size for analysis of tissue engineering scaffold stiffness: a finite element study. Proceedings of the 4th Biomedical Engineering International Conference104–7 Piscataway, NJ: IEEE
    [Google Scholar]
  112. 112.
    Wang Z, Volinsky AA, Gallant ND 2014. Crosslinking effect on polydimethylsiloxane elastic modulus measured by custom-built compression instrument. J. Appl. Polym. Sci. 131:41050
    [Google Scholar]
  113. 113.
    Lee Y-S, Bhattacharjee N, Folch A 2018. Lab on a chip 3D-printed Quake-style microvalves and micropumps. Lab Chip 18:1207–14
    [Google Scholar]
  114. 114.
    Chan HN, Shu Y, Xiong B, Chen Y, Chen Y et al. 2016. Simple, cost-effective 3D printed microfluidic components for disposable, point-of-care colorimetric analysis. ACS Sens 1:227–34
    [Google Scholar]
  115. 115.
    Bhattacharjee N, Parra-Cabrera C, Kim YT, Kuo AP, Folch A 2018. Desktop-stereolithography 3D-printing of a poly(dimethylsiloxane)-based material with Sylgard-184 properties. Adv. Mater. 30:e1800001
    [Google Scholar]
  116. 116.
    Arcaute K, Mann B, Wicker R 2010. Stereolithography of spatially controlled multi-material bioactive poly(ethylene glycol) scaffolds. Acta Biomater 6:1047–54
    [Google Scholar]
  117. 117.
    Choi JW, MacDonald E, Wicker R 2010. Multi-material microstereolithography. Int. J. Adv. Manuf. Technol. 49:543–51
    [Google Scholar]
  118. 118.
    Kim H, Choi J, Wicker R 2010. Scheduling and process planning for multiple material stereolithography. Rapid Prototyp. J. 16:232–40
    [Google Scholar]
  119. 119.
    Choi JW, Kim HC, Wicker R 2011. Multi-material stereolithography. J. Mater. Process. Technol. 211:318–28
    [Google Scholar]
  120. 120.
    MacDonald E, Wicker R. 2016. Multiprocess 3D printing for increasing component functionality. Science 353:aaf2093
    [Google Scholar]
  121. 121.
    Kim YT, Castro K, Bhattacharjee N, Folch A 2018. Digital manufacturing of selective porous barriers in microchannels using multi-material stereolithography. Micromachines 9:125
    [Google Scholar]
  122. 122.
    Chan V, Zorlutuna P, Jeong JH, Kong H, Bashir R 2010. Three-dimensional photopatterning of hydrogels using stereolithography for long-term cell encapsulation. Lab Chip 10:2062–70
    [Google Scholar]
  123. 123.
    Lu Y, Mapili G, Suhali G, Chen S, Roy K 2006. A digital micro-mirror device–based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds. J. Biomed. Mater. Res. A 77:396–405
    [Google Scholar]
  124. 124.
    Chan V, Jeong JH, Bajaj P, Collens M, Saif T et al. 2012. Multi-material bio-fabrication of hydrogel cantilevers and actuators with stereolithography. Lab Chip 12:88–98
    [Google Scholar]
  125. 125.
    Miri AK, Nieto D, Iglesias L, Goodarzi Hosseinabadi H, Maharjan S et al. 2018. Microfluidics-enabled multimaterial maskless stereolithographic bioprinting. Adv. Mater. 30:e1800242
    [Google Scholar]
  126. 126.
    Credi C, Griffini G, Levi M, Turri S 2018. Biotinylated photopolymers for 3D-printed unibody lab-on-a-chip optical platforms. Small 14:1702831
    [Google Scholar]
  127. 127.
    Pilipović A, Raos P, Šercer M 2009. Experimental analysis of properties of materials for rapid prototyping. Int. J. Adv. Manuf. Technol. 40:105–15
    [Google Scholar]
  128. 128.
    Bucella SG, Nava G, Vishunubhatla KC, Caironi M 2013. High-resolution direct-writing of metallic electrodes on flexible substrates for high performance organic field effect transistors. Org. Electron. 14:2249–56
    [Google Scholar]
  129. 129.
    Bonyár A, Sántha H, Ring B, Varga M, Kovács JZ, Harsányi G 2010. 3D rapid prototyping technology (RPT) as a powerful tool in microfluidic development. Proc. Eng. 5:291–94
    [Google Scholar]
  130. 130.
    Anderson KB, Lockwood SY, Martin RS, Spence DM 2013. A 3D printed fluidic device that enables integrated features. Anal. Chem. 85:5622–26
    [Google Scholar]
  131. 131.
    Lockwood SY, Meisel JE, Monsma FJ, Spence DM 2016. A diffusion-based and dynamic 3D-printed device that enables parallel in vitro pharmacokinetic profiling of molecules. Anal. Chem. 88:1864–70
    [Google Scholar]
  132. 132.
    Erkal JL, Selimovic A, Gross BC, Lockwood SY, Walton EL et al. 2014. 3D printed microfluidic devices with integrated versatile and reusable electrodes. Lab Chip 14:2023–32
    [Google Scholar]
  133. 133.
    Munshi AS, Martin RS. 2016. Microchip-based electrochemical detection using a 3-D printed wall-jet electrode device. Analyst 141:862–69
    [Google Scholar]
  134. 134.
    Shakeel SM, Rafeie M, Henderson R, Vandamme D, Asadnia M, Ebrahimi Warkiani M 2017. A 3D-printed mini-hydrocyclone for high throughput particle separation: application to primary harvesting of microalgae. Lab Chip 17:2459–69
    [Google Scholar]
  135. 135.
    Alizadehgiashi M, Gevorkian A, Tebbe M, Seo M, Prince E, Kumacheva E 2018. 3D-printed microfluidic devices for materials science. Adv. Mater. Technol. 3:1800068
    [Google Scholar]
  136. 136.
    Causier A, Carret G, Boutin C, Berthelot T, Berthault P 2015. 3D-printed system optimizing dissolution of hyperpolarized gaseous species for micro-sized NMR. Lab Chip 15:2049–54
    [Google Scholar]
  137. 137.
    Sochol RD, Sweet E, Glick CC, Venkatesh S, Avetisyan A et al. 2016. 3D printed microfluidic circuitry via multijet-based additive manufacturing. Lab Chip 16:668–78
    [Google Scholar]
  138. 138.
    Walczak R, Adamski K, Lizanets D 2017. Inkjet 3D printed check microvalve. J. Micromech. Microeng. 27:47002
    [Google Scholar]
  139. 139.
    Ukita Y, Utsumi Y, Takamura Y 2016. Direct digital manufacturing of a mini-centrifuge-driven centrifugal microfluidic device and demonstration of a smartphone-based colorimetric enzyme-linked immunosorbent assay. Anal. Methods 8:256–62
    [Google Scholar]
  140. 140.
    Ji Q, Zhang JM, Liu Y, Li X, Lv P et al. 2018. A modular microfluidic device via multimaterial 3D printing for emulsion generation. Sci. Rep. 8:4791
    [Google Scholar]
  141. 141.
    Begolo S, Zhukov DV, Selck DA, Li L, Ismagilov RF 2014. The pumping lid: investigating multi-material 3D printing for equipment-free, programmable generation of positive and negative pressures for microfluidic applications. Lab Chip 14:4616–28
    [Google Scholar]
  142. 142.
    Jue E, Schoepp NG, Witters D, Ismagilov RF 2016. Evaluating 3D printing to solve the sample-to-device interface for LRS and POC diagnostics: example of an interlock meter-mix device for metering and lysing clinical urine samples. Lab Chip 16:1852–60
    [Google Scholar]
  143. 143.
    Wilson WC, Boland T. 2003. Cell and organ printing. 1: Protein and cell printers. Anat. Rec. A 272:491–96
    [Google Scholar]
  144. 144.
    Roth EA, Xu T, Das M, Gregory C, Hickman JJ, Boland T 2004. Inkjet printing for high-throughput cell patterning. Biomaterials 25:3707–15
    [Google Scholar]
  145. 145.
    Sanjana NE, Fuller SB. 2004. A fast flexible ink-jet printing method for patterning dissociated neurons in culture. J. Neurosci. Methods 136:151–63
    [Google Scholar]
  146. 146.
    Xu T, Zhao W, Zhu JM, Albanna MZ, Yoo JJ, Atala A 2013. Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials 34:130–39
    [Google Scholar]
  147. 147.
    Ahn DG, Lee JY, Yang DY 2006. Rapid prototyping and reverse engineering application for orthopedic surgery planning. J. Mech. Sci. Technol. 20:19–28
    [Google Scholar]
  148. 148.
    Cheng YL, Chen SJ. 2006. Manufacturing of cardiac models through rapid prototyping technology for surgery planning. Mater. Sci. Forum 505–507:1063–68
    [Google Scholar]
  149. 149.
    Erbano BO, Opolski AC, Olandoski M, Foggiatto JA, Kubrusly LF et al. 2013. Rapid prototyping of three-dimensional biomodels as an adjuvant in the surgical planning for intracranial aneurysms. Acta Cir. Bras. 28:756–61
    [Google Scholar]
  150. 150.
    Li J, Rossignol F, Macdonald J 2015. Inkjet printing for biosensor fabrication: combining chemistry and technology for advanced manufacturing. Lab Chip 15:2538–58
    [Google Scholar]
  151. 151.
    Crump SS. 1989. Apparatus and method for creating three-dimensional objects US Patent 5:121329A
  152. 152.
    Kong YL, Tamargo IA, Kim H, Johnson BN, Gupta MK et al. 2014. 3D printed quantum dot light-emitting diodes. Nano Lett 14:7017–23
    [Google Scholar]
  153. 153.
    Sun K, Wei T-S, Ahn BY, Seo JY, Dillon SJ, Lewis JA 2013. 3D printing of interdigitated Li-ion microbattery architectures. Adv. Mater. 25:4539–43
    [Google Scholar]
  154. 154.
    Muth JT, Vogt DM, Truby RL, Mengüç Y, Kolesky DB et al. 2014. Embedded 3D printing of strain sensors within highly stretchable elastomers. Adv. Mater. 26:6307–12
    [Google Scholar]
  155. 155.
    Adams JJ, Duoss EB, Malkowski TF, Motala MJ, Ahn BY et al. 2011. Conformal printing of electrically small antennas on three-dimensional surfaces. Adv. Mater. 23:1335–40
    [Google Scholar]
  156. 156.
    Lopes JA, MacDonald E, Wicker RB 2012. Integrating stereolithography and direct print technologies for 3D structural electronics fabrication. Rapid Prototyp. J. 18:129–43
    [Google Scholar]
  157. 157.
    Mannoor MS, Jiang Z, James T, Kong YL, Malatesta KA et al. 2013. 3D printed bionic ears. Nano Lett 13:2634–39
    [Google Scholar]
  158. 158.
    Capel AJ, Edmondson S, Christie SDR, Goodridge RD, Bibb RJ, Thurstans M 2013. Design and additive manufacture for flow chemistry. Lab Chip 13:4583–90
    [Google Scholar]
  159. 159.
    Shaffer S, Yang K, Vargas J, Di Prima MA, Voit W 2014. On reducing anisotropy in 3D printed polymers via ionizing radiation. Polymer 55:5969–79
    [Google Scholar]
  160. 160.
    Stansbury JW, Idacavage MJ. 2016. 3D printing with polymers: challenges among expanding options and opportunities. Dent. Mater. 32:54–64
    [Google Scholar]
  161. 161.
    Kitson PJ, Rosnes MH, Sans V, Dragone V, Cronin L 2012. Configurable 3D-printed millifluidic and microfluidic ‘lab on a chip’ reactionware devices. Lab Chip 12:3267–71
    [Google Scholar]
  162. 162.
    Kitson PJ, Glatzel S, Chen W, Lin CG, Song YF, Cronin L 2016. 3D printing of versatile reactionware for chemical synthesis. Nat. Protoc. 11:920–36
    [Google Scholar]
  163. 163.
    Symes MD, Kitson PJ, Yan J, Richmond CJ, Cooper GJT et al. 2012. Integrated 3D-printed reactionware for chemical synthesis and analysis. Nat. Chem. 4:349–54
    [Google Scholar]
  164. 164.
    Tsuda S, Jaffery H, Hezwani M, Robbins PJ, Yoshida M, Cronin L 2015. Customizable 3D printed ‘plug and play’ millifluidic devices for programmable fluidics. PLOS ONE 10:e0141640
    [Google Scholar]
  165. 165.
    Li F, Macdonald NP, Guijt RM, Breadmore MC 2017. Using printing orientation for tuning fluidic behavior in microfluidic chips made by fused deposition modeling 3D printing. Anal. Chem. 89:12805–11
    [Google Scholar]
  166. 166.
    Bishop GW, Satterwhite JE, Bhakta S, Kadimisetty K, Gillette KM et al. 2015. 3D-printed fluidic devices for nanoparticle preparation and flow-injection amperometry using integrated Prussian blue nanoparticle-modified electrodes. Anal. Chem. 87:5437–43
    [Google Scholar]
  167. 167.
    Kadimisetty K, Mosa IM, Malla S, Satterwhite-Warden JE, Kuhns TM et al. 2016. 3D-printed supercapacitor-powered electrochemiluminescent protein immunoarray. Biosens. Bioelectron. 77:188–93
    [Google Scholar]
  168. 168.
    Carvajal S, Fera SN, Jones AL, Baldo TA, Mosa IM et al. 2018. Disposable inkjet-printed electrochemical platform for detection of clinically relevant HER-2 breast cancer biomarker. Biosens. Bioelectron. 104:158–62
    [Google Scholar]
  169. 169.
    Patrick WG, Nielsen AAK, Keating SJ, Levy TJ, Wang C-W et al. 2015. DNA assembly in 3D printed fluidics. PLOS ONE 10:e0143636
    [Google Scholar]
  170. 170.
    Anciaux SK, Geiger M, Bowser MT 2016. 3D printed micro free-flow electrophoresis device. Anal. Chem. 88:7675–82
    [Google Scholar]
  171. 171.
    Morgan AJL, Hidalgo San Jose L, Jamieson WD, Wymant JM, Song B et al. 2016. Simple and versatile 3D printed microfluidics using fused filament fabrication. PLOS ONE 11:e0152023
    [Google Scholar]
  172. 172.
    Li F, Smejkal P, Macdonald NP, Guijt RM, Breadmore MC 2017. One-step fabrication of a microfluidic device with an integrated membrane and embedded reagents by multimaterial 3D printing. Anal. Chem. 89:4701–7
    [Google Scholar]
  173. 173.
    Kataoka ÉM, Murer RC, Santos JM, Carvalho RM, Eberlin MN et al. 2017. Simple, expendable, 3D-printed microfluidic systems for sample preparation of petroleum. Anal. Chem. 89:3460–67
    [Google Scholar]
  174. 174.
    Johnson BN, Lancaster KZ, Hogue IB, Meng F, Kong YL et al. 2016. 3D printed nervous system on a chip. Lab Chip 16:1393–400
    [Google Scholar]
  175. 175.
    Lind JU, Lancaster KZ, Hogue IB, Meng F, Kong YL et al. 2017. Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing. Nat. Mater. 16:303–8
    [Google Scholar]
  176. 176.
    Johnson BN, Lancaster KZ, Zhen G, He J, Gupta MK et al. 2015. 3D printed anatomical nerve regeneration pathways. Adv. Funct. Mater. 25:6205–17
    [Google Scholar]
  177. 177.
    Gupta MK, Meng F, Johnson BN, Kong YL, Tian L et al. 2015. 3D printed programmable release capsules. Nano Lett 15:5321–29
    [Google Scholar]
  178. 178.
    Duarte LC, Chagas CLS, Ribeiro LEB, Coltro WKT 2017. 3D printing of microfluidic devices with embedded sensing electrodes for generating and measuring the size of microdroplets based on contactless conductivity detection. Sens. Actuators B 251:427–32
    [Google Scholar]
  179. 179.
    Arslan-Yildiz A, El Assal R, Chen P, Guven S, Inci F, Demirci U 2016. Towards artificial tissue models: past, present, and future of 3D bioprinting. Biofabrication 8:014103
    [Google Scholar]
  180. 180.
    Mandrycky C, Wang Z, Kim K, Kim D-H 2016. 3D bioprinting for engineering complex tissues. Biotechnol. Adv. 34:422–34
    [Google Scholar]
  181. 181.
    Stanton MM, Samitier J, Sanchez S 2015. Bioprinting of 3D hydrogels. Lab Chip 15:3111–15
    [Google Scholar]
  182. 182.
    Pereira RF, Bártolo PJ. 2015. 3D bioprinting of photocrosslinkable hydrogel constructs. J. Appl. Polym. Sci. 132:42458
    [Google Scholar]
  183. 183.
    Kang E, Jeong GS, Choi YY, Lee KH, Khademhosseini A, Lee SH 2011. Digitally tunable physicochemical coding of material composition and topography in continuous microfibres. Nat. Mater. 10:877–83
    [Google Scholar]
  184. 184.
    Yamada M, Utoh R, Ohashi K, Tatsumi K, Yamato M et al. 2012. Controlled formation of heterotypic hepatic micro-organoids in anisotropic hydrogel microfibers for long-term preservation of liver-specific functions. Biomaterials 33:8304–15
    [Google Scholar]
  185. 185.
    Kobayashi A, Yamakoshi K, Yajima Y, Utoh R, Yamada M, Seki M 2013. Preparation of stripe-patterned heterogeneous hydrogel sheets using microfluidic devices for high-density coculture of hepatocytes and fibroblasts. J. Biosci. Bioeng. 116:761–67
    [Google Scholar]
  186. 186.
    Beyer S, Mohamed T, Walus K 2013. A microfluidics based 3D bioprinter with on-the-fly multimaterial switching capability. Proceedings of the 17th International Conference on Miniaturized Systems for Chemistry and Life Sciences176–78 Washington, DC: Chem. Biol. Microsyst. Soc.
    [Google Scholar]
  187. 187.
    Hardin JO, Ober TJ, Valentine AD, Lewis JA 2015. Microfluidic printheads for multimaterial 3D printing of viscoelastic inks. Adv. Mater. 27:3279–84
    [Google Scholar]
  188. 188.
    Serex L, Bertsch A, Renaud P 2018. Microfluidics: a new layer of control for extrusion-based 3D printing. Micromachines 9:86
    [Google Scholar]
  189. 189.
    Himmer T, Nakagawa T, Anzai M 1999. Lamination of metal sheets. Comput. Ind. 39:27–33
    [Google Scholar]
  190. 190.
    Obikawa T, Yoshino M, Shinozuka J 1999. Sheet steel lamination for rapid manufacturing. J. Mater. Process. Technol. 89:/90171–76
    [Google Scholar]
  191. 191.
    Bartholomeusz DA, Boutte RW, Andrade JD 2005. Xurography: rapid prototyping of microstructures using a cutting plotter. J. Microelectromechanical Syst. 14:1364–74
    [Google Scholar]
  192. 192.
    Malek CGK. 2006. Laser processing for bio-microfluidics applications (part II). Anal. Bioanal. Chem. 385:1362–69
    [Google Scholar]
  193. 193.
    Weigl BH, Bardell R, Schulte T, Battrell F, Hayenga J 2001. Design and rapid prototyping of thin-film laminate-based microfluidic devices. Biomed. Microdevices 3:267–74
    [Google Scholar]
  194. 194.
    Macounová K, Cabrera CR, Holl MR, Yager P 2000. Generation of natural pH gradients in microfluidic channels for use in isoelectric focusing. Anal. Chem. 72:3745–51
    [Google Scholar]
  195. 195.
    Hatch A, Kamholz AE, Hawkins KR, Munson MS, Schilling EA et al. 2001. A rapid diffusion immunoassay in a T-sensor. Nat. Biotechnol. 19:461–65
    [Google Scholar]
  196. 196.
    Munson MS, Cabrera CR, Yager P 2002. Passive electrophoresis in microchannels using liquid junction potentials. Electrophoresis 23:2642–52
    [Google Scholar]
  197. 197.
    Schilling EA, Kamholz AE, Yager P 2002. Cell lysis and protein extraction in a microfluidic device with detection by a fluorogenic enzyme assay. Anal. Chem. 74:1798–804
    [Google Scholar]
  198. 198.
    Garcia E, Kirkham JR, Hatch AV, Hawkins KR, Yager P 2004. Controlled microfluidic reconstitution of functional protein from an anhydrous storage depot. Lab Chip 4:78–82
    [Google Scholar]
  199. 199.
    Neils C, Tyree Z, Finlayson B, Folch A 2004. Combinatorial mixing of microfluidic streams. Lab Chip 4:342–50
    [Google Scholar]
  200. 200.
    Duffy G, Maguire I, Heery B, Nwankire C, Ducrée J, Regan F 2017. PhosphaSense: a fully integrated, portable lab-on-a-disc device for phosphate determination in water. Sens. Actuators B 246:1085–91
    [Google Scholar]
  201. 201.
    Sun S, Yang M, Kostov Y, Rasooly A 2010. ELISA-LOC: lab-on-a-chip for enzyme-linked immunodetection. Lab Chip 10:2093–100
    [Google Scholar]
  202. 202.
    Focke M, Kosse D, Müller C, Reinecke H, Zengerle R, von Stetten F 2010. Lab-on-a-foil: microfluidics on thin and flexible films. Lab Chip 10:1365–86
    [Google Scholar]
  203. 203.
    Cho I, Lee K, Choi W, Song Y-A 2000. Development of a new sheet deposition type rapid prototyping system. Int. J. Mach. Tools Manuf. 40:1813–29
    [Google Scholar]
  204. 204.
    Ogilvie IRG, Sieben VJ, Floquet CFA, Zmijan R, Mowlem MC, Morgan H 2010. Reduction of surface roughness for optical quality microfluidic devices in PMMA and COC. J. Micromech. Microeng. 20:65016
    [Google Scholar]
  205. 205.
    Malinauskas M, Farsari M, Piskarskas A, Juodkazis S 2013. Ultrafast laser nanostructuring of photopolymers: a decade of advances. Phys. Rep. 533:1–31
    [Google Scholar]
  206. 206.
    Nguyen KT, West JL. 2002. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 23:4307–14
    [Google Scholar]
  207. 207.
    Khademhosseini A, Langer R. 2007. Microengineered hydrogels for tissue engineering. Biomaterials 28:5087–92
    [Google Scholar]
  208. 208.
    Knipe JM, Peppas NA. 2014. Multi-responsive hydrogels for drug delivery and tissue engineering applications. Regen. Biomater. 1:57–65
    [Google Scholar]
  209. 209.
    Mann BK, Gobin AS, Tsai AT, Schmedlen RH, West JL 2001. Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering. Biomaterials 22:3045–51
    [Google Scholar]
  210. 210.
    Mann BK, Schmedlen RH, West JL 2001. Tethered-TGF-β increases extracellular matrix production of vascular smooth muscle cells. Biomaterials 22:439–44
    [Google Scholar]
  211. 211.
    Sawhney AS, Pathak CP, Hubbell JA 1993. Bioerodible hydrogels based on photopolymerized poly(ethylene glycol)-co-poly(α-hydroxy acid) diacrylate macromers. Macromolecules 26:581–87
    [Google Scholar]
  212. 212.
    Brigo L, Urciuolo A, Giulitti S, Della Giustina G, Tromayer M et al. 2017. 3D high-resolution two-photon crosslinked hydrogel structures for biological studies. Acta Biomater 55:373–84
    [Google Scholar]
  213. 213.
    Park K, Jang J, Irimia D, Sturgis J, Lee J et al. 2008. ‘Living cantilever arrays’ for characterization of mass of single live cells in fluids. Lab Chip 8:1034–41
    [Google Scholar]
  214. 214.
    Cvetkovic C, Raman R, Chan V, Williams BJ, Tolish M et al. 2014. Three-dimensionally printed biological machines powered by skeletal muscle. PNAS 111:10125–30
    [Google Scholar]
  215. 215.
    Gauvin R, Chen YC, Lee JW, Soman P, Zorlutuna P et al. 2012. Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials 33:3824–34
    [Google Scholar]
  216. 216.
    Soman P, Chung PH, Zhang AP, Chen SC 2013. Digital microfabrication of user-defined 3D microstructures in cell-laden hydrogels. Biotechnol. Bioeng. 110:3038–47
    [Google Scholar]
  217. 217.
    Cha C, Soman P, Zhu W, Nikkah M, Camci-Unal G et al. 2014. Structural reinforcement of cell-laden hydrogels with microfabricated three dimensional scaffolds. Biomater. Sci. 2:703–9
    [Google Scholar]
  218. 218.
    Han L-HH, Mapili G, Chen S, Roy K 2008. Projection microfabrication of three-dimensional scaffolds for tissue engineering. J. Manuf. Sci. Eng. 130:21005
    [Google Scholar]
  219. 219.
    Fozdar DY, Lee JY, Schmidt CE, Chen S 2010. Hippocampal neurons respond uniquely to topographies of various sizes and shapes. Biofabrication 2:035005
    [Google Scholar]
  220. 220.
    Drury JL, Mooney DJ. 2003. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–51
    [Google Scholar]
  221. 221.
    Sharma B, Fermanian S, Gibson M, Unterman S, Herzka DA et al. 2013. Human cartilage repair with a photoreactive adhesive-hydrogel composite. Sci. Transl. Med. 5:167ra6
    [Google Scholar]
  222. 222.
    Cruise GM, Hegre OD, Lamberti FV, Hager SR, Hill R et al. 1999. In vitro and in vivo performance of porcine islets encapsulated in interfacially photopolymerized poly(ethylene glycol) diacrylate membranes. Cell Transplant 8:293–306
    [Google Scholar]
  223. 223.
    Hahn MS, Taite LJ, Moon JJ, Rowland MC, Ruffino KA, West JL 2006. Photolithographic patterning of polyethylene glycol hydrogels. Biomaterials 27:2519–24
    [Google Scholar]
  224. 224.
    Tsang VL, Chen AA, Cho LM, Jadin KD, Sah RL et al. 2007. Fabrication of 3D hepatic tissues by additive photopatterning of cellular hydrogels. FASEB J 21:790–801
    [Google Scholar]
  225. 225.
    Arcaute K, Mann BK, Wicker RB 2006. Stereolithography of three-dimensional bioactive poly(ethylene glycol) constructs with encapsulated cells. Ann. Biomed. Eng. 34:1429–41
    [Google Scholar]
  226. 226.
    Ovsianikov A, Malinauskas M, Schlie S, Chichkov B, Gittard S et al. 2011. Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications. Acta Biomater 7:967–74
    [Google Scholar]
  227. 227.
    Zhang R, Larsen NB. 2017. Stereolithographic hydrogel printing of 3D culture chips with biofunctionalized complex 3D perfusion networks. Lab Chip 17:4273–82
    [Google Scholar]
  228. 228.
    Fairbanks BD, Schwartz MP, Bowman CN, Anseth KS 2009. Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility. Biomaterials 30:6702–7
    [Google Scholar]
  229. 229.
    Torgersen J, Ovsianikov A, Mironov V, Pucher N, Qin X et al. 2012. Photo-sensitive hydrogels for three-dimensional laser microfabrication in the presence of whole organisms. J. Biomed. Opt. 17:105008
    [Google Scholar]
  230. 230.
    Ong LJY, Islam A, DasGupta R, Iyer NG, Leo HL, Toh YC 2017. A 3D printed microfluidic perfusion device for multicellular spheroid cultures. Biofabrication 9:045005
    [Google Scholar]
  231. 231.
    Leonhardt S, Klare M, Scheer M, Fischer T, Cordes B, Eblenkamp M 2016. Biocompatibility of photopolymers for additive manufacturing. Curr. Dir. Biomed. Eng. 2:113–16
    [Google Scholar]
  232. 232.
    Bhattacharjee N, Urrios A, Kang S, Folch A 2016. The upcoming 3D-printing revolution in microfluidics. Lab Chip 16:1720–42
    [Google Scholar]
  233. 233.
    Zhu F, Friedrich T, Nugegoda D, Kaslin J, Wlodkowic D 2015. Assessment of the biocompatibility of three-dimensional-printed polymers using multispecies toxicity tests. Biomicrofluidics 9:61103
    [Google Scholar]
  234. 234.
    Macdonald NP, Zhu F, Hall CJ, Reboud J, Crosier PS et al. 2016. Assessment of biocompatibility of 3D printed photopolymers using zebrafish embryo toxicity assays. Lab Chip 16:291–97
    [Google Scholar]
  235. 235.
    Carve M, Wlodkowic D. 2018. 3D-printed chips: compatibility of additive manufacturing photopolymeric substrata with biological applications. Micromachines 9:91
    [Google Scholar]
  236. 236.
    Gittard SD, Miller PR, Boehm RD, Ovsianikov A, Chichkov BN et al. 2011. Multiphoton microscopy of transdermal quantum dot delivery using two photon polymerization-fabricated polymer microneedles. Faraday Discuss 149:171–85
    [Google Scholar]
  237. 237.
    Miller PR, Gittard SD, Edwards TL, Lopez DM, Xiao X et al. 2011. Integrated carbon fiber electrodes within hollow polymer microneedles for transdermal electrochemical sensing. Biomicrofluidics 5:13415
    [Google Scholar]
  238. 238.
    Doraiswamy A, Jin C, Narayan RJ, Mageswaran P, Mente P et al. 2006. Two photon induced polymerization of organic-inorganic hybrid biomaterials for microstructured medical devices. Acta Biomater 2:267–75
    [Google Scholar]
  239. 239.
    Gittard SD, Ovsianikov A, Chichkov BN, Doraiswamy A, Narayan RJ 2010. Two-photon polymerization of microneedles for transdermal drug delivery. Expert Opin. Drug Deliv. 7:513–33
    [Google Scholar]
  240. 240.
    Al-Hiyasat AS, Darmani H, Milhem MM 2005. Cytotoxicity evaluation of dental resin composites and their flowable derivatives. Clin. Oral Investig. 9:21–25
    [Google Scholar]
  241. 241.
    Lambrecht JT, Brix F. 1990. Individual skull model fabrication for craniofacial surgery. Cleft Palate Craniofac. J. 27:382–87
    [Google Scholar]
  242. 242.
    Kumar A, Ghafoor H. 2016. Rapid prototyping: a future in orthodontics. J. Orthod. Res. 4:1
    [Google Scholar]
  243. 243.
    Zaharia C, Gabor A-G, Gavrilovici A, Stan AT, Idorasi I et al. 2017. Digital dentistry—3D printing applications. J. Interdiscip. Med. 2:50–53
    [Google Scholar]
  244. 244.
    Nayar S, Bhuminathan S, Bhat WM 2015. Rapid prototyping and stereolithography in dentistry. J. Pharm. Bioallied Sci. 7:S216–19
    [Google Scholar]
  245. 245.
    Groth C, Graham JW, Redmond WR 2014. Three-dimensional printing technology. J. Clin. Orthod. 48:475–85
    [Google Scholar]
  246. 246.
    Darmani H, Al-Hiyasat AS, Milhem MM 2007. Cytotoxicity of dental composites and their leached components. Quintessence Int 38:789–95
    [Google Scholar]
  247. 247.
    Peng Q, Tang Z, Liu O, Peng Z 2015. Rapid prototyping–assisted maxillofacial reconstruction. Ann. Med. 47:186–208
    [Google Scholar]
  248. 248.
    Wen X, Gao S, Feng J, Li S, Gao R, Zhang G 2018. Chest-wall reconstruction with a customized titanium-alloy prosthesis fabricated by 3D printing and rapid prototyping. J. Cardiothorac. Surg. 13:1–7
    [Google Scholar]
  249. 249.
    Toepke MW, Beebe DJ. 2006. PDMS absorption of small molecules and consequences in microfluidic applications. Lab Chip 6:1484–86
    [Google Scholar]
  250. 250.
    Regehr KJ, Domenech M, Koepsel JT, Carver KC, Ellison-Zelski SJ et al. 2009. Biological implications of polydimethylsiloxane-based microfluidic cell culture. Lab Chip 9:2132–39
    [Google Scholar]
  251. 251.
    Delamarche E, Bernard A, Schmid H, Bietsch A, Michel B, Biebuyck H 1998. Microfluidic networks for chemical patterning of substrate: design and application to bioassays. J. Am. Chem. Soc. 120:500–8
    [Google Scholar]
  252. 252.
    Berthier E, Young EWK, Beebe D 2012. Engineers are from PDMS-land, biologists are from polystyrenia. Lab Chip 12:1224–37
    [Google Scholar]
  253. 253.
    Jo BH, Van Lerberghe LM, Motsegood KM, Beebe DJ 2000. Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer. J. Microelectromechanical Syst. 9:76–81
    [Google Scholar]
  254. 254.
    McDonald JC, Duffy DC, Anderson JR, Chiu DT, Wu H et al. 2000. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21:27–40
    [Google Scholar]
  255. 255.
    Ren K, Dai W, Zhou J, Su J, Wu H 2011. Whole Teflon microfluidic chips. PNAS 108:8162–66
    [Google Scholar]
  256. 256.
    Rogers CI, Pagaduan JV, Nordin GP, Woolley AT 2011. Single-monomer formulation of polymerized polyethylene glycol diacrylate as a nonadsorptive material for microfluidics. Anal. Chem. 83:6418–25
    [Google Scholar]
  257. 257.
    Nge PN, Rogers CI, Woolley AT 2013. Advances in microfluidic materials, functions, integration, and applications. Chem. Rev. 113:2550–83
    [Google Scholar]
  258. 258.
    Alexandra PK, Bhattacharjee N, Lee YS, Castro K, Kim YT, Folch A 2018. High-precision stereolithography of biomicrofluidic devices. Adv. Mater. Technol. 12:1800395
    [Google Scholar]
  259. 259.
    Choi KM, Rogers JA. 2003. A photocurable poly(dimethylsiloxane) chemistry designed for soft lithographic molding and printing in the nanometer regime. J. Am. Chem. Soc. 125:4060–61
    [Google Scholar]
  260. 260.
    Bhagat AAS, Jothimuthu P, Papautsky I 2007. Photodefinable polydimethylsiloxane (PDMS) for rapid lab-on-a-chip prototyping. Lab Chip 7:1192
    [Google Scholar]
  261. 261.
    Desai SP, Taff BM, Voldman J 2008. A photopatternable silicone for biological applications. Langmuir 24:575–81
    [Google Scholar]
  262. 262.
    Cong H, Pan T. 2008. Photopatternable conductive PDMS materials for microfabrication. Adv. Funct. Mater. 18:1912–21
    [Google Scholar]
  263. 263.
    Coenjarts CA, Ober CK. 2004. Two-photon three-dimensional microfabrication of poly(dimethylsiloxane) elastomers. Chem. Mater. 16:5556–58
    [Google Scholar]
  264. 264.
    Rekštytė S, Malinauskas M, Juodkazis S 2013. Three-dimensional laser micro-sculpturing of silicone: towards bio-compatible scaffolds. Opt. Express 21:17028
    [Google Scholar]
  265. 265.
    Thrasher CJ, Schwartz JJ, Boydston AJ 2017. Modular elastomer photoresins for digital light processing additive manufacturing. ACS Appl. Mater. Interfaces 9:39708–16
    [Google Scholar]
  266. 266.
    Patel DK, Sakhaei AH, Layani M, Zhang B, Ge Q, Magdassi S 2017. Highly stretchable and UV curable elastomers for digital light processing based 3D printing. Adv. Mater. 29:1606000
    [Google Scholar]
  267. 267.
    Xu BB, Zhang Y-L, Xia H, Dong W-F, Ding H, Sun H-B 2013. Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing. Lab Chip 13:1677–90
    [Google Scholar]
  268. 268.
    Selimis A, Mironov V, Farsari M 2014. Direct laser writing: principles and materials for scaffold 3D printing. Microelectron. Eng. 132:83–89
    [Google Scholar]
  269. 269.
    Kaehr B, Shear JB. 2007. Mask-directed multiphoton lithography. J. Am. Chem. Soc. 129:1904–5
    [Google Scholar]
  270. 270.
    Zhou X, Hou Y, Lin J 2015. A review on the processing accuracy of two-photon polymerization. AIP Adv 5:30701
    [Google Scholar]
  271. 271.
    LaFratta CN, Fourkas JT, Baldacchini T, Farrer RA 2007. Multiphoton fabrication. Angew. Chem. Int. Ed. Engl. 46:6238–58
    [Google Scholar]
  272. 272.
    Lee MP, Cooper GJ, Hinkley T, Gibson GM, Padgett MJ, Cronin L 2015. Development of a 3D printer using scanning projection stereolithography. Sci. Rep. 5:9875
    [Google Scholar]
  273. 273.
    Gong H, Bickham BP, Woolley AT, Nordin GP 2017. Custom 3D printer and resin for 18 μm × 20 μm microfluidic flow channels. Lab Chip 17:2899–909
    [Google Scholar]
  274. 274.
    Galajda P, Ormos P. 2001. Complex micromachines produced and driven by light. Appl. Phys. Lett. 78:249–51
    [Google Scholar]
  275. 275.
    Galajda P, Ormos P. 2002. Rotors produced and driven in laser tweezers with reversed direction of rotation. Appl. Phys. Lett. 80:4653–55
    [Google Scholar]
  276. 276.
    Xia H, Wang J, Tian Y, Chen Q-D, Du X-B et al. 2010. Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization. Adv. Mater. 22:3204–7
    [Google Scholar]
  277. 277.
    Maruo S, Inoue H. 2006. Optically driven micropump produced by three-dimensional two-photon microfabrication. Appl. Phys. Lett. 89:144101
    [Google Scholar]
  278. 278.
    Maruo S, Inoue H. 2007. Optically driven viscous micropump using a rotating microdisk. Appl. Phys. Lett. 91:84101
    [Google Scholar]
  279. 279.
    He Y, Huang BL, Lu DX, Zhao J, Xu BB et al. 2012. “Overpass” at the junction of a crossed microchannel: an enabler for 3D microfluidic chips. Lab Chip 12:3866–69
    [Google Scholar]
  280. 280.
    Wang J, He Y, Xia H, Niu LG, Zhang R et al. 2010. Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization. Lab Chip 10:1993–96
    [Google Scholar]
  281. 281.
    Kaehr B, Shear JB. 2008. Multiphoton fabrication of chemically responsive protein hydrogels for microactuation. PNAS 105:8850–54
    [Google Scholar]
  282. 282.
    Nielson R, Kaehr B, Shear JB 2009. Microreplication and design of biological architectures using dynamic-mask multiphoton lithography. Small 5:120–25
    [Google Scholar]
  283. 283.
    Kaehr B, Shear JB. 2009. High-throughput design of microfluidics based on directed bacterial motility. Lab Chip 9:2632–37
    [Google Scholar]
  284. 284.
    Lim TW, Son Y, Jeong YJ, Yang DY, Kong HJ et al. 2011. Three-dimensionally crossing manifold micro-mixer for fast mixing in a short channel length. Lab Chip 11:100–3
    [Google Scholar]
  285. 285.
    Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R 2017. Polymers for 3D printing and customized additive manufacturing. Chem. Rev. 117:10212–90
    [Google Scholar]
/content/journals/10.1146/annurev-bioeng-092618-020341
Loading
/content/journals/10.1146/annurev-bioeng-092618-020341
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error