Skip to main content

Advertisement

Log in

Phytochemical and Gene Expression Reveals the Antioxidant Responses to Copper Ions in Brassica rapa

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The toxicity of increasing heavy metal ion in soil has been threatening the food security and environments. In this study, we used Brassica rapa variety Qinggen #1, a leafy and oil vegetable, to investigate the effects of coper ion (Cu2+) on adaptive defense to understand regulatory molecular mechanisms. The variety exhibited a high tolerance at high Cu2+ concentration (200 mg L−1). More increases in superoxide radical, hydrogen peroxide, malondialdehyde, and proline were observed at higher concentration than low concentrations. Enzyme activities of SOD, GR, CAT, and APX were significantly altered earlier than corresponding expression of coding genes was up-regulated, indicating two distinct regulations at enzyme and gene levels. The CAT activity and expression correlated with the reactive oxygen species levels, indicating a more important role than other enzymes. Taken together, the high tolerance to Cu2+ in B. rapa is resulting from changes in biochemistry, enzyme, and gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aksmann A, Pokora W, Baścikremisiewicz A, Dettlaffpokora A, Wielgomas B, Dziadziuszko M, Tukaj Z (2014) Time-dependent changes in antioxidative enzyme expression and photosynthetic activity of Chlamydomonas reinhardtii cells under acute exposure to cadmium and anthracene. Ecotoxicol Environ Saf 110:31–40

    CAS  PubMed  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    CAS  PubMed  Google Scholar 

  • Barros P, Saibo N, Martins M, Ma RC, Oliveira MM, Zakynthinos G(2010) Identification of candidate genes involved in the response to biotic and abiotic stress in almond. Options Méditerranéennes: Série A. Séminaires Méditerranéens. http://om.ciheam.org/om/pdf/a94/00801288.pdf

  • Bassi R, Sharma SS (1993) Proline accumulation in wheat seedlings exposed to zinc and copper. Phytochemistry 33:1339–1342

    CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    CAS  Google Scholar 

  • Beyer WF, Fridovich I (1987) Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem 161:559–566

    CAS  PubMed  Google Scholar 

  • Bhamburdekar SB, Chavan PD (2011) Effect of some stresses on free proline content during Pigeonpea (Cajanas cajan) seed germination. J Stress Physiol Biochem 7(3):235–241

    Google Scholar 

  • Bian SM, Jiang YW (2009) Reactive oxygen species, antioxidant enzyme activities and gene expression patterns in leaves and roots of Kentucky bluegrass in response to drought stress and recovery. Sci Hortic 120:264–270

    CAS  Google Scholar 

  • Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    CAS  PubMed  Google Scholar 

  • Burkhead JL, Gogolin Reynolds KA, Cohu CM, Pilon M (2009) Copper homeostasis. New Phytol 182(4):799–816

    CAS  PubMed  Google Scholar 

  • Chen LM, Lin CC, Kao CH (2000) Copper toxicity in rice seedlings: changes in antioxidative enzyme activities, H2O2 level, and cell wall peroxidase activity in roots. Bot Bull 41:99–103

    CAS  Google Scholar 

  • Chen CT, Chen L, Lin CC, Kao CH (2001) Regulation of proline accumulation in detached rice leaves exposed to excess copper. Plant Sci Int J Exp Plant Biol 160:283

    CAS  Google Scholar 

  • Chongpraditnun P, Mori S, Chino M (1992) Excess copper induces a cytosolic Cu, Zn-superoxide dismutase in soybean root. Plant Cell Physiol 33:239–244

    CAS  Google Scholar 

  • Contouransel D, Torresfranklin ML, Carvalho MHCD, D’Arcylameta A, Zuilyfodil Y (2006) Glutathione reductase in leaves of cowpea: cloning of two cDNAs, expression and enzymatic activity under progressive drought stress. Ann Bot 98:1279

    CAS  Google Scholar 

  • Cuypers A, Vangronsveld J, Clijsters H (2000) Biphasic effect of copper on the ascorbate-glutathione pathway in primary leaves of Phaseolus vulgaris seedlings during the early stages of metal assimilation. Physiol Plant 110:512–517

    CAS  Google Scholar 

  • Demirezen Yilmaz D, Uruçparlak K, Vural C (2012) Toxicological effects, oxidative stress and bio-accumulation in the tissues of Phaseolus vulgaris L. bean seedlings following cadmium exposure. Ekol Bratisl 31:92–104

    Google Scholar 

  • Devi SR, Prasad MNV (1998) Copper toxicity in Ceratophyllum demersum L. (Coontail), a free floating macrophyte: response of antioxidant enzymes and antioxidants. Plant Sci 138:157–165

    CAS  Google Scholar 

  • Drążkiewicz M, Skórzyńska-Polit E, Krupa Z (2003) Response of the ascorbate–glutathione cycle to excess copper in Arabidopsis thaliana (L.). Plant Sci 164:195–202

    Google Scholar 

  • Fortunato AS, Lidon FC, Batistasantos P, Leitão AE, Pais IP, Ribeiro AI, Ramalho JC (2010) Biochemical and molecular characterization of the antioxidative system of Coffea sp. under cold conditions in genotypes with contrasting tolerance. J Plant Physiol 167:333–342

    CAS  PubMed  Google Scholar 

  • Guerrero IY (2005) Copper in plants. Braz J Plant Physiol 17:145–156

    Google Scholar 

  • Hippler FWR, Cipriano DO, Boaretto RM, Quaggio JA, Gaziola SA, Azevedo RA, Mattos-Jr D (2016) Citrus rootstocks regulate the nutritional status and antioxidant system of trees under copper stress. Environ Exp Bot 130:42–52

    CAS  Google Scholar 

  • Hosseini SM, Hasanloo T, Mohammadi S (2015) Physiological characteristics, antioxidant enzyme activities, and gene expression in 2 spring canola (Brassica napus L.) cultivars under drought stress conditions. Turk J Agric For 39:413–420

    CAS  Google Scholar 

  • Hou W, Chen X, Song G, Wang Q, Chi CC (2007) Effects of copper and cadmium on heavy metal polluted waterbody restoration by duckweed (Lemna minor). Plant Physiol Biochem 45:62–69

    CAS  PubMed  Google Scholar 

  • Janas KM, Amarowicz R, Zielińska-Tomaszewska J, Kosińska A, Posmyk MM (2009) Induction of phenolic compounds in two dark-grown lentil cultivars with different tolerance to copper ions. Acta Physiol Plant 31:587–595

    CAS  Google Scholar 

  • John R, Ahmad P, Gadgil K, Sharma S (2009) Heavy metal toxicity: effect on plant growth, biochemical parameters and metal accumulation by Brassica juncea L. Int J Plant Prod 3(3):65–76

    CAS  Google Scholar 

  • Krivosheeva A, Tao DL, Ottander C, Wingsle G, Dube SL, Öquist G (1996) Cold acclimation and photoinhibition of photosynthesis in Scots pine. Planta 200:296–305

    CAS  Google Scholar 

  • Lin KH, Huang HC, Lin CY (2010) Cloning, expression and physiological analysis of broccoli catalase gene and Chinese cabbage ascorbate peroxidase gene under heat stress. Plant Cell Rep 29:575–593

    CAS  PubMed  Google Scholar 

  • Lutts S, Kinet JM, Bouharmont J (1996) NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann Bot 78:389–398

    CAS  Google Scholar 

  • Malecka A, Piechalak A, Zielińska B, Kutrowska A, Tomaszewska B (2014) Response of the pea roots defense systems to the two-element combinations of metals (Cu, Zn, Cd, Pb). Acta Biochim Pol 61:23

    PubMed  Google Scholar 

  • Mukherjee SP, Choudhuri MA (2010) Implication of hydrogen peroxide—ascorbate system on membrane permeability of water stressed vigna seedlings. New Phytol 99:355–360

    Google Scholar 

  • Nair PM, Chung IM (2015) Study on the correlation between copper oxide nanoparticles induced growth suppression and enhanced lignification in Indian mustard (Brassica juncea L.). Ecotoxicol Environ Saf 113:302

    CAS  PubMed  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    CAS  PubMed  Google Scholar 

  • Nowicka B, Pluciński B, Kuczyńska P, Kruk J (2016) Physiological characterization of Chlamydomonas reinhardtii acclimated to chronic stress induced by Ag, Cd, Cr, Cu and Hg ions. Ecotoxicol Environ Saf 130:133–145

    CAS  PubMed  Google Scholar 

  • Pokora W, Tukaj Z (2010) The combined effect of anthracene and cadmium on photosynthetic activity of three Desmodesmus (Chlorophyta) species. Ecotoxicol Environ Saf 73:1207–1213

    CAS  PubMed  Google Scholar 

  • Pryor WA (1995) Methods in enzymology, volume 233: oxygen radicals in biological systems. Free Radic Biol Med. https://doi.org/10.1016/0891-5849(95)90004-7

    Article  PubMed  Google Scholar 

  • Rao DE, Chaitanya KV (2016) Photosynthesis and antioxidative defense mechanisms in deciphering drought stress tolerance of crop plants. Biol Plant 60:1–18

    Google Scholar 

  • Ravet K, Pilon M (2013) Copper and iron homeostasis in plants: the challenges of oxidative stress. Antioxid Redox Signal 19:919

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rout JR, Ram SS, Das R, Chakraborty A, Sudarshan M, Sahoo SL (2013) Copper-stress induced alterations in protein profile and antioxidant enzymes activities in the in vitro grown Withania somnifera L. Physiol Mol Biol Plants 19:353–361

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rout JR et al (2015) Effect of iron stress on Withania somnifera L.: antioxidant enzyme response and nutrient elemental uptake of in vitro grown plants. Ecotoxicology 24:401

    CAS  PubMed  Google Scholar 

  • Saeed AI et al (2006) TM4 microarray software suite. Methods Enzymol 411:134–193

    CAS  PubMed  Google Scholar 

  • Semra S, Büyük İ, Gündüzer EG, Büyük BP, Kandemir İ, Cansaran-Duman D, Aras S (2016) Effects of lead (Pb) and cadmium (Cd) elements on lipid peroxidation, catalase enzyme activity and catalase gene expression. Profile in tomato plants. Tarim Bilimleri Dergisi 22:539–547

    Google Scholar 

  • Shahbaz M et al (2010) Copper exposure interferes with the regulation of the uptake, distribution and metabolism of sulfate in Chinese cabbage. J Plant Physiol 167:438–446

    CAS  PubMed  Google Scholar 

  • Sharma SS, Dietz KJ (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57:711–726

    CAS  PubMed  Google Scholar 

  • Sheldon AR, Menzies NW (2005) The effect of copper toxicity on the growth and root morphology of rhodes grass (Chloris gayana Knuth.) in resin buffered solution culture. Plant Soil 278:341–349

    CAS  Google Scholar 

  • Skórzyńska-Polit E, Drążkiewicz M, Krupa Z (2010) Lipid peroxidation and antioxidative response in Arabidopsis thaliana exposed to cadmium and copper. Acta Physiol Plant 32:169

    Google Scholar 

  • Stadtman ER, Oliver CN (1991) Metal-catalyzed oxidation of proteins. Physiological consequences. J Biol Chem 266:2005–2008

    CAS  PubMed  Google Scholar 

  • Szafrańska K, Cvikrová M, Kowalska U, Górecka K, Górecki R, Martincová O, Janas KM (2011) Influence of copper ions on growth, lipid peroxidation, and proline and polyamines content in carrot rosettes obtained from anther culture. Acta Physiol Plant 33:851–859

    Google Scholar 

  • Tabares LC, Gätjens J, Sun U (2010) Understanding the influence of the protein environment on the mn(ii) centers in superoxide dismutases using high-field electron paramagnetic resonance. Biochem Biophys Acta 1804:308–317

    CAS  PubMed  Google Scholar 

  • Tewari RK, Kumar P, Sharma PN (2006) Antioxidant responses to enhanced generation of superoxide anion radical and hydrogen peroxide in the copper-stressed mulberry plants. Planta 223:1145–1153

    CAS  PubMed  Google Scholar 

  • Thounaojam TC, Panda P, Mazumdar P, Kumar D, Sharma GD, Sahoo L, Panda SK (2012) Excess copper induced oxidative stress and response of antioxidants in rice. Plant Physiol Biochem 53:33–39

    CAS  PubMed  Google Scholar 

  • Wang XW, Freeling M (2013) The Brassica genome. Front Plant Sci 4:148

    PubMed  PubMed Central  Google Scholar 

  • Wang X et al (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039

    CAS  PubMed  Google Scholar 

  • Wu TM, Hsu YT, Lee TM (2009) Effects of cadmium on the regulation of antioxidant enzyme activity, gene expression, and antioxidant defenses in the marine macroalga Ulva fasciata. Bot Stud 50:25–34

    CAS  Google Scholar 

  • Yilmaz D, Uruç-Parlak KA, Vural C (2012) Toxicological effects, oxidative stress and bio-accumulation in the tissues of Phaseolus vulgaris L. bean seedlings following cadmium exposure. Ekol Bratisl 31:92–104

    Google Scholar 

Download references

Acknowledgements

This work was funded by the China National Sciences Foundation (31370601, 31670700, 31000225, and 31100172).

Author information

Authors and Affiliations

Authors

Contributions

YR and HW designed the experiment. YR, GJ, and LL carried out the field measurements. YR and HW analyzed the data and all authors interpreted the results. YR, GJ, and HW wrote the manuscript.

Corresponding author

Correspondence to Hongyan Wang.

Ethics declarations

Conflict of interest

All authors claimed that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruan, Y., Ji, G., Gao, J. et al. Phytochemical and Gene Expression Reveals the Antioxidant Responses to Copper Ions in Brassica rapa. J Plant Growth Regul 39, 313–323 (2020). https://doi.org/10.1007/s00344-019-09983-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-019-09983-0

Keywords

Navigation