Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Barrett oesophagus

Abstract

Barrett oesophagus (BE), the only known histological precursor of oesophageal adenocarcinoma (EAC), is a condition in which the squamous epithelium of the oesophagus is replaced by columnar epithelium as an adaptive response to gastro-oesophageal reflux. EAC has one of the fastest rising incidences of cancers in Western countries and has a dismal prognosis. BE is usually detected during endoscopic examination, and diagnosis is confirmed by the histological presence of intestinal metaplasia. Advances in genomics and transcriptomics have improved our understanding of the pathogenesis and malignant progression of intestinal metaplasia. As the majority of EAC cases are diagnosed in individuals without a known history of BE, screening for BE could potentially decrease disease-related mortality. Owing to the pre-malignant nature of BE, endoscopic surveillance of patients with BE is imperative for early detection and treatment of dysplasia to prevent further progression to invasive EAC. Developments in endoscopic therapy have resulted in a major shift in the treatment of patients with BE who have dysplasia or early EAC, from surgical resection to endoscopic resection and ablation. In addition to symptom control by optimization of lifestyle and pharmacological therapy with proton pump inhibitors, chemopreventive strategies based on NSAIDs and statins are currently being investigated for BE management.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Development and progression of Barrett oesophagus.
Fig. 2: Pathogenesis of Barrett oesophagus.
Fig. 3: Mechanisms of malignant progression in Barrett oesophagus.
Fig. 4: Endoscopic diagnosis of Barrett oesophagus.
Fig. 5: Histopathological features of Barrett oesophagus.
Fig. 6: Screening techniques for Barrett oesophagus.
Fig. 7: Algorithm for management of non-dysplastic and dysplastic Barrett oesophagus.
Fig. 8: Endoscopic approaches for treatment of Barrett oesophagus.

Similar content being viewed by others

References

  1. Spechler, S. J., Sharma, P., Souza, R. F., Inadomi, J. M. & Shaheen, N. J. American Gastroenterological Association medical position statement on the management of Barrett’s esophagus. Gastroenterology 140, 1084–1091 (2011).

    Article  PubMed  Google Scholar 

  2. Shaheen, N. J., Falk, G. W., Iyer, P. G. & Gerson, L. B. ACG clinical guideline: diagnosis and management of Barrett’s esophagus. Am. J. Gastroenterol. 111, 30–50 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Fitzgerald, R. C. et al. British Society of Gastroenterology guidelines on the diagnosis and management of Barrett’s oesophagus. Gut 63, 7–42 (2014).

    Article  PubMed  Google Scholar 

  4. Evans, J. A. et al. The role of endoscopy in Barrett’s esophagus and other premalignant conditions of the esophagus. Gastrointest. Endosc. 76, 1087–1094 (2012).

    Article  PubMed  Google Scholar 

  5. Ronkainen, J. et al. Prevalence of Barrett’s esophagus in the general population: an endoscopic study. Gastroenterology 129, 1825–1831 (2005).

    Article  PubMed  Google Scholar 

  6. Rex, D. K. et al. Screening for Barrett’s esophagus in colonoscopy patients with and without heartburn. Gastroenterology 125, 1670–1677 (2003).

    Article  PubMed  Google Scholar 

  7. Sawas, T. et al. Identification of prognostic phenotypes of esophageal adenocarcinoma in two independent cohorts. Gastroenterology 155, 1720–1728 (2018).

    Article  PubMed  Google Scholar 

  8. Ross-Innes, C. S. et al. Evaluation of a minimally invasive cell sampling device coupled with assessment of trefoil factor 3 expression for diagnosing Barrett’s esophagus: a multi-center case-control study. PLOS Med. 12, e1001780 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vaughan, T. L. & Fitzgerald, R. C. Precision prevention of oesophageal adenocarcinoma. Nat. Rev. Gastroenterol. Hepatol. 12, 243–248 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Arnold, M., Laversanne, M., Brown, L. M., Devesa, S. S. & Bray, F. Predicting the future burden of esophageal cancer by histological subtype: international trends in incidence up to 2030. Am. J. Gastroenterol. 112, 1247–1255 (2017).

    Article  PubMed  Google Scholar 

  11. Jung, K. W. et al. Epidemiology and natural history of intestinal metaplasia of the gastroesophageal junction and Barrett’s esophagus: a population-based study. Am. J. Gastroenterol. 106, 1447–1455 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Alcedo, J. et al. Trends in Barrett’s esophagus diagnosis in Southern Europe: implications for surveillance. Dis. Esophagus 22, 239–248 (2009).

    Article  PubMed  Google Scholar 

  13. Kadri, S. R. et al. Acceptability and accuracy of a non-endoscopic screening test for Barrett’s oesophagus in primary care: cohort study. BMJ 341, c4372 (2010). This prospective study screens individuals with long-term PPI use for BE using the minimally invasive Cytosponge.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lagergren, J., Bergstrom, R., Lindgren, A. & Nyren, O. Symptomatic gastroesophageal reflux as a risk factor for esophageal adenocarcinoma. N. Engl. J. Med. 340, 825–831 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Lin, E. C., Holub, J., Lieberman, D. & Hur, C. Low prevalence of suspected Barrett’s esophagus in patients with gastroesophageal reflux disease without alarm symptoms. Clin. Gastroenterol. Hepatol. 17, 857–863 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Shaheen, N. J., Crosby, M. A., Bozymski, E. M. & Sandler, R. S. Is there publication bias in the reporting of cancer risk in Barrett’s esophagus? Gastroenterology 119, 333–338 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Hvid-Jensen, F., Pedersen, L., Drewes, A. M., Sorensen, H. T. & Funch-Jensen, P. Incidence of adenocarcinoma among patients with Barrett’s esophagus. N. Engl. J. Med. 365, 1375–1383 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Peters, Y. et al. Incidence of progression of persistent non-dysplastic Barrett’s esophagus to malignancy. Clin. Gastroenterol. Hepatol. 17, 869–877 (2018).

    Article  PubMed  Google Scholar 

  19. Olsen, C. M. et al. Population attributable fractions of adenocarcinoma of the esophagus and gastroesophageal junction. Am. J. Epidemiol. 174, 582–590 (2011).

    Article  PubMed  Google Scholar 

  20. Abrams, J. A., Fields, S., Lightdale, C. J. & Neugut, A. I. Racial and ethnic disparities in the prevalence of Barrett’s esophagus among patients who undergo upper endoscopy. Clin. Gastroenterol. Hepatol. 6, 30–34 (2008).

    Article  PubMed  Google Scholar 

  21. Wang, A., Mattek, N. C., Holub, J. L., Lieberman, D. A. & Eisen, G. M. Prevalence of complicated gastroesophageal reflux disease and Barrett’s esophagus among racial groups in a multi-center consortium. Dig. Dis. Sci. 54, 964–971 (2009).

    Article  PubMed  Google Scholar 

  22. Keyashian, K. et al. Barrett’s esophagus in Latinos undergoing endoscopy for gastroesophageal reflux disease symptoms. Dis. Esophagus 26, 44–49 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Shiota, S., Singh, S., Anshasi, A. & El-Serag, H. B. Prevalence of Barrett’s esophagus in Asian countries: a systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 13, 1907–1918 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cook, M. B., Wild, C. P. & Forman, D. A systematic review and meta-analysis of the sex ratio for Barrett’s esophagus, erosive reflux disease, and nonerosive reflux disease. Am. J. Epidemiol. 162, 1050–1061 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Edelstein, Z. R., Bronner, M. P., Rosen, S. N. & Vaughan, T. L. Risk factors for Barrett’s esophagus among patients with gastroesophageal reflux disease: a community clinic-based case-control study. Am. J. Gastroenterol. 104, 834–842 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Westra, W. M. et al. Smokeless tobacco and cigar and/or pipe are risk factors for Barrett esophagus in male patients with gastroesophageal reflux disease. Mayo Clin. Proc. 93, 1282–1289 (2018).

    Article  PubMed  Google Scholar 

  27. Cook, M. B. et al. Cigarette smoking increases risk of Barrett’s esophagus: an analysis of the Barrett’s and Esophageal Adenocarcinoma Consortium. Gastroenterology 142, 744–753 (2012).

    Article  PubMed  Google Scholar 

  28. Zhao, Z. et al. Dietary fruit, vegetable, fat, and red and processed meat intakes and Barrett’s esophagus risk: a systematic review and meta-analysis. Sci. Rep. 6, 27334 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Keszei, A. P. et al. Meat consumption and the risk of Barrett’s esophagus in a large Dutch cohort. Cancer Epidemiol. Biomarkers Prev. 22, 1162–1166 (2013).

    Article  PubMed  Google Scholar 

  30. Iijima, K. et al. Dietary nitrate generates potentially mutagenic concentrations of nitric oxide at the gastroesophageal junction. Gastroenterology 122, 1248–1257 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Moriya, A. et al. In vitro studies indicate that acid catalysed generation of N-nitrosocompounds from dietary nitrate will be maximal at the gastro-oesophageal junction and cardia. Scand. J. Gastroenterol. 37, 253–261 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Thrift, A. P. et al. Lifetime alcohol consumption and risk of Barrett’s esophagus. Am. J. Gastroenterol. 106, 1220–1230 (2011).

    Article  PubMed  Google Scholar 

  33. Kubo, A. et al. Alcohol types and sociodemographic characteristics as risk factors for Barrett’s esophagus. Gastroenterology 136, 806–815 (2009).

    Article  PubMed  Google Scholar 

  34. Singh, S. et al. Central adiposity is associated with increased risk of esophageal inflammation, metaplasia, and adenocarcinoma: a systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 11, 1399–1412 (2013).

    Article  PubMed  Google Scholar 

  35. Kubo, A. et al. Sex-specific associations between body mass index, waist circumference and the risk of Barrett’s oesophagus: a pooled analysis from the International BEACON Consortium. Gut 62, 1684–1691 (2013).

    Article  PubMed  Google Scholar 

  36. Chandar, A. K. et al. Association of serum levels of adipokines and insulin with risk of Barrett’s esophagus: a systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 13, 2241–2255 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ayazi, S. et al. Obesity and gastroesophageal reflux: quantifying the association between body mass index, esophageal acid exposure, and lower esophageal sphincter status in a large series of patients with reflux symptoms. J. Gastrointest. Surg. 13, 1440–1447 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wu, J. C., Mui, L. M., Cheung, C. M., Chan, Y. & Sung, J. J. Obesity is associated with increased transient lower esophageal sphincter relaxation. Gastroenterology 132, 883–889 (2007).

    Article  PubMed  Google Scholar 

  39. Leodolter, A. et al. Progression of specialized intestinal metaplasia at the cardia to macroscopically evident Barrett’s esophagus: an entity of concern in the ProGERD study. Scand. J. Gastroenterol. 47, 1429–1435 (2012).

    Article  PubMed  Google Scholar 

  40. Dunbar, K. B. et al. Association of acute gastroesophageal reflux disease with esophageal histologic changes. JAMA 315, 2104–2112 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Iascone, C., DeMeester, T. R., Little, A. G. & Skinner, D. B. Barrett’s esophagus. Functional assessment, proposed pathogenesis, and surgical therapy. Arch. Surg. 118, 543–549 (1983).

    Article  CAS  PubMed  Google Scholar 

  42. Collen, M. J., Lewis, J. H. & Benjamin, S. B. Gastric acid hypersecretion in refractory gastroesophageal reflux disease. Gastroenterology 98, 654–661 (1990).

    Article  CAS  PubMed  Google Scholar 

  43. Mulholland, M. W., Reid, B. J., Levine, D. S. & Rubin, C. E. Elevated gastric acid secretion in patients with Barrett’s metaplastic epithelium. Dig. Dis. Sci. 34, 1329–1334 (1989).

    Article  CAS  PubMed  Google Scholar 

  44. Taylor, J. B. & Rubenstein, J. H. Meta-analyses of the effect of symptoms of gastroesophageal reflux on the risk of Barrett’s esophagus. Am. J. Gastroenterol. 105, 1730–1737 (2010).

    Article  PubMed Central  Google Scholar 

  45. Ward, E. M. et al. Barrett’s esophagus is common in older men and women undergoing screening colonoscopy regardless of reflux symptoms. Am. J. Gastroenterol. 101, 12–17 (2006).

    Article  PubMed  Google Scholar 

  46. Andrici, J., Tio, M., Cox, M. R. & Eslick, G. D. Hiatal hernia and the risk of Barrett’s esophagus. J. Gastroenterol. Hepatol. 28, 415–431 (2013).

    Article  PubMed  Google Scholar 

  47. Wang, Z. et al. Helicobacter pylori infection is associated with reduced risk of Barrett’s esophagus: an analysis of the Barrett’s and Esophageal Adenocarcinoma Consortium. Am. J. Gastroenterol. 113, 1148–1155 (2018).

    Article  PubMed  Google Scholar 

  48. Eross, B. et al. Helicobacter pylori infection reduces the risk of Barrett’s esophagus: a meta-analysis and systematic review. Helicobacter 23, e12504 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Chak, A. et al. Familiality in Barrett’s esophagus, adenocarcinoma of the esophagus, and adenocarcinoma of the gastroesophageal junction. Cancer Epidemiol. Biomarkers Prev. 15, 1668–1673 (2006).

    Article  PubMed  Google Scholar 

  50. Verbeek, R. E. et al. Familial clustering of Barrett’s esophagus and esophageal adenocarcinoma in a European cohort. Clin. Gastroenterol. Hepatol. 12, 1656–1663 (2014).

    Article  PubMed  Google Scholar 

  51. Thrift, A. P. et al. The use of nonsteroidal anti-inflammatory drugs and the risk of Barrett’s oesophagus. Aliment. Pharmacol. Ther. 34, 1235–1244 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Beales, I. L., Dearman, L., Vardi, I. & Loke, Y. Reduced risk of Barrett’s esophagus in statin users: case-control study and meta-analysis. Dig. Dis. Sci. 61, 238–246 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Brown, C. S. et al. Predicting progression in Barrett’s esophagus: development and validation of the Barrett’s Esophagus Assessment of Risk Score (BEAR Score). Ann. Surg. 267, 716–720 (2018).

    Article  PubMed  Google Scholar 

  54. Gatenby, P., Bhattacharjee, S., Wall, C., Caygill, C. & Watson, A. Risk stratification for malignant progression in Barrett’s esophagus: gender, age, duration and year of surveillance. World J. Gastroenterol. 22, 10592–10600 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Krishnamoorthi, R. et al. Factors associated with progression of Barrett’s esophagus: a systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 16, 1046–1055 (2018).

    Article  PubMed  Google Scholar 

  56. Parasa, S. et al. Development and validation of a model to determine risk of progression of Barrett’s esophagus to neoplasia. Gastroenterology 154, 1282–1289 (2018). This study of 2,697 patients with BE develops a scoring system based on male sex, smoking, length of BE and baseline LGD and identifies patients with BE at low risk, intermediate risk and high risk of EAC.

    Article  PubMed  Google Scholar 

  57. Bhat, S. et al. Risk of malignant progression in Barrett’s esophagus patients: results from a large population-based study. J. Natl Cancer Inst. 103, 1049–1057 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kelty, C. J., Gough, M. D., Van Wyk, Q., Stephenson, T. J. & Ackroyd, R. Barrett’s oesophagus: intestinal metaplasia is not essential for cancer risk. Scand. J. Gastroenterol. 42, 1271–1274 (2007).

    Article  PubMed  Google Scholar 

  59. Codipilly, D. C. et al. The effect of endoscopic surveillance in patients with Barrett’s esophagus: a systematic review and meta-analysis. Gastroenterology 154, 2068–2086 (2018). This systematic review and meta-analysis shows that surveillance of patients with BE is associated with detection of earlier-stage EAC and a small survival benefit.

    Article  PubMed  Google Scholar 

  60. Duits, L. C. et al. Patients with Barrett’s esophagus and confirmed persistent low-grade dysplasia are at increased risk for progression to neoplasia. Gastroenterology 152, 993–1001 (2017).

    Article  PubMed  Google Scholar 

  61. Kestens, C., Offerhaus, G. J., van Baal, J. W. & Siersema, P. D. Patients with Barrett’s esophagus and persistent low-grade dysplasia have an increased risk for high-grade dysplasia and cancer. Clin. Gastroenterol. Hepatol. 14, 956–962 (2016).

    Article  PubMed  Google Scholar 

  62. Rastogi, A. et al. Incidence of esophageal adenocarcinoma in patients with Barrett’s esophagus and high-grade dysplasia: a meta-analysis. Gastrointest. Endosc. 67, 394–398 (2008).

    Article  PubMed  Google Scholar 

  63. Shaheen, N. J. et al. Radiofrequency ablation in Barrett’s esophagus with dysplasia. N. Engl. J. Med. 360, 2277–2288 (2009). This sham-controlled randomized trial analyses whether endoscopic RFA could eradicate dysplastic BE and decrease the rate of malignant progression.

    Article  CAS  PubMed  Google Scholar 

  64. Overholt, B. F. et al. Photodynamic therapy with porfimer sodium for ablation of high-grade dysplasia in Barrett’s esophagus: international, partially blinded, randomized phase III trial. Gastrointest. Endosc. 62, 488–498 (2005).

    Article  PubMed  Google Scholar 

  65. Souza, R. F. Reflux esophagitis and its role in the pathogenesis of Barrett’s metaplasia. J. Gastroenterol. 52, 767–776 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Glickman, J. N. et al. Mucin core polypeptide expression in the progression of neoplasia in Barrett’s esophagus. Hum. Pathol. 37, 1304–1315 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Lavery, D. L. et al. The stem cell organisation, and the proliferative and gene expression profile of Barrett’s epithelium, replicates pyloric-type gastric glands. Gut 63, 1854–1863 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. McQuaid, K. R., Laine, L., Fennerty, M. B., Souza, R. & Spechler, S. J. Systematic review: the role of bile acids in the pathogenesis of gastro-oesophageal reflux disease and related neoplasia. Aliment. Pharmacol. Ther. 34, 146–165 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Mari, L. et al. A pSMAD/CDX2 complex is essential for the intestinalization of epithelial metaplasia. Cell Rep. 7, 1197–1210 (2014).

    Article  CAS  PubMed  Google Scholar 

  70. Wang, D. H. et al. Aberrant epithelial-mesenchymal Hedgehog signaling characterizes Barrett’s metaplasia. Gastroenterology 138, 1810–1822 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Jiang, M. et al. Transitional basal cells at the squamous-columnar junction generate Barrett’s oesophagus. Nature 550, 529–533 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kong, J., Crissey, M. A., Funakoshi, S., Kreindler, J. L. & Lynch, J. P. Ectopic Cdx2 expression in murine esophagus models an intermediate stage in the emergence of Barrett’s esophagus. PLOS ONE 6, e18280 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Vega, M. E. et al. Inhibition of Notch signaling enhances transdifferentiation of the esophageal squamous epithelium towards a Barrett’s-like metaplasia via KLF4. Cell Cycle 13, 3857–3866 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Slack, J. M. Metaplasia and transdifferentiation: from pure biology to the clinic. Nature reviews. Mol. Cell Biol. 8, 369–378 (2007).

    Article  CAS  Google Scholar 

  75. Groisman, G. M., Amar, M. & Meir, A. Expression of the intestinal marker Cdx2 in the columnar-lined esophagus with and without intestinal (Barrett’s) metaplasia. Mod. Pathol. 17, 1282–1288 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Barbera, M. & Fitzgerald, R. C. Cellular origin of Barrett’s metaplasia and oesophageal stem cells. Biochem. Soc. Trans. 38, 370–373 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Li, H. et al. Mechanisms of columnar metaplasia and squamous regeneration in experimental Barrett’s esophagus. Surgery 115, 176–181 (1994).

    CAS  PubMed  Google Scholar 

  78. Quante, M. et al. Bile acid and inflammation activate gastric cardia stem cells in a mouse model of Barrett-like metaplasia. Cancer Cell 21, 36–51 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kübler, K. et al. Tumor mutational landscape is a record of the pre-malignant state. Preprint at bioRxiv https://doi.org/10.1101/517565 (2019).

    Article  Google Scholar 

  80. The Cancer Genome Atlas Research Network. Integrated genomic characterization of oesophageal carcinoma. Nature 541, 169–175 (2017).

    Article  CAS  PubMed Central  Google Scholar 

  81. Coad, R. A. et al. On the histogenesis of Barrett’s oesophagus and its associated squamous islands: a three-dimensional study of their morphological relationship with native oesophageal gland ducts. J. Pathol. 206, 388–394 (2005).

    Article  PubMed  Google Scholar 

  82. Leedham, S. J. et al. Individual crypt genetic heterogeneity and the origin of metaplastic glandular epithelium in human Barrett’s oesophagus. Gut 57, 1041–1048 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Kruger, L. et al. Ductular and proliferative response of esophageal submucosal glands in a porcine model of esophageal injury and repair. Am. J. Physiol. Gastrointest. Liver Physiol. 313, G180–G191 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  84. von Furstenberg, R. J. et al. Porcine esophageal submucosal gland culture model shows capacity for proliferation and differentiation. Cell. Mol. Gastroenterol. Hepatol. 4, 385–404 (2017).

    Article  Google Scholar 

  85. Owen, R. P. et al. Single cell RNA-seq reveals profound transcriptional similarity between Barrett’s oesophagus and oesophageal submucosal glands. Nat. Commun. 9, 4261 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wang, X. et al. Residual embryonic cells as precursors of a Barrett’s-like metaplasia. Cell 145, 1023–1035 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Seery, J. P. Stem cells of the oesophageal epithelium. J. Cell Sci. 115, 1783–1789 (2002).

    PubMed  Google Scholar 

  88. Hutchinson, L. et al. Human Barrett’s adenocarcinoma of the esophagus, associated myofibroblasts, and endothelium can arise from bone marrow-derived cells after allogeneic stem cell transplant. Stem Cells Dev. 20, 11–17 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Kapoor, H., Lohani, K. R., Lee, T. H., Agrawal, D. K. & Mittal, S. K. Animal models of Barrett’s esophagus and esophageal adenocarcinoma-past, present, and future. Clin. Transl Sci. 8, 841–847 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Dong, J. et al. Interactions between genetic variants and environmental factors affect risk of esophageal adenocarcinoma and Barrett’s esophagus. Clin. Gastroenterol. Hepatol. 16, 1598–1606 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Dong, J. et al. Determining risk of Barrett’s esophagus and esophageal adenocarcinoma based on epidemiologic factors and genetic variants. Gastroenterology 154, 1273–1281 (2018).

    Article  CAS  PubMed  Google Scholar 

  92. Sun, X. et al. Genomic regions associated with susceptibility to Barrett’s esophagus and esophageal adenocarcinoma in African Americans: the cross BETRNet admixture study. PLOS ONE 12, e0184962 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ek, W. E. et al. Germline genetic contributions to risk for esophageal adenocarcinoma, Barrett’s esophagus, and gastroesophageal reflux. J. Natl Cancer Inst. 105, 1711–1718 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Gharahkhani, P. et al. Genome-wide association studies in oesophageal adenocarcinoma and Barrett’s oesophagus: a large-scale meta-analysis. Lancet. Oncol. 17, 1363–1373 (2016). This meta-analysis of all GWASs of BE and EAC investigates novel genetic risk variants for BE development and malignant progression.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Buas, M. F. et al. Germline variation in inflammation-related pathways and risk of Barrett’s oesophagus and oesophageal adenocarcinoma. Gut 66, 1739–1747 (2017).

    Article  CAS  PubMed  Google Scholar 

  96. Dai, J. Y. et al. A newly identified susceptibility locus near FOXP1 modifies the association of gastroesophageal reflux with Barrett’s esophagus. Cancer Epidemiol. Biomarkers Prev. 24, 1739–1747 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Sikkema, M. et al. Aneuploidy and overexpression of Ki67 and p53 as markers for neoplastic progression in Barrett’s esophagus: a case-control study. Am. J. Gastroenterol. 104, 2673–2680 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Souza, R. F., Morales, C. P. & Spechler, S. J. Review article: a conceptual approach to understanding the molecular mechanisms of cancer development in Barrett’s oesophagus. Aliment. Pharmacol. Ther. 15, 1087–1100 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Stachler, M. D. et al. Paired exome analysis of Barrett’s esophagus and adenocarcinoma. Nat. Genet. 47, 1047–1055 (2015). This paper investigates the malignant progression of BE to EAC by whole-exome sequencing and shows that the emergence of EAC follows a more rapid pathway that involves genome duplication.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ross-Innes, C. S. et al. Whole-genome sequencing provides new insights into the clonal architecture of Barrett’s esophagus and esophageal adenocarcinoma. Nat. Genet. 47, 1038–1046 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Weaver, J. M. J. et al. Ordering of mutations in preinvasive disease stages of esophageal carcinogenesis. Nat. Genet. 46, 837–843 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Frankell, A. M. et al. The landscape of selection in 551 esophageal adenocarcinomas defines genomic biomarkers for the clinic. Nat. Genet. 51, 506–516 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Martinez, P. et al. Dynamic clonal equilibrium and predetermined cancer risk in Barrett’s oesophagus. Nat. Commun. 7, 12158 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Newell, F. et al. Complex structural rearrangements are present in high-grade dysplastic Barrett’s oesophagus samples. BMC Med. Genomics 12, 31 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Nones, K. et al. Genomic catastrophes frequently arise in esophageal adenocarcinoma and drive tumorigenesis. Nat. Commun. 5, 5224 (2014).

    Article  CAS  PubMed  Google Scholar 

  107. Moayyedi, P. M. et al. ACG and CAG clinical guideline: management of dyspepsia. Am. J. Gastroenterol. 112, 988–1013 (2017).

    Article  CAS  PubMed  Google Scholar 

  108. Muthusamy, V. R. et al. The role of endoscopy in the management of GERD. Gastrointest. Endosc. 81, 1305–1310 (2015).

    Article  PubMed  Google Scholar 

  109. Weusten, B. et al. Endoscopic management of Barrett’s esophagus: European Society of Gastrointestinal Endoscopy (ESGE) position statement. Endoscopy 49, 191–198 (2017).

    PubMed  Google Scholar 

  110. Iwakiri, K. et al. Evidence-based clinical practice guidelines for gastroesophageal reflux disease 2015. J. Gastroenterol. 51, 751–767 (2016).

    Article  PubMed  Google Scholar 

  111. Whiteman, D. C. et al. Australian clinical practice guidelines for the diagnosis and management of Barrett’s esophagus and early esophageal adenocarcinoma. J. Gastroenterol. Hepatol. 30, 804–820 (2015).

    Article  PubMed  Google Scholar 

  112. Pohl, H. et al. Length of Barrett’s oesophagus and cancer risk: implications from a large sample of patients with early oesophageal adenocarcinoma. Gut 65, 196–201 (2016).

    Article  PubMed  Google Scholar 

  113. Thota, P. N. et al. Low risk of high-grade dysplasia or esophageal adenocarcinoma among patients with Barrett’s esophagus less than 1cm (irregular Z line) within 5 years of index endoscopy. Gastroenterology 152, 987–992 (2017).

    Article  PubMed  Google Scholar 

  114. Sharma, P. et al. Quality indicators for the management of Barrett’s esophagus, dysplasia, and esophageal adenocarcinoma: international consensus recommendations from the American Gastroenterological Association Symposium. Gastroenterology 149, 1599–1606 (2015).

    Article  PubMed  Google Scholar 

  115. Sharma, P. et al. The development and validation of an endoscopic grading system for Barrett’s esophagus: the Prague C & M criteria. Gastroenterology 131, 1392–1399 (2006).

    Article  PubMed  Google Scholar 

  116. Antony, A. et al. Adherence to quality indicators in endoscopic surveillance of Barrett’s esophagus and correlation to dysplasia detection rates. Clin. Res. Hepatol. Gastroenterol. 42, 591–596 (2018).

    Article  PubMed  Google Scholar 

  117. Ooi, J. et al. Dedicated Barrett’s surveillance sessions managed by trained endoscopists improve dysplasia detection rate. Endoscopy 49, C1 (2017).

    Article  PubMed  Google Scholar 

  118. Harrison, R. et al. Detection of intestinal metaplasia in Barrett’s esophagus: an observational comparator study suggests the need for a minimum of eight biopsies. Am. J. Gastroenterol. 102, 1154–1161 (2007).

    Article  PubMed  Google Scholar 

  119. Hirota, W. K. et al. Specialized intestinal metaplasia, dysplasia, and cancer of the esophagus and esophagogastric junction: prevalence and clinical data. Gastroenterology 116, 277–285 (1999).

    Article  CAS  PubMed  Google Scholar 

  120. Schlemper, R. J. et al. The Vienna classification of gastrointestinal epithelial neoplasia. Gut 47, 251–255 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Vennalaganti, P. et al. Discordance among pathologists in the United States and Europe in diagnosis of low-grade dysplasia for patients with Barrett’s esophagus. Gastroenterology 152, 564–570 (2017).

    Article  PubMed  Google Scholar 

  122. Abela, J. E. et al. Systematic four-quadrant biopsy detects Barrett’s dysplasia in more patients than nonsystematic biopsy. Am. J. Gastroenterol. 103, 850–855 (2008).

    Article  PubMed  Google Scholar 

  123. Vennalaganti, P. R. et al. Increased detection of Barrett’s esophagus-associated neoplasia using wide-area trans-epithelial sampling: a multicenter, prospective, randomized trial. Gastrointest. Endosc. 87, 348–355 (2018).

    Article  PubMed  Google Scholar 

  124. Sharma, P. et al. Standard endoscopy with random biopsies versus narrow band imaging targeted biopsies in Barrett’s oesophagus: a prospective, international, randomised controlled trial. Gut 62, 15–21 (2013).

    Article  PubMed  Google Scholar 

  125. Waterhouse, D. J., Fitzpatrick, C. R. M., di Pietro, M. & Bohndiek, S. E. Emerging optical methods for endoscopic surveillance of Barrett’s oesophagus. Lancet Gastroenterol. Hepatol. 3, 349–362 (2018).

    Google Scholar 

  126. Visrodia, K. et al. Magnitude of missed esophageal adenocarcinoma after Barrett’s esophagus diagnosis: a systematic review and meta-analysis. Gastroenterology 150, 599–607 (2016).

    Article  PubMed  Google Scholar 

  127. World Cancer Research Fund/American Institute for Cancer Research. Diet, Nutrition, Physical Activity and Cancer: a Global Perspective, Continuous Update Project Expert Report (World Cancer Research Fund International, 2018).

  128. Lam, S., Alexandre, L., Luben, R. & Hart, A. R. The association between physical activity and the risk of symptomatic Barrett’s oesophagus: a UK prospective cohort study. Eur. J. Gastroenterol. Hepatol. 30, 71–75 (2018).

    Article  CAS  PubMed  Google Scholar 

  129. Kunzmann, A. T. et al. Physical activity, sedentary behaviour and risk of oesophago-gastric cancer: a prospective cohort study within UK Biobank. United European Gastroenterol. J. 6, 1144–1154 (2018).

    Google Scholar 

  130. Realdon, S. et al. Adherence to WCRF/AICR lifestyle recommendations for cancer prevention and the risk of Barrett’s esophagus onset and evolution to esophageal adenocarcinoma: results from a pilot study in a high-risk population. Eur. J. Nutr. 55, 1563–1571 (2016).

    Article  CAS  PubMed  Google Scholar 

  131. Mulholland, H. G., Murray, L. J., Anderson, L. A., Cantwell, M. M. & FINBAR study group. Vitamin D, calcium and dairy intake, and risk of oesophageal adenocarcinoma and its precursor conditions. Br. J. Nutr. 106, 732–741 (2011).

    Article  CAS  PubMed  Google Scholar 

  132. Dai, Q. et al. Dietary magnesium, calcium:magnesium ratio and risk of reflux oesophagitis, Barrett’s oesophagus and oesophageal adenocarcinoma: a population-based case-control study. Br. J. Nutr. 115, 342–350 (2016).

    Article  CAS  PubMed  Google Scholar 

  133. Garland, C. F. et al. The role of vitamin D in cancer prevention. Am. J. Public Health 96, 252–261 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Dibaba, D. T., Xun, P. & He, K. Dietary magnesium intake is inversely associated with serum C-reactive protein levels: meta-analysis and systematic review. Eur. J. Clin. Nutr. 68, 510–516 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Vaezi, M. F., Yang, Y. X. & Howden, C. W. Complications of proton pump inhibitor therapy. Gastroenterology 153, 35–48 (2017).

    Article  CAS  PubMed  Google Scholar 

  136. Attwood, S. E. et al. Long-term safety of proton pump inhibitor therapy assessed under controlled, randomised clinical trial conditions: data from the SOPRAN and LOTUS studies. Aliment. Pharmacol. Ther. 41, 1162–1174 (2015).

    Article  CAS  PubMed  Google Scholar 

  137. O’Sullivan, K. E. et al. The role of inflammation in cancer of the esophagus. Expert Rev. Gastroenterol. Hepatol. 8, 749–760 (2014).

    Article  CAS  PubMed  Google Scholar 

  138. Ouatu-Lascar, R., Fitzgerald, R. C. & Triadafilopoulos, G. Differentiation and proliferation in Barrett’s esophagus and the effects of acid suppression. Gastroenterology 117, 327–335 (1999).

    Article  CAS  PubMed  Google Scholar 

  139. Abu-Sneineh, A. et al. The effects of high-dose esomeprazole on gastric and oesophageal acid exposure and molecular markers in Barrett’s oesophagus. Aliment. Pharmacol. Ther. 32, 1023–1030 (2010).

    Article  CAS  PubMed  Google Scholar 

  140. Singh, S., Garg, S. K., Singh, P. P., Iyer, P. G. & El-Serag, H. B. Acid-suppressive medications and risk of oesophageal adenocarcinoma in patients with Barrett’s oesophagus: a systematic review and meta-analysis. Gut 63, 1229–1237 (2014).

    Article  PubMed  Google Scholar 

  141. Jankowski, J. A. Z. et al. Esomeprazole and aspirin in Barrett’s oesophagus (AspECT): a randomised factorial trial. Lancet 392, 400–408 (2018). This randomized trial of 2,557 patients with BE shows that the combination of high-dose PPI and aspirin is the best strategy to reduce the risk of EAC and HGD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Liao, L. M. et al. Nonsteroidal anti-inflammatory drug use reduces risk of adenocarcinomas of the esophagus and esophagogastric junction in a pooled analysis. Gastroenterology 142, 442–452 (2012).

    Article  CAS  PubMed  Google Scholar 

  143. Zhang, S. et al. Cyclooxygenase inhibitors use is associated with reduced risk of esophageal adenocarcinoma in patients with Barrett’s esophagus: a meta-analysis. Br. J. Cancer 110, 2378–2388 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Ogunwobi, O. O. & Beales, I. L. Statins inhibit proliferation and induce apoptosis in Barrett’s esophageal adenocarcinoma cells. Am. J. Gastroenterol. 103, 825–837 (2008).

    Article  CAS  PubMed  Google Scholar 

  145. Nguyen, T., Khalaf, N., Ramsey, D. & El-Serag, H. B. Statin use is associated with a decreased risk of Barrett’s esophagus. Gastroenterology 147, 314–323 (2014).

    Article  CAS  PubMed  Google Scholar 

  146. Nguyen, T., Duan, Z., Naik, A. D., Kramer, J. R. & El-Serag, H. B. Statin use reduces risk of esophageal adenocarcinoma in US veterans with Barrett’s esophagus: a nested case-control study. Gastroenterology 149, 1392–1398 (2015).

    Article  CAS  PubMed  Google Scholar 

  147. Siegel, R., Naishadham, D. & Jemal, A. Cancer statistics, 2013. CA Cancer J. Clin. 63, 11–30 (2013).

    Article  PubMed  Google Scholar 

  148. Verbeek, R. E. et al. Surveillance of Barrett’s esophagus and mortality from esophageal adenocarcinoma: a population-based cohort study. Am. J. Gastroenterol. 109, 1215–1222 (2014).

    Article  PubMed  Google Scholar 

  149. Sampliner, R. E. Practice guidelines on the diagnosis, surveillance, and therapy of Barrett’s esophagus. The Practice Parameters Committee of the American College of Gastroenterology. Am. J. Gastroenterol. 93, 1028–1032 (1998).

    Article  CAS  PubMed  Google Scholar 

  150. Stoltey, J., Reeba, H., Ullah, N., Sabhaie, P. & Gerson, L. Does Barrett’s oesophagus develop over time in patients with chronic gastro-oesophageal reflux disease? Aliment. Pharmacol. Ther. 25, 83–91 (2007).

    CAS  PubMed  Google Scholar 

  151. Rubenstein, J. H. et al. Prediction of Barrett’s esophagus among men. Am. J. Gastroenterol. 108, 353–362 (2013). This article presents a study in which a prediction model for BE based on GERD, age, abdominal obesity and cigarette use with an AUC of 0.72 is developed in 822 male patients with colorectal cancer who are screened using upper endoscopy.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Thrift, A. P., Vaughan, T. L., Anderson, L. A., Whiteman, D. C. & El-Serag, H. B. External validation of the Michigan Barrett’s esophagus prediction tool. Clin. Gastroenterol. Hepatol. 15, 1124–1126 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Thrift, A. P., Garcia, J. M. & El-Serag, H. B. A multibiomarker risk score helps predict risk for Barrett’s esophagus. Clin. Gastroenterol. Hepatol. 12, 1267–1271 (2014).

    Article  PubMed  Google Scholar 

  154. Spechler, S. J., Katzka, D. A. & Fitzgerald, R. C. New screening techniques in Barrett’s esophagus: great ideas or great practice? Gastroenterology 154, 1594–1601 (2018).

    Article  PubMed  Google Scholar 

  155. Sami, S. S. & Iyer, P. G. Recent advances in screening for Barrett’s esophagus. Curr. Treat. Options Gastroenterol. 16, 1–14 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Sami, S. S. et al. Performance characteristics of unsedated ultrathin video endoscopy in the assessment of the upper GI tract: systematic review and meta-analysis. Gastrointest. Endosc. 82, 782–792 (2015).

    Article  PubMed  Google Scholar 

  157. Sami, S. S. et al. A randomized comparative effectiveness trial of novel endoscopic techniques and approaches for Barrett’s esophagus screening in the community. Am. J. Gastroenterol. 110, 148–158 (2015). This randomized controlled trial shows that mobile and outpatient unsedated TNE may be an effective alternative to standard endoscopy to screen for BE.

    Article  PubMed  Google Scholar 

  158. Moriarty, J. P. et al. Costs associated with Barrett’s esophagus screening in the community: an economic analysis of a prospective randomized controlled trial of sedated versus hospital unsedated versus mobile community unsedated endoscopy. Gastrointest. Endosc. 87, 88–94 (2018).

    Article  PubMed  Google Scholar 

  159. Sami, S. S. et al. Acceptability, accuracy, and safety of disposable transnasal capsule endoscopy for Barrett’s esophagus screening. Clin. Gastroenterol. Hepatol. 17, 638–646 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Alashkar, B. et al. Development of a program to train physician extenders to perform transnasal esophagoscopy and screen for Barrett’s esophagus. Clin. Gastroenterol. Hepatol. 12, 785–792 (2014).

    Article  PubMed  Google Scholar 

  161. Sharma, P. et al. The diagnostic accuracy of esophageal capsule endoscopy in patients with gastroesophageal reflux disease and Barrett’s esophagus: a blinded, prospective study. Am. J. Gastroenterol. 103, 525–532 (2008).

    Article  PubMed  Google Scholar 

  162. Bhardwaj, A., Hollenbeak, C. S., Pooran, N. & Mathew, A. A meta-analysis of the diagnostic accuracy of esophageal capsule endoscopy for Barrett’s esophagus in patients with gastroesophageal reflux disease. Am. J. Gastroenterol. 104, 1533–1539 (2009).

    Article  PubMed  Google Scholar 

  163. Offman, J. et al. Barrett’s oESophagus trial 3 (BEST3): study protocol for a randomised controlled trial comparing the Cytosponge-TFF3 test with usual care to facilitate the diagnosis of oesophageal pre-cancer in primary care patients with chronic acid reflux. BMC Cancer 18, 784 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Iyer, P. G. et al. Highly discriminant methylated DNA markers for the non-endoscopic detection of Barrett’s esophagus. Am. J. Gastroenterol. 113, 1156–1166 (2018).

    Article  CAS  PubMed  Google Scholar 

  165. Moinova, H. R. et al. Identifying DNA methylation biomarkers for non-endoscopic detection of Barrett’s esophagus. Sci. Transl Med. 10, eaao5848 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Chettouh, H. et al. Methylation panel is a diagnostic biomarker for Barrett’s oesophagus in endoscopic biopsies and non-endoscopic cytology specimens. Gut 67, 1942–1949 (2018).

    Article  CAS  PubMed  Google Scholar 

  167. Li, X. et al. Selection and application of tissue microRNAs for nonendoscopic diagnosis of Barrett’s esophagus. Gastroenterology 155, 771–783 (2018).

    Article  PubMed  Google Scholar 

  168. Chan, D. K. et al. Breath testing for Barrett’s esophagus using exhaled volatile organic compound profiling with an electronic nose device. Gastroenterology 152, 24–26 (2017).

    Article  CAS  PubMed  Google Scholar 

  169. Honing, J. et al. Endosheath ultrathin transnasal endoscopy is a cost-effective method for screening for Barrett’s esophagus in patients with GERD symptoms. Gastrointest. Endosc. 89, 712–722 (2018).

    Article  PubMed  Google Scholar 

  170. Nietert, P. J. et al. Cost-effectiveness of screening a population with chronic gastroesophageal reflux. Gastrointest. Endosc. 57, 311–318 (2003).

    Article  PubMed  Google Scholar 

  171. Inadomi, J. M. et al. Screening and surveillance for Barrett esophagus in high-risk groups: a cost-utility analysis. Ann. Intern. Med. 138, 176–186 (2003).

    Article  PubMed  Google Scholar 

  172. Gerson, L. B., Groeneveld, P. W. & Triadafilopoulos, G. Cost-effectiveness model of endoscopic screening and surveillance in patients with gastroesophageal reflux disease. Clin. Gastroenterol. Hepatol. 2, 868–879 (2004).

    Article  PubMed  Google Scholar 

  173. Heberle, C. R. et al. Cost effectiveness of screening patients with gastroesophageal reflux disease for Barrett’s esophagus with a minimally invasive cell sampling device. Clin. Gastroenterol. Hepatol. 15, 1397–1404 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Wani, S. et al. Endoscopic eradication therapy for patients with Barrett’s esophagus-associated dysplasia and intramucosal cancer. Gastrointest. Endosc. 87, 907–931 (2018).

    Article  PubMed  Google Scholar 

  175. Corley, D. A. et al. Impact of endoscopic surveillance on mortality from Barrett’s esophagus-associated esophageal adenocarcinomas. Gastroenterology 145, 312–319 (2013).

    Article  PubMed  Google Scholar 

  176. Holmberg, D., Ness-Jensen, E., Mattsson, F. & Lagergren, J. Clinical prediction model for tumor progression in Barrett’s esophagus. Surg. Endosc. https://doi.org/10.1007/s00464-018-6590-5 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Peters, F. P. et al. Histologic evaluation of resection specimens obtained at 293 endoscopic resections in Barrett’s esophagus. Gastrointest. Endosc. 67, 604–609 (2008).

    Article  PubMed  Google Scholar 

  178. Markar, S. R. et al. The influence of procedural volume and proficiency gain on mortality from upper GI endoscopic mucosal resection. Gut 67, 79–85 (2018).

    Article  PubMed  Google Scholar 

  179. Pech, O. et al. Long-term efficacy and safety of endoscopic resection for patients with mucosal adenocarcinoma of the esophagus. Gastroenterology 146, 652–660 (2014).

    Article  PubMed  Google Scholar 

  180. Subramaniam, S. et al. Complex early Barrett’s neoplasia at 3 Western centers: European Barrett’s Endoscopic Submucosal Dissection Trial (E-BEST). Gastrointest. Endosc. 86, 608–618 (2017).

    Article  PubMed  Google Scholar 

  181. Pimentel-Nunes, P. et al. Endoscopic submucosal dissection: European Society of Gastrointestinal Endoscopy (ESGE) Guideline. Endoscopy 47, 829–854 (2015).

    PubMed  Google Scholar 

  182. Terheggen, G. et al. A randomised trial of endoscopic submucosal dissection versus endoscopic mucosal resection for early Barrett’s neoplasia. Gut 66, 783–793 (2017).

    Article  PubMed  Google Scholar 

  183. Yang, D. et al. Endoscopic submucosal dissection for early Barrett’s neoplasia: a meta-analysis. Gastrointest. Endosc. 87, 1383–1393 (2018).

    Article  PubMed  Google Scholar 

  184. Tomizawa, Y. et al. Safety of endoscopic mucosal resection for Barrett’s esophagus. Am. J. Gastroenterol. 108, 1440–1447 (2013).

    Article  PubMed  Google Scholar 

  185. Shaheen, N. J. et al. Durability of radiofrequency ablation in Barrett’s esophagus with dysplasia. Gastroenterology 141, 460–468 (2011).

    Article  PubMed  Google Scholar 

  186. Phoa, K. N. et al. Radiofrequency ablation versus endoscopic surveillance for patients with Barrett esophagus and low-grade dysplasia: a randomized clinical trial. JAMA 311, 1209–1217 (2014).

    Article  CAS  PubMed  Google Scholar 

  187. Manner, H. et al. Ablation of residual Barrett’s epithelium after endoscopic resection: a randomized long-term follow-up study of argon plasma coagulation versus surveillance (APE study). Endoscopy 46, 6–12 (2014).

    PubMed  Google Scholar 

  188. Thota, P. N. et al. Cryotherapy and radiofrequency ablation for eradication of Barrett’s esophagus with dysplasia or intramucosal cancer. Dig. Dis. Sci. 63, 1311–1319 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Dumot, J. A. et al. An open-label, prospective trial of cryospray ablation for Barrett’s esophagus high-grade dysplasia and early esophageal cancer in high-risk patients. Gastrointest. Endosc. 70, 635–644 (2009).

    Article  PubMed  Google Scholar 

  190. Milashka, M. et al. Sixteen-year follow-up of Barrett’s esophagus, endoscopically treated with argon plasma coagulation. United European Gastroenterol. J. 2, 367–373 (2014).

    Google Scholar 

  191. Manner, H. et al. The tissue effect of argon-plasma coagulation with prior submucosal injection (Hybrid-APC) versus standard APC: a randomized ex-vivo study. United European Gastroenterol. J. 2, 383–390 (2014).

    Google Scholar 

  192. Orman, E. S., Li, N. & Shaheen, N. J. Efficacy and durability of radiofrequency ablation for Barrett’s Esophagus: systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 11, 1245–1255 (2013).

    Article  PubMed  Google Scholar 

  193. Anders, M. et al. Subsquamous extension of intestinal metaplasia is detected in 98% of cases of neoplastic Barrett’s esophagus. Clin. Gastroenterol. Hepatol. 12, 405–410 (2014).

    Article  PubMed  Google Scholar 

  194. Gray, N. A., Odze, R. D. & Spechler, S. J. Buried metaplasia after endoscopic ablation of Barrett’s esophagus: a systematic review. Am. J. Gastroenterol. 106, 1899–1908 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Belghazi, K. et al. Long-term follow-up results of stepwise radical endoscopic resection for Barrett’s esophagus with early neoplasia. Gastrointest. Endosc. 87, 77–84 (2018).

    Article  PubMed  Google Scholar 

  196. Desai, M. et al. Efficacy and safety outcomes of multimodal endoscopic eradication therapy in Barrett’s esophagus-related neoplasia: a systematic review and pooled analysis. Gastrointest. Endosc. 85, 482–495 (2017).

    Article  PubMed  Google Scholar 

  197. Cho, J. W. et al. Lymph node metastases in esophageal carcinoma: an endoscopist’s view. Clin. Endosc. 47, 523–529 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Manner, H. et al. Early Barrett’s carcinoma with “low-risk” submucosal invasion: long-term results of endoscopic resection with a curative intent. Am. J. Gastroenterol. 103, 2589–2597 (2008).

    Article  PubMed  Google Scholar 

  199. Manner, H. et al. Efficacy, safety, and long-term results of endoscopic treatment for early stage adenocarcinoma of the esophagus with low-risk sm1 invasion. Clin. Gastroenterol. Hepatol. 11, 630–635 (2013).

  200. Cotton, C. C., Haidry, R., Thrift, A. P., Lovat, L. & Shaheen, N. J. Development of evidence-based surveillance intervals after radiofrequency ablation of Barrett’s esophagus. Gastroenterology 155, 316–326 (2018). This article provides evidence-based surveillance intervals for patients with endoscopically treated BE.

    Article  PubMed  Google Scholar 

  201. Britton, J. et al. Effect of diagnosis, surveillance, and treatment of Barrett’s oesophagus on health-related quality of life. Lancet Gastroenterol. Hepatol. 3, 57–65 (2018). This paper presents a comprehensive review of the QOL in patients with BE.

    Article  PubMed  Google Scholar 

  202. Kamolz, T., Pointner, R. & Velanovich, V. The impact of gastroesophageal reflux disease on quality of life. Surg. Endosc. 17, 1193–1199 (2003).

    Article  CAS  PubMed  Google Scholar 

  203. Ofman, J. J. The economic and quality-of-life impact of symptomatic gastroesophageal reflux disease. Am. J. Gastroenterol. 98, S8–S14 (2003).

    Article  PubMed  Google Scholar 

  204. Eloubeidi, M. A. & Provenzale, D. Health-related quality of life and severity of symptoms in patients with Barrett’s esophagus and gastroesophageal reflux disease patients without Barrett’s esophagus. Am. J. Gastroenterol. 95, 1881–1887 (2000).

    Article  CAS  PubMed  Google Scholar 

  205. Kulig, M. et al. Quality of life in relation to symptoms in patients with gastro-oesophageal reflux disease — an analysis based on the ProGERD initiative. Aliment. Pharmacol. Ther. 18, 767–776 (2003).

    Article  CAS  PubMed  Google Scholar 

  206. Lippmann, Q. K., Crockett, S. D., Dellon, E. S. & Shaheen, N. J. Quality of life in GERD and Barrett’s esophagus is related to gender and manifestation of disease. Am. J. Gastroenterol. 104, 2695–2703 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Rodger, A. J., Jolley, D., Thompson, S. C., Lanigan, A. & Crofts, N. The impact of diagnosis of hepatitis C virus on quality of life. Hepatology 30, 1299–1301 (1999).

    Article  CAS  PubMed  Google Scholar 

  208. Rubenstein, J. H. & Inadomi, J. M. Defining a clinically significant adverse impact of diagnosing Barrett’s esophagus. J. Clin. Gastroenterol. 40, 109–115 (2006).

    Article  PubMed  Google Scholar 

  209. Essink-Bot, M. L. et al. Different perceptions of the burden of upper GI endoscopy: an empirical study in three patient groups. Qual. Life Res. 16, 1309–1318 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Cooper, S. C. et al. Endoscopic surveillance for Barrett’s oesophagus: the patients’ perspective. Eur. J. Gastroenterol. Hepatol. 21, 850–854 (2009).

    Article  PubMed  Google Scholar 

  211. Levine, D. S., Blount, P. L., Rudolph, R. E. & Reid, B. J. Safety of a systematic endoscopic biopsy protocol in patients with Barrett’s esophagus. Am. J. Gastroenterol. 95, 1152–1157 (2000).

    Article  CAS  PubMed  Google Scholar 

  212. Kruijshaar, M. E. et al. The burden of upper gastrointestinal endoscopy in patients with Barrett’s esophagus. Endoscopy 38, 873–878 (2006).

    Article  CAS  PubMed  Google Scholar 

  213. Gerson, L. B., Ullah, N., Hastie, T. & Goldstein, M. K. Does cancer risk affect health-related quality of life in patients with Barrett’s esophagus? Gastrointest. Endosc. 65, 16–25 (2007).

    Article  PubMed  Google Scholar 

  214. Macrae, F. A., Hill, D. J., St John, D. J., Ambikapathy, A. & Garner, J. F. Predicting colon cancer screening behavior from health beliefs. Prev. Med. 13, 115–126 (1984).

    Article  CAS  PubMed  Google Scholar 

  215. Kruijshaar, M. E. et al. Patients with Barrett’s esophagus perceive their risk of developing esophageal adenocarcinoma as low. Gastrointest. Endosc. 65, 26–30 (2007).

    Article  PubMed  Google Scholar 

  216. van der Ende-van Loon, M. C. M., Rosmolen, W. D., Houterman, S., Schoon, E. J. & Curvers, W. L. Cancer risk perception in relation to associated symptoms in Barrett’s patients: a cross sectional study on quality of life. United European Gastroenterol. J. 6, 1316–1322 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Shaheen, N. J. et al. The perception of cancer risk in patients with prevalent Barrett’s esophagus enrolled in an endoscopic surveillance program. Gastroenterology 129, 429–436 (2005).

    Article  PubMed  Google Scholar 

  218. Stier, M. W. et al. Perceptions of risk and therapy among patients with Barrett’s esophagus: a patient survey study. Dis. Esophagus 31, dox109 (2018).

    Article  Google Scholar 

  219. Smyth, E. C. et al. Oesophageal cancer. Nat. Rev. Dis. Primers 3, 17048 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Shaheen, N. J. et al. Quality of life following radiofrequency ablation of dysplastic Barrett’s esophagus. Endoscopy 42, 790–799 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Rosmolen, W. D. et al. Quality of life and fear of cancer recurrence after endoscopic treatment for early Barrett’s neoplasia: a prospective study. Dis. Esophagus 30, 1–9 (2017).

    PubMed  Google Scholar 

  222. Rosmolen, W. D. et al. Quality of life and fear of cancer recurrence after endoscopic and surgical treatment for early neoplasia in Barrett’s esophagus. Endoscopy 42, 525–531 (2010).

    Article  CAS  PubMed  Google Scholar 

  223. Haidry, R. J. et al. Improvement over time in outcomes for patients undergoing endoscopic therapy for Barrett’s oesophagus-related neoplasia: 6-year experience from the first 500 patients treated in the UK patient registry. Gut 64, 1192–1199 (2015).

    Article  CAS  PubMed  Google Scholar 

  224. Nguyen, T., Thrift, A. P., Yu, X., Duan, Z. & El-Serag, H. B. The annual risk of esophageal adenocarcinoma does not decrease over time in patients with Barrett’s esophagus. Am. J. Gastroenterol. 112, 1049–1055 (2017).

    Article  PubMed  Google Scholar 

  225. Old, O. et al. Barrett’s Oesophagus Surveillance versus endoscopy at need Study (BOSS): protocol and analysis plan for a multicentre randomized controlled trial. J. Med. Screen. 22, 158–164 (2015). This article presents a study protocol for a randomized study that will provide data to evaluate the efficacy and cost-effectiveness of screening patients with BE for the presence of EAC.

    Article  PubMed  Google Scholar 

  226. Visrodia, K. et al. Cryotherapy for persistent Barrett’s esophagus after radiofrequency ablation: a systematic review and meta-analysis. Gastrointest. Endosc. 87, 1396–1404 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Kazumori, H., Ishihara, S., Takahashi, Y., Amano, Y. & Kinoshita, Y. Roles of Kruppel-like factor 4 in oesophageal epithelial cells in Barrett’s epithelium development. Gut 60, 608–617 (2011).

    Article  CAS  PubMed  Google Scholar 

  228. Wang, D. H. et al. Hedgehog signaling regulates FOXA2 in esophageal embryogenesis and Barrett’s metaplasia. J. Clin. Invest. 124, 3767–3780 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Andrici, J., Cox, M. R. & Eslick, G. D. Cigarette smoking and the risk of Barrett’s esophagus: a systematic review and meta-analysis. J. Gastroenterol. Hepatol. 28, 1258–1273 (2013).

    Article  PubMed  Google Scholar 

  230. Anderson, L. A. et al. The association between alcohol and reflux esophagitis, Barrett’s esophagus, and esophageal adenocarcinoma. Gastroenterology 136, 799–805 (2009).

    Article  CAS  PubMed  Google Scholar 

  231. Rokkas, T., Pistiolas, D., Sechopoulos, P., Robotis, I. & Margantinis, G. Relationship between Helicobacter pylori infection and esophageal neoplasia: a meta-analysis. Clin. Gastroenterol. Hepatol. 5, 1413–1417 (2007).

    Article  PubMed  Google Scholar 

  232. Salomao, M. A., Lam-Himlin, D. & Pai, R. K. Substantial interobserver agreement in the diagnosis of dysplasia in Barrett esophagus upon review of a patient’s entire set of biopsies. Am. J. Surg. Pathol. 42, 376–381 (2018).

    Article  PubMed  Google Scholar 

  233. Montgomery, E. et al. Reproducibility of the diagnosis of dysplasia in Barrett esophagus: a reaffirmation. Hum. Pathol. 32, 368–378 (2001).

    Article  CAS  PubMed  Google Scholar 

  234. Desai, T. K. et al. The incidence of oesophageal adenocarcinoma in non-dysplastic Barrett’s oesophagus: a meta-analysis. Gut 61, 970–976 (2012).

    Article  PubMed  Google Scholar 

  235. Sonwalkar, S. A. et al. A study of indefinite for dysplasia in Barrett’s oesophagus: reproducibility of diagnosis, clinical outcomes and predicting progression with AMACR (alpha-methylacyl-CoA-racemase). Histopathology 56, 900–907 (2010).

    Article  PubMed  Google Scholar 

  236. Kestens, C., Leenders, M., Offerhaus, G. J., van Baal, J. W. & Siersema, P. D. Risk of neoplastic progression in Barrett’s esophagus diagnosed as indefinite for dysplasia: a nationwide cohort study. Endoscopy 47, 409–414 (2015).

    PubMed  Google Scholar 

  237. Singh, S. et al. Incidence of esophageal adenocarcinoma in Barrett’s esophagus with low-grade dysplasia: a systematic review and meta-analysis. Gastrointest. Endosc. 79, 897–909 (2014).

    Article  PubMed  Google Scholar 

  238. Grotenhuis, B. A. et al. Inter- and intraobserver variation in the histopathological evaluation of early oesophageal adenocarcinoma. J. Clin. Pathol. 63, 978–981 (2010).

    Article  PubMed  Google Scholar 

  239. Kerkhof, M. et al. Grading of dysplasia in Barrett’s oesophagus: substantial interobserver variation between general and gastrointestinal pathologists. Histopathology 50, 920–927 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank R. S. van der Post and M. O’Donovan for providing the histopathological images.

Reviewer information

Nature Reviews Disease Primers thanks S. McDonald, A. Bansal, M. Jansen, R. Odze, K. Krishnadath, H. Barr and the other anonymous reviewer(s), for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (Y.P. and A.A.-K.); Epidemiology (Y.P. and N.J.S.); Mechanisms/pathophysiology (A.A.-K., A.C., A.B. and R.F.S.); Diagnosis, screening and prevention (Y.P., M.D.P., P.G.I. and R.C.F.); Management (Y.P., A.A.-K. and O.P.); Quality of life (Y.P.); Outlook (Y.P., A.A.-K. and P.D.S.); Overview of Primer (Y.P., A.A.-K. and P.D.S.).

Corresponding author

Correspondence to Peter D. Siersema.

Ethics declarations

Competing interests

N.J.S. has received research grants from Medtronic, CSA Medical, C2 Therapeutics, CDx Medical, EndoStim and Interpace Diagnostics and has served as a consultant for Pfizer, Boston Scientific and Shire. A.C. has equity interest in and is a consultant for Lucid Diagnostics. R.F.S. has served as a consultant and receives research support from Ironwood Pharmaceuticals. M.D.P. has received educational grants from Olympus and Medtronic and has served as consultant for Medtronic. P.G.I. has received research funding from Exact Sciences, Pentax Medical, Symple Surgical, Nine Point Medical and Medtronic and has served as a consultant for Medtronic, Symple Surgical and CSA Medical. O.P. has a speaker honorarium from Olympus, Fujifilm, Medtronic, Boston Scientific and Cook. R.C.F. is named on patents related to the Cytosponge and associated assays, which have been licensed to Covidien (now Medtronic), and has served as a consultant to Medtronic. P.D.S. has received research funding from Pentax Medical, EndoStim, Yakult, OncoDNA and Ella-CS. Y.P., A.A.-K. and A.B. declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peters, Y., Al-Kaabi, A., Shaheen, N.J. et al. Barrett oesophagus. Nat Rev Dis Primers 5, 35 (2019). https://doi.org/10.1038/s41572-019-0086-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s41572-019-0086-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing