1932

Abstract

Assessing posttranslational modification (PTM) patterns within protein molecules and reading their functional implications present grand challenges for plant biology. We combine four perspectives on PTMs and their roles by considering five classes of PTMs as examples of the broader context of PTMs. These include modifications of the N terminus, glycosylation, phosphorylation, oxidation, and N-terminal and protein modifiers linked to protein degradation. We consider the spatial distribution of PTMs, the subcellular distribution of modifying enzymes, and their targets throughout the cell, and we outline the complexity of compartmentation in understanding of PTM function. We also consider PTMs temporally in the context of the lifetime of a protein molecule and the need for different PTMs for assembly, localization, function, and degradation. Finally, we consider the combined action of PTMs on the same proteins, their interactions, and the challenge ahead of integrating PTMs into an understanding of protein function in plants.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-050718-100211
2019-04-29
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/arplant/70/1/annurev-arplant-050718-100211.html?itemId=/content/journals/10.1146/annurev-arplant-050718-100211&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Abbas M, Berckhan S, Rooney DJ, Gibbs DJ, Conde JV et al. 2015. Oxygen sensing coordinates photomorphogenesis to facilitate seedling survival. Curr. Biol. 25:1483–88
    [Google Scholar]
  2. 2.  Adam Z, Frottin F, Espagne C, Meinnel T, Giglione C 2011. Interplay between N-terminal methionine excision and FtsH protease is essential for normal chloroplast development and function in Arabidopsis. Plant Cell 23:3745–60
    [Google Scholar]
  3. 3.  Aksnes H, Drazic A, Marie M, Arnesen T 2016. First things first: vital protein marks by N-terminal acetyltransferases. Trends Biochem. Sci. 41:746–60
    [Google Scholar]
  4. 4.  Akter S, Huang J, Bodra N, De Smet B, Wahni K et al. 2015. DYn-2 based identification of Arabidopsis sulfenomes. Mol. Cell. Proteom. 14:1183–200
    [Google Scholar]
  5. 5.  Akter S, Huang J, Waszczak C, Jacques S, Gevaert K et al. 2015. Cysteines under ROS attack in plants: a proteomics view. J. Exp. Bot. 66:2935–44
    [Google Scholar]
  6. 6.  Apel W, Schulze WX, Bock R 2010. Identification of protein stability determinants in chloroplasts. Plant J 63:636–50
    [Google Scholar]
  7. 7.  Bachmair A, Becker F, Schell J 1993. Use of a reporter transgene to generate Arabidopsis mutants in ubiquitin-dependent protein-degradation. PNAS 90:418–21
    [Google Scholar]
  8. 8.  Bachmair A, Finley D, Varshavsky A 1986. In vivo half-life of a protein is a function of its amino-terminal residue. Science 234:179–86
    [Google Scholar]
  9. 9.  Baerenfaller K, Grossmann J, Grobei MA, Hull R, Hirsch-Hoffmann M et al. 2008. Genome-scale proteomics reveals Arabidopsis thaliana gene models and proteome dynamics. Science 320:938–41
    [Google Scholar]
  10. 10.  Bai L, Zhang G, Zhou Y, Zhang Z, Wang W et al. 2009. Plasma membrane-associated proline-rich extensin-like receptor kinase 4, a novel regulator of Ca2+ signalling, is required for abscisic acid responses in Arabidopsis thaliana. Plant J 60:314–27
    [Google Scholar]
  11. 11.  Balsera M, Uberegui E, Schurmann P, Buchanan BB 2014. Evolutionary development of redox regulation in chloroplasts. Antioxid. Redox Signal. 21:1327–55
    [Google Scholar]
  12. 12.  Bequette CJ, Hind SR, Pulliam S, Higgins R, Stratmann JW 2018. MAP kinases associate with high molecular weight multiprotein complexes. J. Exp. Bot. 69:643–54
    [Google Scholar]
  13. 13.  Besant PG, Attwood PV 2009. Detection and analysis of protein histidine phosphorylation. Mol. Cell. Biochem. 329:93–106
    [Google Scholar]
  14. 14.  Bienvenut WV, Espagne C, Martinez A, Majeran W, Valot B et al. 2011. Dynamics of post-translational modifications and protein stability in the stroma of Chlamydomonas reinhardtii chloroplasts. Proteomics 11:1734–50
    [Google Scholar]
  15. 15.  Bienvenut WV, Giglione C, Meinnel T 2017. SILProNAQ: a convenient approach for proteome-wide analysis of protein N-termini and N-terminal acetylation quantitation. See Ref. 148, pp. 17–34
  16. 16.  Bienvenut WV, Scarpelli JP, Dumestier J, Meinnel T, Giglione C 2017. EnCOUNTer: a parsing tool to uncover the mature N-terminus of organelle-targeted proteins in complex samples. BMC Bioinform 18:182
    [Google Scholar]
  17. 17.  Bienvenut WV, Sumpton D, Martinez A, Lilla S, Espagne C et al. 2012. Comparative large-scale characterization of plant versus mammal proteins reveals similar and idiosyncratic N-α acetylation features. Mol. Cell. Proteom. 11:M111.015131
    [Google Scholar]
  18. 18.  Bischof S, Baerenfaller K, Wildhaber T, Troesch R, Vidi PA et al. 2011. Plastid proteome assembly without Toc159: photosynthetic protein import and accumulation of N-acetylated plastid precursor proteins. Plant Cell 23:3911–28
    [Google Scholar]
  19. 19.  Boisson B, Giglione C, Meinnel T 2003. Unexpected protein families including cell defense components feature in the N-myristoylome of a higher eukaryote. J. Biol. Chem. 278:43418–29
    [Google Scholar]
  20. 20.  Borner GHH, Lilley KS, Stevens TJ, Dupree P 2003. Identification of glycosylphosphatidylinositol-anchored proteins in Arabidopsis. A proteomic and genomic analysis. Plant Physiol 132:568–77
    [Google Scholar]
  21. 21.  Breda AS, Hazak O, Hardtke CS 2017. Phosphosite charge rather than shootward localization determines OCTOPUS activity in root protophloem. PNAS 114:E5721–30Demonstrates how charge effects of phosphorylation influence OCTOPUS regulation of phloem development in plants.
    [Google Scholar]
  22. 22.  Breiman A, Fieulaine S, Meinnel T, Giglione C 2016. The intriguing realm of protein biogenesis: facing the green co-translational protein maturation networks. Biochim. Biophys. Acta 1864:531–50
    [Google Scholar]
  23. 23.  Burn JE, Hurley UA, Birch RJ, Arioli T, Cork A, Williamson RE 2002. The cellulose-deficient Arabidopsis mutant rsw3 is defective in a gene encoding a putative glucosidase II, an enzyme processing N-glycans during ER quality control. Plant J 32:949–60
    [Google Scholar]
  24. 24.  Castrec B, Dian C, Ciccone S, Ebert CL, Bienvenut WV et al. 2018. Structural and genomic decoding of human and plant myristoylomes reveals a definitive recognition pattern. Nat. Chem. Biol. 14:671–79
    [Google Scholar]
  25. 25.  Castro PH, Tavares RM, Bejarano ER, Azevedo H 2012. SUMO, a heavyweight player in plant abiotic stress responses. Cell. Mol. Life Sci. 69:3269–83
    [Google Scholar]
  26. 26.  Cavazzini D, Meschi F, Corsini R, Bolchi A, Rossi GL et al. 2013. Autoproteolytic activation of a symbiosis-regulated truffle phospholipase A2. J. Biol. Chem. 288:1533–47
    [Google Scholar]
  27. 27.  Chatelâin E, Satour P, Laugier E, Ly Vu B, Payet N et al. 2013. Evidence for participation of the methionine sulfoxide reductase repair system in plant seed longevity. PNAS 110:3633–38
    [Google Scholar]
  28. 28.  Chen J, Kalinowska K, Müller B, Mergner J, Deutzmann R et al. 2018. DiSUMO-LIKE interacts with RNA-binding proteins and affects cell-cycle progression during maize embryogenesis. Curr. Biol. 28:1548–60
    [Google Scholar]
  29. 29.  Christian JO, Braginets R, Schulze WX, Walther D 2012. Characterization and prediction of protein phosphorylation hotspots in Arabidopsis thaliana. Front. Plant Sci 3:207
    [Google Scholar]
  30. 30.  Dautel R, Wu XN, Heunemann M, Schulze WX, Harter K 2016. The sensor histidine kinases AHK2 and AHK3 proceed into multiple serine/threonine/tyrosine phosphorylation pathways in Arabidopsis thaliana. Mol. Plant 9:182–86
    [Google Scholar]
  31. 31.  de Marchi R, Sorel M, Mooney B, Fudal I, Goslin K et al. 2016. The N-end rule pathway regulates pathogen responses in plants. Sci. Rep. 6:26020
    [Google Scholar]
  32. 32.  Demir F, Niedermaier S, Kizhakkedathu JN, Huesgen PF 2017. Profiling of protein N-termini and their modifications in complex samples. See Ref. 148, pp. 35–50
  33. 33.  Dietz KJ, Hell R 2015. Thiol switches in redox regulation of chloroplasts: balancing redox state, metabolism and oxidative stress. Biol. Chem. 396:483–94
    [Google Scholar]
  34. 34.  Dikic I, Wakatsuki S, Walters KJ 2009. Ubiquitin-binding domains—from structures to functions. Nat. Rev. Mol. Cell Biol. 10:659–71
    [Google Scholar]
  35. 35.  Dinh TV, Bienvenut WV, Linster E, Feldman-Salit A, Jung VA et al. 2015. Molecular identification and functional characterization of the first Nα-acetyltransferase in plastids by global acetylome profiling. Proteomics 15:2426–35
    [Google Scholar]
  36. 36.  Dodd AN, Kudla J, Sanders D 2010. The language of calcium signaling. Annu. Rev. Plant Biol. 61:593–620
    [Google Scholar]
  37. 37.  Dong H, Dumenil J, Lu FH, Na L, Vanhaeren H et al. 2017. Ubiquitylation activates a peptidase that promotes cleavage and destabilization of its activating E3 ligases and diverse growth regulatory proteins to limit cell proliferation in Arabidopsis. Genes Dev 31:197–208
    [Google Scholar]
  38. 38.  Duan G, Walther D, Schulze WX 2013. Reconstruction and analysis of nutrient-induced phosphorylation networks in Arabidopsis thaliana. Front. Plant Sci 4:540
    [Google Scholar]
  39. 39.  Dubeaux G, Vert G 2017. Zooming into plant ubiquitin-mediated endocytosis. Curr. Opin. Plant Biol. 40:56–62
    [Google Scholar]
  40. 40.  Durand AN, Pauwels L, Goossens A 2016. The ubiquitin system and jasmonate signaling. Plants 5:6
    [Google Scholar]
  41. 41.  Durek P, Schmidt R, Heazlewood JL, Jones A, MacLean D et al. 2010. PhosPhAt: the Arabidopsis thaliana phosphorylation site database. An update. Nucleic Acids Res 38:D828–34
    [Google Scholar]
  42. 42.  Ellis M, Egelund J, Schultz CJ, Bacic A 2010. Arabinogalactan-proteins: key regulators at the cell surface?. Plant Physiol 153:403–19
    [Google Scholar]
  43. 43.  Elortza F, Mohammed S, Bunkenborg J, Foster LJ, Nühse TS et al. 2006. Modification-specific proteomics of plasma membrane proteins: identification and characterization of glycosylphosphatidy-linositol-anchored proteins released upon phospholipase D treatment. J. Proteome Res. 5:935–43
    [Google Scholar]
  44. 44.  Elortza F, Nühse TS, Foster LJ, Stensballe A, Peck SC, Jensen ON 2003. Proteomic analysis of glycosylphosphatidylinositol-anchored membrane proteins. Mol. Cell. Proteom. 2:1261–70
    [Google Scholar]
  45. 45.  Faden F, Mielke S, Lange D, Dissmeyer N 2014. Generic tools for conditionally altering protein abundance and phenotypes on demand. Biol. Chem. 395:737–62
    [Google Scholar]
  46. 46.  Fanata WID, Lee KH, Son BH, Yoo JY, Harmoko R et al. 2013. N-glycan maturation is crucial for cytokinin-mediated development and cellulose synthesis in Oryza sativa. Plant J 73:966–79
    [Google Scholar]
  47. 47.  Feng J, Shen WH 2014. Dynamic regulation and function of histone monoubiquitination in plants. Front. Plant Sci. 5:83
    [Google Scholar]
  48. 48.  Fitchette AC, Cabanes-Macheteau M, Marvin L, Martin B, Satiat-Jeunemaitre B et al. 1999. Biosynthesis and immunolocalization of Lewis a-containing N-glycans in the plant cell. Plant Physiol 121:333–44
    [Google Scholar]
  49. 49.  Frottin F, Espagne C, Traverso JA, Mauve C, Valot B et al. 2009. Cotranslational proteolysis dominates glutathione homeostasis to support proper growth and development. Plant Cell 21:3296–314
    [Google Scholar]
  50. 50.  Frottin F, Martinez A, Peynot P, Mitra S, Holz RC et al. 2006. The proteomics of N-terminal methionine cleavage. Mol. Cell. Proteom. 5:2336–49
    [Google Scholar]
  51. 51.  Fuglsang AT, Borch J, Bych K, Jahn TP, Roepstorff P, Palmgren MG 2003. The binding site for regulatory 14-3-3 protein in plant plasma membrane H+-ATPase: involvement of a region promoting phosphorylation-independent interaction in addition to the phosphorylation-dependent C-terminal end. J. Biol. Chem. 278:42266–72
    [Google Scholar]
  52. 52.  Fuglsang AT, Guo Y, Cuin TA, Qiu Q, Song C et al. 2007. Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+-ATPase by preventing interaction with 14-3-3 protein. Plant Cell 19:1617–34
    [Google Scholar]
  53. 53.  Fuglsang AT, Kristensen A, Cuin TA, Schulze WX, Persson J et al. 2014. Receptor kinase-mediated control of primary active proton pumping at the plasma membrane. Plant J 80:951–64
    [Google Scholar]
  54. 54.  Garzón M, Eifler K, Faust A, Scheel H, Hofmann K et al. 2007. PRT6/At5g02310 encodes an Arabidopsis ubiquitin ligase of the N-end rule pathway with arginine specificity and is not the CER3 locus. FEBS Lett 581:3189–96
    [Google Scholar]
  55. 55.  Gibbs DJ 2015. Emerging functions for N-terminal protein acetylation in plants. Trends Plant Sci 20:599–601
    [Google Scholar]
  56. 56.  Gibbs DJ, Bacardit J, Bachmair A, Holdsworth MJ 2014. The eukaryotic N-end rule pathway: conserved mechanisms and diverse functions. Trends Cell Biol 24:603–11
    [Google Scholar]
  57. 57.  Gibbs DJ, Isa NM, Movahedi M, Lozano-Juste J, Mendiondo GM et al. 2014. Nitric oxide sensing in plants is mediated by proteolytic control of group VII ERF transcription factors. Mol. Cell 53:369–79
    [Google Scholar]
  58. 58.  Gibbs DJ, Lee SC, Isa NM, Gramuglia S, Fukao T et al. 2011. Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants. Nature 479:415–18Demonstrates how ERFVII sensing of hypoxia depends on the Cys branch of the PRT6 N-degron pathway (also see 105).
    [Google Scholar]
  59. 58a.  Gibbs DJ, Tedds HM, Labandera A-M, Bailey M, White MD et al. 2018. Oxygen-dependent proteolysis regulates the stability of angiosperm polycomb repressive complex 2 subunit VERNALIZATION2. Nat. Commun. 9:5438
    [Google Scholar]
  60. 59.  Giglione C, Fieulaine S, Meinnel T 2015. N-terminal protein modifications: bringing back into play the ribosome. Biochimie 114:134–46
    [Google Scholar]
  61. 60.  Giglione C, Vallon O, Meinnel T 2003. Control of protein life-span by N-terminal methionine excision. EMBO J 22:13–23
    [Google Scholar]
  62. 61.  Gilkerson J, Kelley DR, Tam R, Estelle M, Callis J 2015. Lysine residues are not required for proteasome-mediated proteolysis of the auxin/indole acidic acid protein IAA1. Plant Physiol 168:708–20
    [Google Scholar]
  63. 62.  Graciet E, Mesiti F, Wellmer F 2010. Structure and evolutionary conservation of the plant N-end rule pathway. Plant J 61:741–51
    [Google Scholar]
  64. 63.  Graciet E, Walter F, Ó'Maoiléidigh DS, Pollmann S, Meyerowitz EM et al. 2009. The N-end rule pathway controls multiple functions during Arabidopsis shoot and leaf development. PNAS 106:13618–23
    [Google Scholar]
  65. 64.  Gravot A, Richard G, Lime T, Lemarié S, Jubault M et al. 2016. Hypoxia response in Arabidopsis roots infected by Plasmodiophora brassicae supports the development of clubroot. BMC Plant Biol 16:251
    [Google Scholar]
  66. 65.  Grefen C, Harter K 2004. Plant two-component systems: principles, functions, complexity and cross talk. Planta 219:733–42
    [Google Scholar]
  67. 66.  Gustavsson N, Kokke BPA, Anzelius B, Boelens WC, Sundby C 2001. Substitution of conserved methionines by leucines in chloroplast small heat shock protein results in loss of redox-response but retained chaperone-like activity. Protein Sci 10:1785–93
    [Google Scholar]
  68. 67.  Hardin SC, Larue CT, Oh MH, Jain V, Huber SC 2009. Coupling oxidative signals to protein phosphorylation via methionine oxidation in Arabidopsis. Biochem. J 422:305–12
    [Google Scholar]
  69. 68.  Haruta M, Gray WM, Sussman MR 2015. Regulation of the plasma membrane proton pump (H+-ATPase) by phosphorylation. Curr. Opin. Plant Biol. 28:68–75
    [Google Scholar]
  70. 69.  Haruta M, Sabat G, Stecker K, Minkoff BB, Sussman MR 2014. A peptide hormone and its receptor protein kinase regulate plant cell expansion. Science 343:408–11
    [Google Scholar]
  71. 70.  Hastwell AH, Corcilius L, Williams JT, Gresshoff PM, Payne RJ, Ferguson BJ 2019. Triarabinosylation is required for nodulation-suppressive CLE peptides to systemically inhibit nodulation in Pisum sativum. Plant Cell Environ42:188–97Shows that the intercellular suppression of nodulation undertaken by CLE-peptides requires O-arabinosylation for peptide activity.
    [Google Scholar]
  72. 71.  Heazlewood JL, Durek P, Hummel J, Selbig J, Weckwerth W et al. 2008. PhosPhAt: A database of phosphorylation sites in Arabidopsis thaliana and a plant-specific phosphorylation site predictor. Nucleic Acids Res 36:D1015–21
    [Google Scholar]
  73. 72.  Hijazi M, Durand J, Pichereaux C, Pont F, Jamet E, Albenne C 2012. Characterization of the arabinogalactan protein 31 (AGP31) of Arabidopsis thaliana: new advances on the Hyp-O-glycosylation of the Pro-rich domain. J. Biol. Chem. 287:9623–32
    [Google Scholar]
  74. 73.  Hijazi M, Velasquez SM, Jamet E, Estevez JM, Albenne C 2014. An update on post-translational modifications of hydroxyproline-rich glycoproteins: toward a model highlighting their contribution to plant cell wall architecture. Front. Plant. Sci. 5:395
    [Google Scholar]
  75. 74.  Ho C-H, Lin S-H, Hu H-C, Tsay Y-F 2009. CHL1 functions as a nitrate sensor in plants. Cell 138:1184–94Explains that nitrate transporter phosphorylation allows sensing of a wide range of nitrate concentrations in the soil.
    [Google Scholar]
  76. 75.  Hoernstein SNW, Mueller SJ, Fiedler K, Schuelke M, Vanselow JT et al. 2016. Identification of targets and interaction partners of arginyl-tRNA protein transferase in the moss Physcomitrella patens. Mol. Cell. Proteom 15:1808–22
    [Google Scholar]
  77. 76.  Holman TJ, Jones PD, Russell L, Medhurst A, Tomás SU et al. 2009. The N-end rule pathway promotes seed germination and establishment through removal of ABA sensitivity in Arabidopsis. PNAS 106:4549–54
    [Google Scholar]
  78. 77.  Hooper CM, Tanz SK, Castleden IR, Vacher MA, Small ID, Millar AH 2014. SUBAcon: a consensus algorithm for unifying the subcellular localization data of the Arabidopsis proteome. Bioinformatics 30:3356–64
    [Google Scholar]
  79. 78.  Hrabak EM, Chan CWM, Gribskov M, Harper JF, Choi JH et al. 2003. The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol 132:666–80
    [Google Scholar]
  80. 79.  Huang H, Liu B, Liu L, Song S 2017. Jasmonate action in plant growth and development. J. Exp. Bot. 68:1349–59
    [Google Scholar]
  81. 80.  Huang S, Taylor NL, Whelan J, Millar AH 2009. Refining the definition of plant mitochondrial presequences through analysis of sorting signals, N-terminal modifications, and cleavage motifs. Plant Physiol 150:1272–85
    [Google Scholar]
  82. 81.  Huesgen PF, Alami M, Lange PF, Foster LJ, Schröder WP et al. 2013. Proteomic amino-termini profiling reveals targeting information for protein import into complex plastids. PLOS ONE 8:e74483
    [Google Scholar]
  83. 82.  Ishikawa K, Yamaguchi K, Sakamoto K, Yoshimura S, Inoue K et al. 2014. Bacterial effector modulation of host E3 ligase activity suppresses PAMP-triggered immunity in rice. Nat. Commun. 5:5430
    [Google Scholar]
  84. 83.  Jacques S, Ghesquière B, De Bock PJ, Demol H, Wahni K et al. 2015. Protein methionine sulfoxide dynamics in Arabidopsis thaliana under oxidative stress. Mol. Cell. Proteom. 14:1217–29
    [Google Scholar]
  85. 84.  Jarvis P, López-Juez E 2013. Biogenesis and homeostasis of chloroplasts and other plastids. Nat. Rev. Mol. Cell Biol. 14:787–802
    [Google Scholar]
  86. 85.  Jentsch S, Psakhye I 2013. Control of nuclear activities by substrate-selective and protein-group SUMOylation. Annu. Rev. Genet. 47:167–86
    [Google Scholar]
  87. 86.  Johansson E, Olsson O, Nyström T 2004. Progression and specificity of protein oxidation in the life cycle of Arabidopsis thaliana. J. Biol. Chem 279:22204–8
    [Google Scholar]
  88. 87.  Johnson A, Vert G 2016. Unravelling K63 polyubiquitination networks by sensor-based proteomics. Plant Physiol 171:1808–20
    [Google Scholar]
  89. 88.  Johnson KL, Cassin AM, Lonsdale A, Wong GK, Soltis DE et al. 2017. Insights into the evolution of hydroxyproline-rich glycoproteins from 1000 plant transcriptomes. Plant Physiol 174:904–21
    [Google Scholar]
  90. 89.  Johnson KL, Ingram GC 2005. Sending the right signals: regulating receptor kinase activity. Curr. Opin. Plant Biol. 8:648–56
    [Google Scholar]
  91. 90.  Kang JS, Frank J, Kang CH, Kajiura H, Vikram M et al. 2008. Salt tolerance of Arabidopsis thaliana requires maturation of N-glycosylated proteins in the Golgi apparatus. PNAS 105:5933–38
    [Google Scholar]
  92. 91.  Kaur N, Hu J 2011. Defining the plant peroxisomal proteome: from Arabidopsis to rice. Front. Plant Sci. 2:103
    [Google Scholar]
  93. 92.  Kim DY, Scalf M, Smith LM, Vierstra RD 2013. Advanced proteomic analyses yield a deep catalog of ubiquitylation targets in Arabidopsis. Plant Cell 25:1523–40
    [Google Scholar]
  94. 93.  Kim TW, Guan S, Sun Y, Deng Z, Tang W et al. 2009. Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nat. Cell Biol. 11:1254–60
    [Google Scholar]
  95. 94.  Kim W, Bennett EJ, Huttlin EL, Guo A, Li J et al. 2011. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol. Cell 44:325–40
    [Google Scholar]
  96. 95.  Kirchler T, Briesemeister S, Singer M, Schütze K, Keinath M et al. 2010. The role of phosphorylatable serine residues in the DNA-binding domain of Arabidopsis bZIP transcription factors. Eur. J. Cell Biol. 89:175–83
    [Google Scholar]
  97. 96.  Korkuć P, Walther D 2017. Towards understanding the crosstalk between protein post-translational modifications: Homo- and heterotypic PTM pair distances on protein surfaces are not random. Proteins 85:78–92
    [Google Scholar]
  98. 97.  Krause C, Richter S, Knöll C, Jürgens G 2013. Plant secretome—from cellular process to biological activity. Biochim. Biophys. Acta 1834:2429–41
    [Google Scholar]
  99. 98.  Krzywinski MI, Schein JE, Birol I, Connors J, Gascoyne R et al. 2009. Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–45
    [Google Scholar]
  100. 99.  Kwon YT, Kashina AS, Davydov IV, Hu RG, An JY et al. 2002. An essential role of N-terminal arginylation in cardiovascular development. Science 297:96–99
    [Google Scholar]
  101. 100.  Lannoo N, Van Damme EJM 2015. N-glycans: The making of a varied toolbox. Plant Sci 239:67–83
    [Google Scholar]
  102. 101.  Lanquar V, Loqué D, Hörmann F, Yuan L, Bohner A et al. 2009. Feedback inhibition of ammonium uptake by a phospho-dependent allosteric mechanism in Arabidopsis. Plant Cell 21:3610–22
    [Google Scholar]
  103. 102.  Leyser O 2018. Auxin signaling. Plant Physiol 176:465–79
    [Google Scholar]
  104. 103.  Li CH, Chiang CP, Yang JY, Ma CJ, Chen YC, Yen HE 2014. RING-type ubiquitin ligase McCPN1 catalyzes UBC8-dependent protein ubiquitination and interacts with Argonaute 4 in halophyte ice plant. Plant Physiol. Biochem. 80:211–19
    [Google Scholar]
  105. 104.  Li L, Nelson CJ, Trösch J, Castleden I, Huang S, Millar AH 2017. Protein degradation rate in Arabidopsis thaliana leaf growth and development. Plant Cell 29:207–28
    [Google Scholar]
  106. 105.  Licausi F, Kosmacz M, Weits DA, Giuntoli B, Giorgi FM et al. 2011. Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization. Nature 479:419–22
    [Google Scholar]
  107. 106.  Linster E, Stephan I, Bienvenut WV, Maple-Grødem J, Myklebust LM et al. 2015. Downregulation of N-terminal acetylation triggers ABA-mediated drought responses in Arabidopsis. Nat. Commun 6:7640Demonstrates that N-terminal acetylation is a hormone-controlled process and that loss results in drought resistance in Arabidopsis.
    [Google Scholar]
  108. 107.  Linster E, Wirtz M 2018. N-terminal acetylation: an essential protein modification emerges as an important regulator of stress responses. J. Exp. Bot. 69:4555–68
    [Google Scholar]
  109. 108.  Liu CC, Zhu HY, Dong XM, Ning DL, Wang HX et al. 2013. Identification and analysis of the acetylated status of poplar proteins reveals analogous N-terminal protein processing mechanisms with other eukaryotes. PLOS ONE 8:e58681
    [Google Scholar]
  110. 109.  Lohrmann J, Harter K 2002. Plant two-component signaling systems and the role of response regulators. Plant Physiol 128:363–69
    [Google Scholar]
  111. 110.  Lounifi I, Arc E, Molassiotis A, Job D, Rajjou L, Tanou G 2013. Interplay between protein carbonylation and nitrosylation in plants. Proteomics 13:568–78
    [Google Scholar]
  112. 111.  Lydeard JR, Schulman BA, Harper JW 2013. Building and remodelling Cullin–RING E3 ubiquitin ligases. EMBO Rep 14:1050–61
    [Google Scholar]
  113. 112.  Ma J, Wang D, She J, Li J, Zhu JK, She YM 2016. Endoplasmic reticulum-associated N-glycan degradation of cold-upregulated glycoproteins in response to chilling stress in Arabidopsis. New Phytol 212:282–96
    [Google Scholar]
  114. 113.  Majeran W, Le Caer JP, Ponnala L, Meinnel T, Giglione C 2018. Targeted profiling of A. thaliana sub-proteomes illuminates new co- and post-translationally N-terminal myristoylated proteins. Plant Cell 30:543–62
    [Google Scholar]
  115. 114.  Mano J, Nagata M, Okamura S, Shiraya T, Mitsui T 2014. Identification of oxidatively modified proteins in salt-stressed Arabidopsis: a carbonyl-targeted proteomics approach. Plant Cell Physiol 55:1233–44
    [Google Scholar]
  116. 115.  Martinez A, Traverso JA, Valot B, Ferro M, Espagne C et al. 2008. Extent of N-terminal modifications in cytosolic proteins from eukaryotes. Proteomics 8:2809–31
    [Google Scholar]
  117. 116.  Maurel C, Kado RT, Guern J, Chrispeels MJ 1995. Phosphorylation regulates the water channel activity of the seed-specific aquaporin α-TIP. EMBO J 14:3028–35
    [Google Scholar]
  118. 117.  Meinnel T, Giglione C 2008. Tools for analyzing and predicting N-terminal protein modifications. Proteomics 8:626–49
    [Google Scholar]
  119. 118.  Mendiondo GM, Gibbs DJ, Szurman-Zubrzycka M, Korn A, Marquez J et al. 2016. Enhanced waterlogging tolerance in barley by manipulation of expression of the N-end rule pathway E3 ligase PROTEOLYSIS6. Plant Biotechnol. J 14:40–50
    [Google Scholar]
  120. 119.  Mergner J, Kuster B, Schwechheimer C 2017. DENEDDYLASE1 protein counters automodification of neddylating enzymes to maintain NEDD8 protein homeostasis in Arabidopsis. J. Biol. Chem 292:3854–65
    [Google Scholar]
  121. 120.  Miller MJ, Scalf M, Rytz TC, Hubler SL, Smith LM, Vierstra RD 2013. Quantitative proteomics reveals factors regulating RNA biology as dynamic targets of stress-induced SUMOylation in Arabidopsis. Mol. Cell. Proteom 12:449–63
    [Google Scholar]
  122. 121.  Mishra NS, Tuteja R, Tuteja N 2006. Signaling through MAP kinase networks in plants. Arch. Biochem. Biophys. 452:55–68
    [Google Scholar]
  123. 122.  Mock HP, Dietz KJ 2016. Redox proteomics for the assessment of redox-related posttranslational regulation in plants. Biochim. Biophys. Acta 1864:967–73
    [Google Scholar]
  124. 123.  Murcha MW, Narsai R, Devenish J, Kubiszewski-Jakubiak S, Whelan J 2015. MPIC: a mitochondrial protein import components database for plant and non-plant species. Plant Cell Physiol 56:e10
    [Google Scholar]
  125. 124.  Nguema-Ona E, Vicre-Gibouin M, Gotté M, Plancot B, Lerouge P et al. 2014. Cell wall O-glycoproteins and N-glycoproteins: aspects of biosynthesis and function. Front. Plant Sci. 5:499
    [Google Scholar]
  126. 125.  Ni W, Xu SL, Chalkley RJ, Pham TND, Guan S et al. 2013. Multisite light-induced phosphorylation of the transcription factor PIF3 is necessary for both its rapid degradation and concomitant negative feedback modulation of photoreceptor phyB levels in Arabidopsis. Plant Cell 25:2679–98
    [Google Scholar]
  127. 126.  Novatchkova M, Tomanov K, Hofmann K, Stuible HP, Bachmair A 2012. Update on sumoylation: defining core components of the plant SUMO conjugation system by phylogenetic comparison. New Phytol 195:23–31
    [Google Scholar]
  128. 127.  Nukarinen E, Tomanov K, Ziba I, Weckwerth W, Bachmair A 2017. Protein sumoylation and phosphorylation intersect in Arabidopsis signaling. Plant J 91:505–17
    [Google Scholar]
  129. 128.  Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML et al. 2010. Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci. Signal. 3:ra3
    [Google Scholar]
  130. 129.  Orth K, Xu Z, Mudgett MB, Bao ZQ, Palmer LE et al. 2000. Disruption of signaling by Yersinia effector YopJ, a ubiquitin-like protein protease. Science 290:1594–97
    [Google Scholar]
  131. 130.  Oxley D, Bacic A 1999. Structure of the glycosylphosphatidylinositol anchor of an arabinogalactan protein from Pyrus communis suspension-cultured cells. PNAS 96:14246–51
    [Google Scholar]
  132. 131.  Park CH, Chen S, Shirsekar G, Zhou B, Khang CH et al. 2012. The Magnaporthe oryzae effector AvrPiz-t targets the RING E3 ubiquitin ligase APIP6 to suppress pathogen-associated molecular pattern–triggered immunity in rice. Plant Cell 24:4748–62
    [Google Scholar]
  133. 132.  Paulsen BS, Craik DJ, Dunstan DE, Stone BA, Bacic A 2014. The Yariv reagent: behaviour in different solvents and interaction with a gum arabic arabinogalactan-protein. Carbohydr. Polym. 106:460–68
    [Google Scholar]
  134. 133.  Peltier JB, Friso G, Kalume DE, Roepstorff P, Nilsson F et al. 2000. Proteomics of the chloroplast: systematic identification and targeting analysis of lumenal and peripheral thylakoid proteins. Plant Cell 12:319–41
    [Google Scholar]
  135. 134.  Pierleoni A, Martelli PL, Casadio R 2008. PredGPI: a GPI-anchor predictor. BMC Bioinform 9:392
    [Google Scholar]
  136. 135.  Pierre M, Traverso JA, Boisson B, Domenichini S, Bouchez D et al. 2007. N-myristoylation regulates the SnRK1 pathway in Arabidopsis. Plant Cell 19:2804–21Demonstrates that MYR of the protein kinase SnRK1 is crucial for shoot apical meristem establishment.
    [Google Scholar]
  137. 136.  Popescu SC, Popescu GV, Bachan S, Zhang Z, Gerstein M et al. 2009. MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays. Genes Dev 23:80–92
    [Google Scholar]
  138. 137.  Potuschak T, Stary S, Schlögelhofer P, Becker F, Nejinskaia V, Bachmair A 1998. PRT1 of Arabidopsis thaliana encodes a component of the plant N-end rule pathway. PNAS 95:7904–8
    [Google Scholar]
  139. 138.  Prak S, Hem S, Boudet J, Viennois G, Sommerer N et al. 2008. Multiple phosphorylations in the C-terminal tail of plant plasma membrane aquaporins: role in subcellular trafficking of AtPIP2;1 in response to salt stress. Mol. Cell. Proteom. 7:1019–30
    [Google Scholar]
  140. 139.  Qi Q, Rajala RV, Anderson W, Jiang C, Rozwadowski K et al. 2000. Molecular cloning, genomic organization, and biochemical characterization of myristoyl-CoA:proteinN-myristoyltransferase from Arabidopsis thaliana. J. Biol. Chem 275:9673–83
    [Google Scholar]
  141. 140.  Rayapuram N, Bigeard J, Alhoraibi H, Bonhomme L, Hesse AM et al. 2017. Quantitative phosphoproteomic analysis reveals shared and specific targets of Arabidopsis MPK3, MPK4 and MPK6. Mol. Cell. Proteom. 17:61–80
    [Google Scholar]
  142. 141.  Rips S, Bentley N, Jeong IS, Welch JL, von Schaewen A, Koiwa H 2014. Multiple N-glycans cooperate in the subcellular targeting and functioning of Arabidopsis KORRIGAN1. Plant Cell 26:3792–808
    [Google Scholar]
  143. 142.  Romero-Barrios N, Vert G 2018. Proteasome-independent functions of lysine-63 polyubiquitination in plants. New Phytol 217:995–1011
    [Google Scholar]
  144. 143.  Rowland E, Kim J, Bhuiyan NH, van Wijk KJ 2015. The Arabidopsis chloroplast stromal N-terminome: complexities of amino-terminal protein maturation and stability. Plant Physiol 169:1881–96
    [Google Scholar]
  145. 144.  Rudashevskaya EL, Ye J, Jensen ON, Fuglsang AT, Palmgren MG 2012. Phosphosite mapping of P-type plasma membrane H+-ATPase in homologous and heterologous environments. J. Biol. Chem. 287:4904–13
    [Google Scholar]
  146. 145.  Rytz TC, Miller MJ, McLoughlin F, Augustine RC, Marshall RS et al. 2018. SUMOylome profiling reveals a diverse array of nuclear targets modified by the SUMO ligase SIZ1 during heat stress. Plant Cell 30:1077–99
    [Google Scholar]
  147. 146.  Salehin M, Bagchi R, Estelle M 2015. SCFTIR1/AFB-based auxin perception: mechanism and role in plant growth and development. Plant Cell 27:9–19Illustrates that auxin acts as a glue to increase affinity of AUX/IAA corepressor proteins to a ubiquitin ligase.
    [Google Scholar]
  148. 147.  Satour P, Youssef C, Chatelâin E, Ly Vu B, Teulat B et al. 2018. Patterns of protein carbonylation during Medicago truncatula seed maturation. Plant Cell Environ 41:2183–94
    [Google Scholar]
  149. 148.  Schilling O 2017. Protein Terminal Profiling: Methods and Protocols. Methods Mol. Biol Ser. 1574 New York: Springer
  150. 149.  Schindelman G, Morikami A, Jung J, Baskin TI, Carpita NC et al. 2001. COBRA encodes a putative GPI-anchored protein, which is polarly localized and necessary for oriented cell expansion in Arabidopsis. Genes Dev 15:1115–27
    [Google Scholar]
  151. 150.  Schuessele C, Hoernstein SNW, Mueller SJ, Rodriguez-Franco M, Lorenz T et al. 2016. Spatio-temporal patterning of arginyl-tRNA protein transferase (ATE) contributes to gametophytic development in a moss. New Phytol 209:1014–27
    [Google Scholar]
  152. 151.  Schulze WX 2015. Plant Phosphoproteomics: Methods and Protocols. Methods Mol. Biol. Ser 1306 New York: Springer
  153. 152.  Schweighofer A, Meskiene I 2015. Phosphatases in plants. See Ref. 151, pp. 25–46
  154. 153.  Shan X, Yan J, Xie D 2012. Comparison of phytohormone signaling mechanisms. Curr. Opin. Plant Biol. 15:84–91
    [Google Scholar]
  155. 154.  Showalter AM, Keppler BD, Lichtenberg J, Gu D, Welch LR 2010. A bioinformatics approach to the identification, classification, and analysis of hydroxyproline-rich glycoproteins. Plant Physiol 153:485–513
    [Google Scholar]
  156. 155.  Singer AU, Schulze S, Skarina T, Xu X, Cui H et al. 2013. A pathogen type III effector with a novel E3 ubiquitin ligase architecture. PLOS Pathog 9:e1003121
    [Google Scholar]
  157. 156.  Smakowska E, Czarna M, Janska H 2014. Mitochondrial ATP-dependent proteases in protection against accumulation of carbonylated proteins. Mitochondrion 19:245–51
    [Google Scholar]
  158. 157.  Smith LM, Kelleher NL, Consort. Top Down Proteom. 2013. Proteoform: a single term describing protein complexity. Nat. Methods 10:186–87
    [Google Scholar]
  159. 158.  Song W, Mentink RA, Henquet MGL, Cordewener JHG, van Dijk ADJ et al. 2013. N-glycan occupancy of Arabidopsis N-glycoproteins. J. Proteom. 93:343–55
    [Google Scholar]
  160. 159.  Strasser R 2016. Plant protein glycosylation. Glycobiology 26:926–39
    [Google Scholar]
  161. 160.  Sun W, Xu J, Yang J, Kieliszewski MJ, Showalter AM 2005. The lysine-rich arabinogalactan-protein subfamily in Arabidopsis: gene expression, glycoprotein purification and biochemical characterization. Plant Cell Physiol 46:975–84
    [Google Scholar]
  162. 161.  Takahashi D, Kawamura Y, Uemura M 2013. Changes of detergent-resistant plasma membrane proteins in oat and rye during cold acclimation: association with differential freezing tolerance. J. Proteome Res. 12:4998–5011
    [Google Scholar]
  163. 162.  Tan L, Eberhard S, Pattathil S, Warder C, Glushka J et al. 2013. An Arabidopsis cell wall proteoglycan consists of pectin and arabinoxylan covalently linked to an arabinogalactan protein. Plant Cell 25:270–87
    [Google Scholar]
  164. 163.  Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S et al. 2004. mapman: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–39
    [Google Scholar]
  165. 164.  Tomanov K, Luschnig C, Bachmair A 2014. Ubiquitin Lys 63 chains–second-most abundant, but poorly understood in plants. Front. Plant Sci. 5:15
    [Google Scholar]
  166. 165.  Tomanov K, Nehlin L, Ziba I, Bachmair A 2018. SUMO chain formation relies on the amino-terminal region of SUMO-conjugating enzyme and has dedicated substrates in plants. Biochem. J. 475:61–74
    [Google Scholar]
  167. 166.  Tomanov K, Zeschmann A, Hermkes R, Eifler K, Ziba I et al. 2014. Arabidopsis PIAL1 and 2 promote SUMO chain formation as E4-type SUMO ligases and are involved in stress responses and sulfur metabolism. Plant Cell 26:4547–60
    [Google Scholar]
  168. 167.  Tossounian MA, Van Molle I, Wahni K, Jacques S, Gevaert K et al. 2018. Disulfide bond formation protects Arabidopsis thaliana glutathione transferase tau 23 from oxidative damage. Biochim. Biophys. Acta 1862:775–89Demonstrates that Met oxidation enables stress-induced functional changes in glutathione-S transferase.
    [Google Scholar]
  169. 168.  Traverso JA, Micalella C, Martinez A, Brown SC, Satiat-Jeunemaître B et al. 2013. Roles of N-terminal fatty acid acylations in membrane compartment partitioning: Arabidopsis h-type thioredoxins as a case study. Plant Cell 25:1056–77Describes how MYR localizes thioredoxins to endomembranes and S-acylation readdresses them to plasma membrane micropatches.
    [Google Scholar]
  170. 169.  Trentini DB, Fuhrmann J, Mechtler K, Clausen T 2014. Chasing phosphoarginine proteins: development of a selective enrichment method using a phosphatase trap. Mol. Cell. Proteom. 13:1953–64
    [Google Scholar]
  171. 170.  Tsiatsiani L, Stael S, Van Damme P, Van Breusegem F, Gevaert K 2014. Preparation of Arabidopsis thaliana seedling proteomes for identifying metacaspase substrates by N-terminal COFRADIC. Caspases, Paracaspases, and Metacaspases PV Bozhkov, G Salvesen 255–61Methods Mol. Biol. Ser 1133 New York: Springer
    [Google Scholar]
  172. 171.  Tsiatsiani L, Timmerman E, De Bock P-J, Vercammen D, Stael S et al. 2013. The Arabidopsis metacaspase9 degradome. Plant Cell 25:2831–47
    [Google Scholar]
  173. 172.  Uhrig RG, She YM, Leach CA, Plaxton WC 2008. Regulatory monoubiquitination of phosphoenolpyruvate carboxylase in germinating castor oil seeds. J. Biol. Chem. 283:29650–57
    [Google Scholar]
  174. 173.  van den Burg HA, Kini RK, Schuurink RC, Takken FLW 2010. Arabidopsis small ubiquitin-like modifier paralogs have distinct functions in development and defense. Plant Cell 22:1998–2016
    [Google Scholar]
  175. 174.  van Wijk KJ 2015. Protein maturation and proteolysis in plant plastids, mitochondria, and peroxisomes. Annu. Rev. Plant Biol. 66:75–111
    [Google Scholar]
  176. 175.  van Wijk KJ, Friso G, Walther D, Schulze WX 2014. Meta-analysis of Arabidopsis thaliana phospho-proteomics data reveals compartmentalization of phosphorylation motifs. Plant Cell 26:2367–89
    [Google Scholar]
  177. 176.  Varshavsky A 2019. N-degron and C-degron pathways of protein degradation. PNAS 116:358–66
    [Google Scholar]
  178. 177.  Venne AS, Solari FA, Faden F, Paretti T, Dissmeyer N, Zahedi RP 2015. An improved workflow for quantitative N-terminal charge-based fractional diagonal chromatography (ChaFRADIC) to study proteolytic events in Arabidopsis thaliana. Proteomics 15:2458–69
    [Google Scholar]
  179. 178.  Verma V, Croley F, Sadanandom A 2018. Fifty shades of SUMO: its role in immunity and at the fulcrum of the growth–defence balance. Mol. Plant Pathol. 19:1537–44
    [Google Scholar]
  180. 179.  Vicente J, Mendiondo GM, Movahedi M, Peirats-Llobet M, Juan YT et al. 2017. The Cys-Arg/N-end rule pathway is a general sensor of abiotic stress in flowering plants. Curr. Biol. 27:3183–90
    [Google Scholar]
  181. 180.  Vicente J, Mendiondo GM, Pauwels J, Pastor V, Izquierdo Y et al. 2019. Distinct branches of the N-end rule pathway modulate the plant immune response. New Phytol 221:998–1000
    [Google Scholar]
  182. 181.  Walton A, Stes E, Cybulski N, Van Bel M, Iñigo S et al. 2016. It's time for some “site”-seeing: novel tools to monitor the ubiquitin landscape in Arabidopsis thaliana. Plant Cell 28:6–16
    [Google Scholar]
  183. 182.  Wang F, Deng XW 2011. Plant ubiquitin-proteasome pathway and its role in gibberellin signaling. Cell Res 21:1286–94
    [Google Scholar]
  184. 183.  Waszczak C, Akter S, Eeckhout D, Persiau G, Wahni K et al. 2014. Sulfenome mining in Arabidopsis thaliana. PNAS 111:11545–50
    [Google Scholar]
  185. 184.  Waszczak C, Akter S, Jacques S, Huang J, Messens J, Van Breusegem F 2015. Oxidative post-translational modifications of cysteine residues in plant signal transduction. J. Exp. Bot. 66:2923–34
    [Google Scholar]
  186. 185.  Watanabe N, Lam E 2011. Calcium-dependent activation and autolysis of Arabidopsis metacaspase 2d. J. Biol. Chem. 286:10027–40
    [Google Scholar]
  187. 186.  Weits DA, Giuntoli B, Kosmacz M, Parlanti S, Hubberten HM et al. 2014. Plant cysteine oxidases control the oxygen-dependent branch of the N-end-rule pathway. Nat. Commun. 5:3425
    [Google Scholar]
  188. 187.  White MD, Klecker M, Hopkinson RJ, Weits DA, Mueller C et al. 2017. Plant cysteine oxidases are dioxygenases that directly enable arginyl transferase-catalysed arginylation of N-end rule targets. Nat. Commun. 8:14690
    [Google Scholar]
  189. 188.  Winget JM, Mayor T 2010. The diversity of ubiquitin recognition: hot spots and varied specificity. Mol. Cell 38:627–35
    [Google Scholar]
  190. 189.  Xiao J, Xu S, Li C, Xu Y, Xing L et al. 2014. O-GlcNAc-mediated interaction between VER2 and TaGRP2 elicits TaVRN1 mRNA accumulation during vernalization in winter wheat. Nat. Commun. 5:4572
    [Google Scholar]
  191. 190.  Xu F, Huang Y, Li L, Gannon P, Linster E et al. 2015. Two N-terminal acetyltransferases antagonistically regulate the stability of a Nod-like receptor in Arabidopsis. Plant Cell 27:1547–62
    [Google Scholar]
  192. 191.  Xu SL, Chalkley RJ, Maynard JC, Wang W, Ni W et al. 2017. Proteomic analysis reveals O-GlcNAc modification on proteins with key regulatory functions in Arabidopsis. PNAS 114:E1536–43
    [Google Scholar]
  193. 192.  Xu SL, Medzihradszky KF, Wang ZY, Burlingame AL, Chalkley RJ 2016. N-glycopeptide profiling in Arabidopsis inflorescence. Mol. Cell. Proteom. 15:2048–54
    [Google Scholar]
  194. 193.  Yamaguchi YL, Ishida T, Sawa S 2016. CLE peptides and their signaling pathways in plant development. J. Exp. Bot. 67:4813–26
    [Google Scholar]
  195. 194.  Yan S, Dong X 2014. Perception of the plant immune signal salicylic acid. Curr. Opin. Plant Biol. 20:64–68
    [Google Scholar]
  196. 195.  Yang X, Qian K 2017. Protein O-GlcNAcylation: emerging mechanisms and functions. Nat. Rev. Mol. Cell Biol. 18:452–65
    [Google Scholar]
  197. 196.  Yates G, Srivastava AK, Sadanandom A 2016. SUMO proteases: uncovering the roles of deSUMOylation in plants. J. Exp. Bot. 67:2541–48
    [Google Scholar]
  198. 197.  Yeats TH, Bacic A, Johnson KL 2018. Plant glycosylphosphatidylinositol anchored proteins at the plasma membrane-cell wall nexus. J. Integr. Plant Biol. 60:649–69
    [Google Scholar]
  199. 198.  Yin G, Xin X, Fu S, An M, Wu S et al. 2017. Proteomic and carbonylation profile analysis at the critical node of seed ageing in Oryza sativa. Sci. Rep 7:40611
    [Google Scholar]
  200. 199.  Yoshida S, Ito M, Callis J, Nishida I, Watanabe A 2002. A delayed leaf senescence mutant is defective in arginyl-tRNA:protein arginyltransferase, a component of the N-end rule pathway in Arabidopsis. Plant J 32:129–37
    [Google Scholar]
  201. 200.  Zeng W, Ford KL, Bacic A, Heazlewood JL 2018. N-linked glycan micro-heterogeneity in glycoproteins of Arabidopsis. Mol. Cell. Proteom. 17:413–21
    [Google Scholar]
  202. 201.  Zentella R, Sui N, Barnhill B, Hsieh WP, Hu J et al. 2017. The Arabidopsis O-fucosyltransferase SPINDLY activates nuclear growth repressor DELLA. Nat. Chem. Biol. 13:479–85Explains that SPINDLY is a protein O-fucosyltransferase competing with O-GlcNAcylation to regulate intracellular signaling.
    [Google Scholar]
  203. 202.  Zhang H, Deery MJ, Gannon L, Powers SJ, Lilley KS, Theodoulou FL 2015. Quantitative proteomics analysis of the Arg/N-end rule pathway of targeted degradation in Arabidopsis roots. Proteomics 15:2447–57
    [Google Scholar]
  204. 203.  Zhang H, Gannon L, Hassall KL, Deery MJ, Gibbs DJ et al. 2018. N-terminomics reveals control of Arabidopsis seed storage proteins and proteases by the Arg/N-end rule pathway. New Phytol 218:1106–26
    [Google Scholar]
  205. 204.  Zhang H, He D, Yu J, Li M, Damaris RN et al. 2016. Analysis of dynamic protein carbonylation in rice embryo during germination through AP-SWATH. Proteomics 16:989–1000
    [Google Scholar]
  206. 205.  Zhao H, Zhang HM, Cui P, Ding F, Wang G et al. 2014. The putative E3 ubiquitin ligase ECERIFERUM9 regulates abscisic acid biosynthesis and response during seed germination and postgermination growth in Arabidopsis. Plant Physiol 165:1255–68
    [Google Scholar]
  207. 206.  Zheng N, Shabek N 2017. Ubiquitin ligases: structure, function, and regulation. Annu. Rev. Biochem. 86:129–57
    [Google Scholar]
  208. 207.  Zielinska DF, Gnad F, Schropp K, Wiśniewski JR, Mann M 2012. Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Mol. Cell 46:542–48
    [Google Scholar]
  209. 208.  Zulawski M, Schulze WX 2015. The plant kinome. See Ref. 151, pp. 1–23
  210. 209.  Zybailov B, Rutschow H, Friso G, Rudella A, Emanuelsson O et al. 2008. Sorting signals, N-terminal modifications and abundance of the chloroplast proteome. PLOS ONE 3:e1994
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-050718-100211
Loading
/content/journals/10.1146/annurev-arplant-050718-100211
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error