1932

Abstract

MicroRNAs (miRNAs) are 20–24 nucleotide noncoding RNAs abundant in plants and animals. The biogenesis of plant miRNAs involves transcription of miRNA genes, processing of primary miRNA transcripts by DICER-LIKE proteins into mature miRNAs, and loading of mature miRNAs into ARGONAUTE proteins to form miRNA-induced silencing complex (miRISC). By targeting complementary sequences, miRISC negatively regulates gene expression, thereby coordinating plant development and plant–environment interactions. In this review, we present and discuss recent updates on the mechanisms and regulation of miRNA biogenesis, miRISC assembly and actions as well as the regulatory roles of miRNAs in plant developmental plasticity, abiotic/biotic responses, and symbiotic/parasitic interactions. Finally, we suggest future directions for plant miRNA research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-050718-100334
2019-04-29
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/arplant/70/1/annurev-arplant-050718-100334.html?itemId=/content/journals/10.1146/annurev-arplant-050718-100334&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Abdel-Ghany SE, Pilon M 2008. MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis. J. Biol. Chem. 283:15932–45
    [Google Scholar]
  2. 2.  Achkar NP, Cho SK, Poulsen C, Arce AL, Re DA et al. 2018. A quick HYL1-dependent reactivation of microRNA production is required for a proper developmental response after extended periods of light deprivation. Dev. Cell 46:236–47.e6
    [Google Scholar]
  3. 3.  Addo-Quaye C, Eshoo TW, Bartel DP, Axtell MJ 2008. Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr. Biol. 18:758–62
    [Google Scholar]
  4. 4.  Arshad M, Feyissa BA, Amyot L, Aung B, Hannoufa A 2017. MicroRNA156 improves drought stress tolerance in alfalfa (Medicago sativa) by silencing SPL13. Plant Sci 258:122–36
    [Google Scholar]
  5. 5.  Aung K, Lin SI, Wu CC, Huang YT, Su CL, Chiou TJ 2006. pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene. Plant Physiol 141:1000–11
    [Google Scholar]
  6. 6.  Axtell MJ, Bowman JL 2008. Evolution of plant microRNAs and their targets. Trends Plant Sci 13:343–49
    [Google Scholar]
  7. 7.  Bai B, Bian H, Zeng Z, Hou N, Shi B et al. 2017. miR393-mediated auxin signaling regulation is involved in root elongation inhibition in response to toxic aluminum stress in barley. Plant Cell Physiol 58:426–39
    [Google Scholar]
  8. 8.  Bao N, Lye KW, Barton MK 2004. MicroRNA binding sites in Arabidopsis class III HD-ZIP mRNAs are required for methylation of the template chromosome. Dev. Cell 7:653–62
    [Google Scholar]
  9. 9.  Baranauskė S, Mickutė M, Plotnikova A, Finke A, Venclovas C et al. 2015. Functional mapping of the plant small RNA methyltransferase: HEN1 physically interacts with HYL1 and DICER-LIKE 1 proteins. Nucleic Acids Res 43:2802–12
    [Google Scholar]
  10. 10.  Bari R, Pant BD, Stitt M, Scheible WR 2006. PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol 141:988–99
    [Google Scholar]
  11. 11.  Baumberger N, Baulcombe DC 2005. Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. PNAS 102:11928–33
    [Google Scholar]
  12. 12.  Bazin J, Khan GA, Combier JP, Bustos-Sanmamed P, Debernardi JM et al. 2013. miR396 affects mycorrhization and root meristem activity in the legume Medicago truncatula. Plant J 74:920–34
    [Google Scholar]
  13. 13.  Beauclair L, Yu A, Bouché N 2010. microRNA-directed cleavage and translational repression of the copper chaperone for superoxide dismutase mRNA in Arabidopsis. Plant J 62:454–62
    [Google Scholar]
  14. 14.  Ben Chaabane S, Liu R, Chinnusamy V, Kwon Y, Park JH et al. 2013. STA1, an Arabidopsis pre-mRNA processing factor 6 homolog, is a new player involved in miRNA biogenesis. Nucleic Acids Res 41:1984–97
    [Google Scholar]
  15. 15.  Benková E, Ivanchenko MG, Friml J, Shishkova S, Dubrovsky JG 2009. A morphogenetic trigger: Is there an emerging concept in plant developmental biology. ? Trends Plant Sci 14:189–93
    [Google Scholar]
  16. 16.  Bergonzi S, Albani MC, van Themaat EVL, Nordström KJ, Wang R et al. 2013. Mechanisms of age-dependent response to winter temperature in perennial flowering of Arabis alpina. Science 340:1094–97
    [Google Scholar]
  17. 17.  Bielewicz D, Kalak M, Kalyna M, Windels D, Barta A et al. 2013. Introns of plant pri-miRNAs enhance miRNA biogenesis. EMBO Rep 14:622–28
    [Google Scholar]
  18. 18.  Bologna NG, Iselin R, Abriata LA, Sarazin A, Pumplin N et al. 2018. Nucleo-cytosolic shuttling of ARGONAUTE1 prompts a revised model of the plant microRNA pathway. Mol. Cell 69:709–19.e5
    [Google Scholar]
  19. 19.  Boualem A, Laporte P, Jovanovic M, Laffont C, Plet J et al. 2008. MicroRNA166 controls root and nodule development in Medicago truncatula. Plant J 54:876–87
    [Google Scholar]
  20. 20.  Branscheid A, Marchais A, Schott G, Lange H, Gagliardi D et al. 2015. SKI2 mediates degradation of RISC 5′-cleavage fragments and prevents secondary siRNA production from miRNA targets in Arabidopsis. Nucleic Acids Res 43:10975–88
    [Google Scholar]
  21. 21.  Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY et al. 2008. Widespread translational inhibition by plant miRNAs and siRNAs. Science 320:1185–90
    [Google Scholar]
  22. 22.  Brodersen P, Sakvarelidze-Achard L, Schaller H, Khafif M, Schott G et al. 2012. Isoprenoid biosynthesis is required for miRNA function and affects membrane association of ARGONAUTE 1 in Arabidopsis. PNAS 109:1778–83
    [Google Scholar]
  23. 23.  Brown JWS, Marshall DF, Echeverria M 2008. Intronic noncoding RNAs and splicing. Trends Plant Sci 13:335–42
    [Google Scholar]
  24. 24.  Cabrera J, Barcala M, García A, Rio-Machín A, Medina C et al. 2016. Differentially expressed small RNAs in Arabidopsis galls formed by Meloidogyne javanica: a functional role for miR390 and its TAS3-derived tasiRNAs. New Phytol 209:1625–40
    [Google Scholar]
  25. 25.  Cai Q, Qiao L, Wang M, He B, Lin FM et al. 2018. Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science 360:1126–29Demonstrates that sRNAs are transported in extracellular vesicles for cross-kingdom gene regulation.
    [Google Scholar]
  26. 26.  Cai Z, Wang Y, Zhu L, Tian Y, Chen L et al. 2017. GmTIR1/GmAFB3-based auxin perception regulated by miR393 modulates soybean nodulation. New Phytol 215:672–86
    [Google Scholar]
  27. 27.  Campo S, Peris-Peris C, Siré C, Moreno AB, Donaire L et al. 2013. Identification of a novel microRNA (miRNA) from rice that targets an alternatively spliced transcript of the Nramp6 (Natural resistance-associated macrophage protein 6) gene involved in pathogen resistance. New Phytol 199:212–27
    [Google Scholar]
  28. 28.  Carbonell A, Fahlgren N, Garcia-Ruiz H, Gilbert KB, Montgomery TA et al. 2012. Functional analysis of three Arabidopsis ARGONAUTES using slicer-defective mutants. Plant Cell 24:3613–29
    [Google Scholar]
  29. 29.  Casadevall R, Rodriguez RE, Debernardi JM, Palatnik JF, Casati P 2013. Repression of growth regulating factors by the microRNA396 inhibits cell proliferation by UV-B radiation in Arabidopsis leaves. Plant Cell 25:3570–83
    [Google Scholar]
  30. 30.  Casal JJ 2012. Shade avoidance. Arabidopsis Book 10:e0157
    [Google Scholar]
  31. 31.  Chen T, Cui P, Xiong L 2015. The RNA-binding protein HOS5 and serine/arginine-rich proteins RS40 and RS41 participate in miRNA biogenesis in Arabidopsis. Nucleic Acids Res 43:8283–98
    [Google Scholar]
  32. 32.  Chen X 2009. Small RNAs and their roles in plant development. Annu. Rev. Cell Dev. Biol. 25:21–44
    [Google Scholar]
  33. 33.  Chen Z, Hu L, Han N, Hu J, Yang Y et al. 2015. Overexpression of a miR393-resistant form of transport inhibitor response protein 1 (mTIR1) enhances salt tolerance by increased osmoregulation and Na+ exclusion in Arabidopsis thaliana. Plant Cell Physiol 56:73–83
    [Google Scholar]
  34. 34.  Chiou TJ, Aung K, Lin SI, Wu CC, Chiang SF, Su CL 2006. Regulation of phosphate homeostasis by microRNA in Arabidopsis. Plant Cell 18:412–21
    [Google Scholar]
  35. 35.  Chisholm ST, Coaker G, Day B, Staskawicz BJ 2006. Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–14
    [Google Scholar]
  36. 36.  Choi K, Kim J, Müller SY, Oh M, Underwood C et al. 2016. Regulation of microRNA-mediated developmental changes by the SWR1 chromatin remodeling complex. Plant Physiol 171:1128–43
    [Google Scholar]
  37. 37.  Chow HT, Ng DWK 2017. Regulation of miR163 and its targets in defense against Pseudomonas syringae in Arabidopsis thaliana. Sci. Rep. 7:46433
    [Google Scholar]
  38. 38.  Chuck G, Cigan AM, Saeteurn K, Hake S 2007. The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA. Nat. Genet. 39:544–49
    [Google Scholar]
  39. 39.  Combier JP, Frugier F, de Billy F, Boualem A, El-Yahyaoui F et al. 2006. MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatula. Genes Dev. 20:3084–88
    [Google Scholar]
  40. 40.  Cui LG, Shan JX, Shi M, Gao JP, Lin HX 2014. The miR156-SPL9-DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants. Plant J 80:1108–17
    [Google Scholar]
  41. 41.  Cui Y, Fang X, Qi Y 2016. TRANSPORTIN1 promotes the association of microRNA with ARGONAUTE1 in Arabidopsis. Plant Cell 28:2576–85
    [Google Scholar]
  42. 42.  D'Ario M, Griffiths-Jones S, Kim M 2017. Small RNAs: big impact on plant development. Trends Plant Sci 22:1056–68
    [Google Scholar]
  43. 43.  De Luis A, Markmann K, Cognat V, Holt DB, Charpentier M et al. 2012. Two microRNAs linked to nodule infection and nitrogen-fixing ability in the legume Lotus japonicus. Plant Physiol 160:2137–54
    [Google Scholar]
  44. 44.  de Vries S, Kloesges T, Rose LE 2015. Evolutionarily dynamic, but robust, targeting of resistance genes by the miR482/2118 gene family in the Solanaceae. Genome Biol. Evol. 7:3307–21
    [Google Scholar]
  45. 45.  Deng Y, Liu M, Li X, Li F 2018. microRNA-mediated R gene regulation: molecular scabbards for double-edged swords. Sci. China Life Sci. 61:138–47
    [Google Scholar]
  46. 46.  Deng Y, Wang J, Tung J, Liu D, Zhou Y et al. 2018. A role for small RNA in regulating innate immunity during plant growth. PLOS Pathog 14:e1006756
    [Google Scholar]
  47. 47.  Ding Y, Ma Y, Liu N, Xu J, Hu Q et al. 2017. microRNAs involved in auxin signalling modulate male sterility under high-temperature stress in cotton (Gossypium hirsutum). Plant J 91:977–94
    [Google Scholar]
  48. 48.  Dong Z, Han MH, Fedoroff N 2008. The RNA-binding proteins HYL1 and SE promote accurate in vitro processing of pri-miRNA by DCL1. PNAS 105:9970–75
    [Google Scholar]
  49. 49.  Downie JA 2014. Legume nodulation. Curr. Biol. 24:R184–90
    [Google Scholar]
  50. 50.  Du P, Wu J, Zhang J, Zhao S, Zheng H et al. 2011. Viral infection induces expression of novel phased microRNAs from conserved cellular microRNA precursors. PLOS Pathog 7:e1002176
    [Google Scholar]
  51. 51.  Du Q, Zhao M, Gao W, Sun S, Li WX 2017. microRNA/microRNA* complementarity is important for the regulation pattern of NFYA5 by miR169 under dehydration shock in Arabidopsis. Plant J 91:22–33
    [Google Scholar]
  52. 52.  Du Z, Chen A, Chen W, Westwood JH, Baulcombe DC, Carr JP 2014. Using a viral vector to reveal the role of microRNA159 in disease symptom induction by a severe strain of Cucumber mosaic virus. Plant Physiol 164:1378–88
    [Google Scholar]
  53. 53.  Eamens AL, Smith NA, Curtin SJ, Wang MB, Waterhouse PM 2009. The Arabidopsis thaliana double-stranded RNA binding protein DRB1 directs guide strand selection from microRNA duplexes. RNA 15:2219–35
    [Google Scholar]
  54. 54.  Etemadi M, Gutjahr C, Couzigou JM, Zouine M, Lauressergues D et al. 2014. Auxin perception is required for arbuscule development in arbuscular mycorrhizal symbiosis. Plant Physiol 166:281–92
    [Google Scholar]
  55. 55.  Fabian MR, Sonenberg N, Filipowicz W 2010. Regulation of mRNA translation and stability by microRNAs. Annu. Rev. Biochem. 79:351–79
    [Google Scholar]
  56. 56.  Fan Y, Yang J, Mathioni SM, Yu J, Shen J et al. 2016. PMS1T, producing phased small-interfering RNAs, regulates photoperiod-sensitive male sterility in rice. PNAS 113:15144–49
    [Google Scholar]
  57. 57.  Fang X, Cui Y, Li Y, Qi Y 2015. Transcription and processing of primary microRNAs are coupled by Elongator complex in Arabidopsis. Nat. Plants 1:15075Demonstrates that MIR transcription and pri-miRNA processing are coupled.
    [Google Scholar]
  58. 58.  Fang X, Shi Y, Lu X, Chen Z, Qi Y 2015. CMA33/XCT regulates small RNA production through modulating the transcription of Dicer-like genes in Arabidopsis. Mol. Plant 8:1227–36
    [Google Scholar]
  59. 59.  Fang Y, Spector DL 2007. Identification of nuclear dicing bodies containing proteins for microRNA biogenesis in living Arabidopsis plants. Curr. Biol. 17:818–23
    [Google Scholar]
  60. 60.  Fei Q, Xia R, Meyers BC 2013. Phased, secondary, small interfering RNAs in posttranscriptional regulatory networks. Plant Cell 25:2400–15
    [Google Scholar]
  61. 61.  Feng H, Zhang Q, Wang Q, Wang X, Liu J et al. 2013. Target of tae-miR408, a chemocyanin-like protein gene (TaCLP1), plays positive roles in wheat response to high-salinity, heavy cupric stress and stripe rust. Plant Mol. Biol. 83:433–43
    [Google Scholar]
  62. 62.  Fischer JJ, Beatty PH, Good AG, Muench DG 2013. Manipulation of microRNA expression to improve nitrogen use efficiency. Plant Sci 210:70–81
    [Google Scholar]
  63. 63.  Francisco-Mangilet AG, Karlsson P, Kim MH, Eo HJ, Oh SA et al. 2015. THO2, a core member of the THO/TREX complex, is required for microRNA production in Arabidopsis. Plant J 82:1018–29
    [Google Scholar]
  64. 64.  Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI et al. 2007. Target mimicry provides a new mechanism for regulation of microRNA activity. Nat. Genet. 39:1033–37
    [Google Scholar]
  65. 65.  Fujii H, Chiou TJ, Lin SI, Aung K, Zhu JK 2005. A miRNA involved in phosphate-starvation response in Arabidopsis. Curr. Biol. 15:2038–43
    [Google Scholar]
  66. 66.  Gao W, Liu W, Zhao M, Li WX 2015. NERF encodes a RING E3 ligase important for drought resistance and enhances the expression of its antisense gene NFYA5 in Arabidopsis. Nucleic Acids Res. 43:607–17
    [Google Scholar]
  67. 67.  German MA, Pillay M, Jeong DH, Hetawal A, Luo S et al. 2008. Global identification of microRNA–target RNA pairs by parallel analysis of RNA ends. Nat. Biotechnol. 26:941–46
    [Google Scholar]
  68. 68.  Giacomelli JI, Weigel D, Chan RL, Manavella PA 2012. Role of recently evolved miRNA regulation of sunflower HaWRKY6 in response to temperature damage. New Phytol 195:766–73
    [Google Scholar]
  69. 69.  Gifford ML, Dean A, Gutierrez RA, Coruzzi GM, Birnbaum KD 2008. Cell-specific nitrogen responses mediate developmental plasticity. PNAS 105:803–8
    [Google Scholar]
  70. 70.  Gilbert ME, Medina V 2016. Drought adaptation mechanisms should guide experimental design. Trends Plant Sci 21:639–47
    [Google Scholar]
  71. 71.  Guan Q, Lu X, Zeng H, Zhang Y, Zhu J 2013. Heat stress induction of miR398 triggers a regulatory loop that is critical for thermotolerance in Arabidopsis. Plant J 74:840–51
    [Google Scholar]
  72. 72.  Guo F, Han N, Xie Y, Fang K, Yang Y et al. 2016. The miR393a/target module regulates seed germination and seedling establishment under submergence in rice (Oryza sativa L.). Plant Cell Environ 39:2288–302
    [Google Scholar]
  73. 73.  Gursinsky T, Pirovano W, Gambino G, Friedrich S, Behrens SE, Pantaleo V 2015. Homeologs of the Nicotiana benthamiana antiviral ARGONAUTE1 show different susceptibilities to microRNA168-mediated control. Plant Physiol 168:938–52
    [Google Scholar]
  74. 74.  Gutierrez L, Bussell JD, Păcurar DI, Schwambach J, Păcurar M, Bellini C 2009. Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of AUXIN RESPONSE FACTOR transcripts and microRNA abundance. Plant Cell 21:3119–32
    [Google Scholar]
  75. 75.  Hackenberg M, Shi BJ, Gustafson P, Langridge P 2013. Characterization of phosphorus-regulated miR399 and miR827 and their isomirs in barley under phosphorus-sufficient and phosphorus-deficient conditions. BMC Plant Biol 13:214
    [Google Scholar]
  76. 76.  Han MH, Goud S, Song L, Fedoroff N 2004. The Arabidopsis double-stranded RNA-binding protein HYL1 plays a role in microRNA-mediated gene regulation. PNAS 101:1093–98
    [Google Scholar]
  77. 77.  Hanemian M, Barlet X, Sorin C, Yadeta KA, Keller H et al. 2016. Arabidopsis CLAVATA1 and CLAVATA2 receptors contribute to Ralstonia solanacearum pathogenicity through a miR169-dependent pathway. New Phytol 211:502–15
    [Google Scholar]
  78. 78.  He L, Hannon GJ 2004. MicroRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet. 5:522–31
    [Google Scholar]
  79. 79.  Hewezi T, Maier TR, Nettleton D, Baum TJ 2012. The Arabidopsis microRNA396-GRF1/GRF3 regulatory module acts as a developmental regulator in the reprogramming of root cells during cyst nematode infection. Plant Physiol 159:321–35
    [Google Scholar]
  80. 80.  Hewezi T, Piya S, Qi M, Balasubramaniam M, Rice JH, Baum TJ 2016. Arabidopsis miR827 mediates post-transcriptional gene silencing of its ubiquitin E3 ligase target gene in the syncytium of the cyst nematode Heterodera schachtii to enhance susceptibility. Plant J 88:179–92
    [Google Scholar]
  81. 81.  Hobecker KV, Reynoso MA, Bustos-Sanmamed P, Wen J, Mysore KS et al. 2017. The microRNA390/TAS3 pathway mediates symbiotic nodulation and lateral root growth. Plant Physiol 174:2469–86
    [Google Scholar]
  82. 82.  Holt DB, Gupta V, Meyer D, Abel NB, Andersen SU et al. 2015. micro RNA 172 (miR172) signals epidermal infection and is expressed in cells primed for bacterial invasion in Lotus japonicus roots and nodules. New Phytol 208:241–56
    [Google Scholar]
  83. 83.  Hou CY, Lee WC, Chou HC, Chen AP, Chou SJ, Chen HM 2016. Global analysis of truncated RNA ends reveals new insights into ribosome stalling in plants. Plant Cell 28:2398–416
    [Google Scholar]
  84. 84.  Hsieh LC, Lin SI, Shih AC, Chen JW, Lin WY et al. 2009. Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiol 151:2120–32
    [Google Scholar]
  85. 85.  Hu B, Zhu C, Li F, Tang J, Wang Y et al. 2011. LEAF TIP NECROSIS1 plays a pivotal role in the regulation of multiple phosphate starvation responses in rice. Plant Physiol 156:1101–15
    [Google Scholar]
  86. 86.  Huang TK, Han CL, Lin SI, Chen YJ, Tsai YC et al. 2013. Identification of downstream components of ubiquitin-conjugating enzyme PHOSPHATE2 by quantitative membrane proteomics in Arabidopsis roots. Plant Cell 25:4044–60
    [Google Scholar]
  87. 87.  Iba K 2002. Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Annu. Rev. Plant Biol. 53:225–45
    [Google Scholar]
  88. 88.  Iki T, Cléry A, Bologna NG, Sarazin A, Brosnan CA et al. 2018. Structural flexibility enables alternative maturation, ARGONAUTE sorting and activities of miR168, a global gene silencing regulator in plants. Mol. Plant 11:1108–23
    [Google Scholar]
  89. 89.  Iki T, Yoshikawa M, Meshi T, Ishikawa M 2012. Cyclophilin 40 facilitates HSP90-mediated RISC assembly in plants. EMBO J 31:267–78
    [Google Scholar]
  90. 90.  Iki T, Yoshikawa M, Nishikiori M, Jaudal MC, Matsumoto-Yokoyama E et al. 2010. In vitro assembly of plant RNA-induced silencing complexes facilitated by molecular chaperone HSP90. Mol. Cell 39:282–91
    [Google Scholar]
  91. 91.  Ivashuta S, Banks IR, Wiggins BE, Zhang Y, Ziegler TE et al. 2011. Regulation of gene expression in plants through miRNA inactivation. PLOS ONE 6:e21330
    [Google Scholar]
  92. 92.  Iwakawa HO, Tomari Y 2013. Molecular insights into microRNA-mediated translational repression in plants. Mol. Cell 52:591–601
    [Google Scholar]
  93. 93.  Iwamoto M, Tagiri A 2016. MicroRNA-targeted transcription factor gene RDD1 promotes nutrient ion uptake and accumulation in rice. Plant J 85:466–77
    [Google Scholar]
  94. 94.  Iwata Y, Takahashi M, Fedoroff NV, Hamdan SM 2013. Dissecting the interactions of SERRATE with RNA and DICER-LIKE 1 in Arabidopsis microRNA precursor processing. Nucleic Acids Res 41:9129–40
    [Google Scholar]
  95. 95.  Jagadeeswaran G, Li YF, Sunkar R 2014. Redox signaling mediates the expression of a sulfate-deprivation-inducible microRNA395 in Arabidopsis. Plant J 77:85–96
    [Google Scholar]
  96. 96.  Jeong DH, Park S, Zhai J, Gurazada SGR, De Paoli E et al. 2011. Massive analysis of rice small RNAs: mechanistic implications of regulated microRNAs and variants for differential target RNA cleavage. Plant Cell 23:4185–207
    [Google Scholar]
  97. 97.  Ji L, Liu X, Yan J, Wang W, Yumul RE et al. 2011. ARGONAUTE10 and ARGONAUTE1 regulate the termination of floral stem cells through two microRNAs in Arabidopsis. PLOS Genet. 7:e1001358
    [Google Scholar]
  98. 98.  Jia T, Zhang B, You C, Zhang Y, Zeng L et al. 2017. The Arabidopsis MOS4-associated complex promotes microRNA biogenesis and precursor messenger RNA splicing. Plant Cell 29:2626–43
    [Google Scholar]
  99. 99.  Jiang L, Wang Y, Björn LO, Li S 2011. Does cell cycle arrest occur in plant under solar UV-B radiation. ? Plant Signal. Behav. 6:892–94
    [Google Scholar]
  100. 100.  Jones-Rhoades MW, Bartel DP 2004. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol. Cell 14:787–99
    [Google Scholar]
  101. 101.  Jones-Rhoades MW, Bartel DP, Bartel B 2006. MicroRNAs and their regulatory roles in plants. Annu. Rev. Plant Biol. 57:19–53
    [Google Scholar]
  102. 102.  Jung JH, Seo PJ, Ahn JH, Park CM 2012. Arabidopsis RNA-binding protein FCA regulates microRNA172 processing in thermosensory flowering. J. Biol. Chem. 287:16007–16
    [Google Scholar]
  103. 103.  Jung JH, Seo YH, Seo PJ, Reyes JL, Yun J et al. 2007. The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis. Plant Cell 19:2736–48
    [Google Scholar]
  104. 104.  Kant S, Peng M, Rothstein SJ 2011. Genetic regulation by NLA and microRNA827 for maintaining nitrate-dependent phosphate homeostasis in Arabidopsis. PLOS Genet 7:e1002021
    [Google Scholar]
  105. 105.  Karlsson P, Christie MD, Seymour DK, Wang H, Wang X et al. 2015. KH domain protein RCF3 is a tissue-biased regulator of the plant miRNA biogenesis cofactor HYL1. PNAS 112:14096–101
    [Google Scholar]
  106. 106.  Kawashima CG, Matthewman CA, Huang S, Lee BR, Yoshimoto N et al. 2011. Interplay of SLIM1 and miR395 in the regulation of sulfate assimilation in Arabidopsis. Plant J 66:863–76
    [Google Scholar]
  107. 107.  Kawashima CG, Yoshimoto N, Maruyama-Nakashita A, Tsuchiya YN, Saito K et al. 2009. Sulphur starvation induces the expression of microRNA-395 and one of its target genes but in different cell types. Plant J 57:313–21
    [Google Scholar]
  108. 108.  Kim JJ, Lee JH, Kim W, Jung HS, Huijser P, Ahn JH 2012. The microRNA156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3 module regulates ambient temperature-responsive flowering via FLOWERING LOCUS T in Arabidopsis. Plant Physiol 159:461–78
    [Google Scholar]
  109. 109.  Kim S, Yang JY, Xu J, Jang IC, Prigge MJ, Chua NH 2008. Two cap-binding proteins CBP20 and CBP80 are involved in processing primary microRNAs. Plant Cell Physiol 49:1634–44
    [Google Scholar]
  110. 110.  Kim W, Benhamed M, Servet C, Latrasse D, Zhang W et al. 2009. Histone acetyltransferase GCN5 interferes with the miRNA pathway in Arabidopsis. Cell Res 19:899–909
    [Google Scholar]
  111. 111.  Kim YJ, Zheng B, Yu Y, Won SY, Mo B, Chen X 2011. The role of Mediator in small and long noncoding RNA production in Arabidopsis thaliana. EMBO J 30:814–22
    [Google Scholar]
  112. 112.  Kinoshita N, Wang H, Kasahara H, Liu J, MacPherson C et al. 2012. IAA-Ala Resistant3, an evolutionarily conserved target of miR167, mediates Arabidopsis root architecture changes during high osmotic stress. Plant Cell 24:3590–602
    [Google Scholar]
  113. 113.  Knop K, Stepien A, Barciszewska-Pacak M, Taube M, Bielewicz D et al. 2017. Active 5′ splice sites regulate the biogenesis efficiency of Arabidopsis microRNAs derived from intron-containing genes. Nucleic Acids Res 45:2757–75
    [Google Scholar]
  114. 114.  Köster T, Meyer K, Weinholdt C, Smith LM, Lummer M et al. 2014. Regulation of pri-miRNA processing by the hnRNP-like protein AtGRP7 in Arabidopsis. Nucleic Acids Res 42:9925–36
    [Google Scholar]
  115. 115.  Kurihara Y, Takashi Y, Watanabe Y 2006. The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. RNA 12:206–12
    [Google Scholar]
  116. 116.  Kurihara Y, Watanabe Y 2004. Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. PNAS 101:12753–58
    [Google Scholar]
  117. 117.  Lanet E, Delannoy E, Sormani R, Floris M, Brodersen P et al. 2009. Biochemical evidence for translational repression by Arabidopsis microRNAs. Plant Cell 21:1762–68
    [Google Scholar]
  118. 118.  Laubinger S, Sachsenberg T, Zeller G, Busch W, Lohmann JU et al. 2008. Dual roles of the nuclear cap-binding complex and SERRATE in pre-mRNA splicing and microRNA processing in Arabidopsis thaliana. PNAS 105:8795–800
    [Google Scholar]
  119. 119.  Lauressergues D, Delaux PM, Formey D, Lelandais-Brière C, Fort S et al. 2012. The microRNA miR171h modulates arbuscular mycorrhizal colonization of Medicago truncatula by targeting NSP2. Plant J 72:512–22
    [Google Scholar]
  120. 120.  Lee H, Yoo SJ, Lee JH, Kim W, Yoo SK et al. 2010. Genetic framework for flowering-time regulation by ambient temperature-responsive miRNAs in Arabidopsis. Nucleic Acids Res 38:3081–93
    [Google Scholar]
  121. 121.  Lee MH, Jeon HS, Kim HG, Park OK 2017. An Arabidopsis NAC transcription factor NAC4 promotes pathogen-induced cell death under negative regulation by microRNA164. New Phytol 214:343–60
    [Google Scholar]
  122. 122.  Lei KJ, Lin YM, Ren J, Bai L, Miao YC et al. 2016. Modulation of the phosphate-deficient responses by microRNA156 and its targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 3 in Arabidopsis. Plant Cell Physiol 57:192–203
    [Google Scholar]
  123. 123.  Li F, Pignatta D, Bendix C, Brunkard JO, Cohn MM et al. 2012. MicroRNA regulation of plant innate immune receptors. PNAS 109:1790–95
    [Google Scholar]
  124. 124.  Li S, Le B, Ma X, Li S, You C et al. 2016. Biogenesis of phased siRNAs on membrane-bound polysomes in Arabidopsis. eLife 5:e22750Provides evidence that target mRNA cleavage occurs on the rough endoplasmic reticulum.
    [Google Scholar]
  125. 125.  Li S, Liu K, Zhang S, Wang X, Rogers K et al. 2017. STV1, a ribosomal protein, binds primary microRNA transcripts to promote their interaction with the processing complex in Arabidopsis. PNAS 114:1424–29
    [Google Scholar]
  126. 126.  Li S, Liu K, Zhou B, Li M, Zhang S et al. 2018. MAC3A and MAC3B, two core subunits of the MOS4-associated complex, positively influence miRNA biogenesis. Plant Cell 30:481–94
    [Google Scholar]
  127. 127.  Li S, Liu L, Zhuang X, Yu Y, Liu X et al. 2013. MicroRNAs inhibit the translation of target mRNAs on the endoplasmic reticulum in Arabidopsis. Cell 153:562–74
    [Google Scholar]
  128. 128.  Li S, Xu R, Li A, Liu K, Gu L et al. 2018. SMA1, a homolog of the splicing factor Prp28, has a multifaceted role in miRNA biogenesis in Arabidopsis. Nucleic Acids Res 46:9148–59
    [Google Scholar]
  129. 129.  Li W, Cui X, Meng Z, Huang X, Xie Q et al. 2012. Transcriptional regulation of Arabidopsis MIR168a and ARGONAUTE1 homeostasis in abscisic acid and abiotic stress responses. Plant Physiol 158:1279–92
    [Google Scholar]
  130. 130.  Li WX, Oono Y, Zhu J, He XJ, Wu JM et al. 2008. The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell 20:2238–51
    [Google Scholar]
  131. 131.  Li X, Lei M, Yan Z, Wang Q, Chen A et al. 2014. The REL3-mediated TAS3 ta-siRNA pathway integrates auxin and ethylene signaling to regulate nodulation in Lotus japonicus. New Phytol 201:531–44
    [Google Scholar]
  132. 132.  Li Y, Lu YG, Shi Y, Wu L, Xu YJ et al. 2014. Multiple rice microRNAs are involved in immunity against the blast fungus Magnaporthe oryzae. Plant Physiol 164:1077–92
    [Google Scholar]
  133. 133.  Li Y, Zhang Q, Zhang J, Wu L, Qi Y, Zhou JM 2010. Identification of microRNAs involved in pathogen-associated molecular pattern-triggered plant innate immunity. Plant Physiol 152:2222–31
    [Google Scholar]
  134. 134.  Li Y, Zhao SL, Li JL, Hu XH, Wang H et al. 2017. Osa-miR169 negatively regulates rice immunity against the blast fungus Magnaporthe oryzae. Front. Plant Sci. 8:2
    [Google Scholar]
  135. 135.  Li Z, Wang S, Cheng J, Su C, Zhong S et al. 2016. Intron lariat RNA inhibits microRNA biogenesis by sequestering the dicing complex in Arabidopsis. PLOS Genet 12:e1006422
    [Google Scholar]
  136. 136.  Liang G, Yang F, Yu D 2010. MicroRNA395 mediates regulation of sulfate accumulation and allocation in Arabidopsis thaliana. Plant J 62:1046–57
    [Google Scholar]
  137. 137.  Lin SI, Chiang SF, Lin WY, Chen JW, Tseng CY et al. 2008. Regulatory network of microRNA399 and PHO2 by systemic signaling. Plant Physiol 147:732–46
    [Google Scholar]
  138. 138.  Lin SI, Santi C, Jobet E, Lacut E, El Kholti N et al. 2010. Complex regulation of two target genes encoding SPX-MFS proteins by rice miR827 in response to phosphate starvation. Plant Cell Physiol 51:2119–31
    [Google Scholar]
  139. 139.  Lin WY, Huang TK, Chiou TJ 2013. NITROGEN LIMITATION ADAPTATION, a target of microRNA827, mediates degradation of plasma membrane-localized phosphate transporters to maintain phosphate homeostasis in Arabidopsis. Plant Cell 25:4061–74
    [Google Scholar]
  140. 140.  Lin WY, Lin YY, Chiang SF, Syu C, Hsieh LC, Chiou TJ 2018. Evolution of microRNA827 targeting in the plant kingdom. New Phytol 217:1712–25
    [Google Scholar]
  141. 141.  Liu J, Cheng X, Liu D, Xu W, Wise R, Shen QH 2014. The miR9863 family regulates distinct Mla alleles in barley to attenuate NLR receptor-triggered disease resistance and cell-death signaling. PLOS Genet 10:e1004755
    [Google Scholar]
  142. 142.  Liu J, Yang L, Luan M, Wang Y, Zhang C et al. 2015. A vacuolar phosphate transporter essential for phosphate homeostasis in Arabidopsis. PNAS 112:E6571–78
    [Google Scholar]
  143. 143.  Liu JQ, Allan DL, Vance CP 2010. Systemic signaling and local sensing of phosphate in common bean: cross-talk between photosynthate and microRNA399. Mol. Plant 3:428–37
    [Google Scholar]
  144. 144.  Liu X, Dong X, Liu Z, Shi Z, Jiang Y et al. 2016. Repression of ARF10 by microRNA160 plays an important role in the mediation of leaf water loss. Plant Mol. Biol. 92:313–36
    [Google Scholar]
  145. 145.  Liu Y, Wang K, Li D, Yan J, Zhang W 2017. Enhanced cold tolerance and tillering in switchgrass (Panicum virgatum L.) by heterologous expression of Osa-miR393a. Plant Cell Physiol 58:2226–40
    [Google Scholar]
  146. 146.  Lobbes D, Rallapalli G, Schmidt DD, Martin C, Clarke J 2006. SERRATE: a new player on the plant microRNA scene. EMBO Rep 7:1052–58
    [Google Scholar]
  147. 147.  Ma C, Burd S, Lers A 2015. miR408 is involved in abiotic stress responses in Arabidopsis. Plant J 84:169–87
    [Google Scholar]
  148. 148.  Machida S, Chen HY, Yuan YA 2011. Molecular insights into miRNA processing by Arabidopsis thaliana SERRATE. Nucleic Acids Res 39:7828–36
    [Google Scholar]
  149. 149.  Machida S, Yuan YA 2013. Crystal structure of Arabidopsis thaliana Dawdle forkhead-associated domain reveals a conserved phospho-threonine recognition cleft for Dicer-like 1 binding. Mol. Plant 6:1290–300
    [Google Scholar]
  150. 150.  Manavella PA, Hagmann J, Ott F, Laubinger S, Franz M et al. 2012. Fast-forward genetics identifies plant CPL phosphatases as regulators of miRNA processing factor HYL1. Cell 151:859–70
    [Google Scholar]
  151. 151.  Mao YB, Liu YQ, Chen DY, Chen FY, Fang X et al. 2017. Jasmonate response decay and defense metabolite accumulation contributes to age-regulated dynamics of plant insect resistance. Nat. Commun. 8:13925
    [Google Scholar]
  152. 152.  Maruyama-Nakashita A, Nakamura Y, Tohge T, Saito K, Takahashi H 2006. Arabidopsis SLIM1 is a central transcriptional regulator of plant sulfur response and metabolism. Plant Cell 18:3235–51
    [Google Scholar]
  153. 153.  Mathieu J, Yant LJ, Mürdter F, Küttner F, Schmid M 2009. Repression of flowering by the miR172 target SMZ. PLOS Biol 7:e1000148
    [Google Scholar]
  154. 154.  Medina C, da Rocha M, Magliano M, Ratpopoulo A, Revel B et al. 2017. Characterization of microRNAs from Arabidopsis galls highlights a role for miR159 in the plant response to the root-knot nematode Meloidogyne incognita. New Phytol 216:882–96
    [Google Scholar]
  155. 155.  Megraw M, Baev V, Rusinov V, Jensen ST, Kalantidis K, Hatzigeorgiou AG 2006. MicroRNA promoter element discovery in Arabidopsis. RNA 12:1612–19
    [Google Scholar]
  156. 156.  Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ et al. 2007. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245–50
    [Google Scholar]
  157. 157.  Merelo P, Ram H, Caggiano MP, Ohno C, Ott F et al. 2016. Regulation of MIR165/166 by class II and class III homeodomain leucine zipper proteins establishes leaf polarity. PNAS 113:11973–78
    [Google Scholar]
  158. 158.  Mi S, Cai T, Hu Y, Chen Y, Hodges E et al. 2008. Sorting of small RNAs into Arabidopsis Argonaute complexes is directed by the 5′ terminal nucleotide. Cell 133:116–27
    [Google Scholar]
  159. 159.  Mittler R, Finka A, Goloubinoff P 2012. How do plants feel the heat. ? Trends Biochem. Sci. 37:118–25
    [Google Scholar]
  160. 160.  Montgomery TA, Howell MD, Cuperus JT, Li D, Hansen JE et al. 2008. Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell 133:128–41
    [Google Scholar]
  161. 161.  Morel JB, Godon C, Mourrain P, Béclin C, Boutet S et al. 2002. Fertile hypomorphic ARGONAUTE (ago1) mutants impaired in post-transcriptional gene silencing and virus resistance. Plant Cell 14:629–39
    [Google Scholar]
  162. 162.  Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N et al. 2006. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–39
    [Google Scholar]
  163. 163.  Navarro L, Jay F, Nomura K, He SY, Voinnet O 2008. Suppression of the microRNA pathway by bacterial effector proteins. Science 321:964–67
    [Google Scholar]
  164. 164.  Ni Z, Hu Z, Jiang Q, Zhang H 2013. GmNFYA3, a target gene of miR169, is a positive regulator of plant tolerance to drought stress. Plant Mol. Biol. 82:113–29
    [Google Scholar]
  165. 165.  Niu D, Lii YE, Chellappan P, Lei L, Peralta K et al. 2016. miRNA863-3p sequentially targets negative immune regulator ARLPKs and positive regulator SERRATE upon bacterial infection. Nat. Commun. 7:11324
    [Google Scholar]
  166. 166.  Nizampatnam NR, Schreier SJ, Damodaran S, Adhikari S, Subramanian S 2015. microRNA160 dictates stage-specific auxin and cytokinin sensitivities and directs soybean nodule development. Plant J 84:140–53
    [Google Scholar]
  167. 167.  Nova-Franco B, Iñiguez LP, Valdés-López O, Alvarado-Affantranger X, Leija A et al. 2015. The micro-RNA172c-APETALA2-1 node as a key regulator of the common bean-Rhizobium etli nitrogen fixation symbiosis. Plant Physiol 168:273–91
    [Google Scholar]
  168. 168.  Ouyang S, Park G, Atamian HS, Han CS, Stajich JE et al. 2014. MicroRNAs suppress NB domain genes in tomato that confer resistance to Fusarium oxysporum. PLOS Pathog 10:e1004464
    [Google Scholar]
  169. 169.  Pan J, Huang D, Guo Z, Kuang Z, Zhang H et al. 2018. Overexpression of microRNA408 enhances photosynthesis, growth, and seed yield in diverse plants. J. Integr. Plant Biol. 60:323–40
    [Google Scholar]
  170. 170.  Pant BD, Buhtz A, Kehr J, Scheible WR 2008. MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. Plant J 53:731–38
    [Google Scholar]
  171. 171.  Pant BD, Musialak-Lange M, Nuc P, May P, Buhtz A et al. 2009. Identification of nutrient-responsive Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing. Plant Physiol 150:1541–55
    [Google Scholar]
  172. 172.  Park BS, Seo JS, Chua NH 2014. NITROGEN LIMITATION ADAPTATION recruits PHOSPHATE2 to target the phosphate transporter PT2 for degradation during the regulation of Arabidopsis phosphate homeostasis. Plant Cell 26:454–64
    [Google Scholar]
  173. 173.  Park MY, Wu G, Gonzalez-Sulser A, Vaucheret H, Poethig RS 2005. Nuclear processing and export of microRNAs in Arabidopsis. PNAS 102:3691–96
    [Google Scholar]
  174. 174.  Park YJ, Lee HJ, Kwak KJ, Lee K, Hong SW, Kang H 2014. MicroRNA400-guided cleavage of pentatricopeptide repeat protein mRNAs renders Arabidopsis thaliana more susceptible to pathogenic bacteria and fungi. Plant Cell Physiol 55:1660–68
    [Google Scholar]
  175. 175.  Peng M, Hannam C, Gu H, Bi YM, Rothstein SJ 2007. A mutation in NLA, which encodes a RING-type ubiquitin ligase, disrupts the adaptability of Arabidopsis to nitrogen limitation. Plant J 50:320–37
    [Google Scholar]
  176. 176.  Peng Y, van Wersch R, Zhang Y 2018. Convergent and divergent signaling in PAMP-triggered immunity and effector-triggered immunity. Mol. Plant Microbe Interact. 31:403–9
    [Google Scholar]
  177. 177.  Pilon M, Abdel-Ghany SE, Cohu CM, Gogolin KA, Ye H 2006. Copper cofactor delivery in plant cells. Curr. Opin. Plant Biol. 9:256–63
    [Google Scholar]
  178. 178.  Pradhan M, Pandey P, Gase K, Sharaff M, Singh RK et al. 2017. Argonaute 8 (AGO8) mediates the elicitation of direct defenses against herbivory. Plant Physiol 175:927–46
    [Google Scholar]
  179. 179.  Qi Y, He X, Wang XJ, Kohany O, Jurka J, Hannon GJ 2006. Distinct catalytic and non-catalytic roles of ARGONAUTE4 in RNA-directed DNA methylation. Nature 443:1008–12
    [Google Scholar]
  180. 180.  Qu B, He X, Wang J, Zhao Y, Teng W et al. 2015. A wheat CCAAT box-binding transcription factor increases the grain yield of wheat with less fertilizer input. Plant Physiol 167:411–23
    [Google Scholar]
  181. 181.  Raczynska KD, Simpson CG, Ciesiolka A, Szewc L, Lewandowska D et al. 2010. Involvement of the nuclear cap-binding protein complex in alternative splicing in Arabidopsis thaliana. Nucleic Acids Res 38:265–78
    [Google Scholar]
  182. 182.  Raczynska KD, Stepien A, Kierzkowski D, Kalak M, Bajczyk M et al. 2014. The SERRATE protein is involved in alternative splicing in Arabidopsis thaliana. Nucleic Acids Res 42:1224–44
    [Google Scholar]
  183. 183.  Rajagopalan R, Vaucheret H, Trejo J, Bartel DP 2006. A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20:3407–25
    [Google Scholar]
  184. 184.  Ramachandran P, Wang G, Augstein F, de Vries J, Carlsbecker A 2018. Continuous root xylem formation and vascular acclimation to water deficit involves endodermal ABA signalling via miR165. Development 145:dev159202
    [Google Scholar]
  185. 185.  Ramachandran V, Chen X 2008. Degradation of microRNAs by a family of exoribonucleases in Arabidopsis. Science 321:1490–92
    [Google Scholar]
  186. 186.  Reis RS, Hart-Smith G, Eamens AL, Wilkins MR, Waterhouse PM 2015. Gene regulation by translational inhibition is determined by Dicer partnering proteins. Nat. Plants 1:14027
    [Google Scholar]
  187. 187.  Ren G, Chen X, Yu B 2012. Uridylation of miRNAs by HEN1 SUPPRESSOR1 in Arabidopsis. Curr. Biol. 22:695–700
    [Google Scholar]
  188. 188.  Ren G, Xie M, Dou Y, Zhang S, Zhang C, Yu B 2012. Regulation of miRNA abundance by RNA binding protein TOUGH in Arabidopsis. PNAS 109:12817–21
    [Google Scholar]
  189. 189.  Ren G, Xie M, Zhang S, Vinovskis C, Chen X, Yu B 2014. Methylation protects microRNAs from an AGO1-associated activity that uridylates 5′ RNA fragments generated by AGO1 cleavage. PNAS 111:6365–70
    [Google Scholar]
  190. 190.  Rymarquis LA, Souret FF, Green PJ 2011. Evidence that XRN4, an Arabidopsis homolog of exoribonuclease XRN1, preferentially impacts transcripts with certain sequences or in particular functional categories. RNA 17:501–11
    [Google Scholar]
  191. 191.  Sattar S, Addo-Quaye C, Thompson GA 2016. miRNA-mediated auxin signalling repression during Vat-mediated aphid resistance in Cucumis melo. Plant Cell Environ 39:1216–27
    [Google Scholar]
  192. 192.  Shahid S, Kim G, Johnson NR, Wafula E, Wang F et al. 2018. MicroRNAs from the parasitic plant Cuscuta campestris target host messenger RNAs. Nature 553:82–85Reveals that miRNAs exported from parasitic plants target host genes for successful parasitism.
    [Google Scholar]
  193. 193.  Shin H, Shin HS, Chen R, Harrison MJ 2006. Loss of At4 function impacts phosphate distribution between the roots and the shoots during phosphate starvation. Plant J 45:712–26
    [Google Scholar]
  194. 194.  Shivaprasad PV, Chen HM, Patel K, Bond DM, Santos BACM, Baulcombe DC 2012. A microRNA superfamily regulates nucleotide binding site–leucine-rich repeats and other mRNAs. Plant Cell 24:859–74
    [Google Scholar]
  195. 195.  Song JJ, Smith SK, Hannon GJ, Joshua-Tor L 2004. Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305:1434–37
    [Google Scholar]
  196. 196.  Song L, Han MH, Lesicka J, Fedoroff N 2007. Arabidopsis primary microRNA processing proteins HYL1 and DCL1 define a nuclear body distinct from the Cajal body. PNAS 104:5437–42
    [Google Scholar]
  197. 197.  Soto-Suárez M, Baldrich P, Weigel D, Rubio-Somoza I, San Segundo B 2017. The Arabidopsis miR396 mediates pathogen-associated molecular pattern-triggered immune responses against fungal pathogens. Sci. Rep. 7:44898
    [Google Scholar]
  198. 198.  Souret FF, Kastenmayer JP, Green PJ 2004. AtXRN4 degrades mRNA in Arabidopsis and its substrates include selected miRNA targets. Mol. Cell 15:173–83
    [Google Scholar]
  199. 199.  Stief A, Altmann S, Hoffmann K, Pant BD, Scheible WR, Bäurle I 2014. Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors. Plant Cell 26:1792–807
    [Google Scholar]
  200. 200.  Stork J, Harris D, Griffiths J, Williams B, Beisson F et al. 2010. CELLULOSE SYNTHASE9 serves a nonredundant role in secondary cell wall synthesis in Arabidopsis epidermal testa cells. Plant Physiol 153:580–89
    [Google Scholar]
  201. 201.  Su C, Li Z, Cheng J, Li L, Zhong S et al. 2017. The Protein Phosphatase 4 and SMEK1 complex dephosphorylates HYL1 to promote miRNA biogenesis by antagonizing the MAPK cascade in Arabidopsis. Dev. Cell 41:527–39
    [Google Scholar]
  202. 202.  Sun Q, Liu X, Yang J, Liu W, Du Q et al. 2018. MicroRNA528 affects lodging resistance of maize by regulating lignin biosynthesis under nitrogen-luxury conditions. Mol. Plant 11:806–14
    [Google Scholar]
  203. 203.  Sun Z, Guo T, Liu Y, Liu Q, Fang Y 2015. The roles of Arabidopsis CDF2 in transcriptional and posttranscriptional regulation of primary microRNAs. PLOS Genet 11:e1005598
    [Google Scholar]
  204. 204.  Sun Z, Li M, Zhou Y, Guo T, Liu Y et al. 2018. Coordinated regulation of Arabidopsis microRNA biogenesis and red light signaling through Dicer-like 1 and phytochrome-interacting factor 4. PLOS Genet 14:e1007247
    [Google Scholar]
  205. 205.  Sunkar R, Kapoor A, Zhu JK 2006. Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–65
    [Google Scholar]
  206. 206.  Suzaki T, Yano K, Ito M, Umehara Y, Suganuma N, Kawaguchi M 2012. Positive and negative regulation of cortical cell division during root nodule development in Lotus japonicus is accompanied by auxin response. Development 139:3997–4006
    [Google Scholar]
  207. 207.  Tang J, Chu C 2017. MicroRNAs in crop improvement: fine-tuners for complex traits. Nat. Plants 3:17077
    [Google Scholar]
  208. 208.  Teotia S, Tang G 2015. To bloom or not to bloom: role of microRNAs in plant flowering. Mol. Plant 8:359–77
    [Google Scholar]
  209. 209.  Theodorou ME, Plaxton WC 1993. Metabolic adaptations of plant respiration to nutritional phosphate deprivation. Plant Physiol 101:339–44
    [Google Scholar]
  210. 210.  Thiebaut F, Rojas CA, Almeida KL, Grativol C, Domiciano GC et al. 2012. Regulation of miR319 during cold stress in sugarcane. Plant Cell Environ 35:502–12
    [Google Scholar]
  211. 211.  Tian D, Traw MB, Chen JQ, Kreitman M, Bergelson J 2003. Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana. Nature 423:74–77
    [Google Scholar]
  212. 212.  Tomari Y, Matranga C, Haley B, Martinez N, Zamore PD 2004. A protein sensor for siRNA asymmetry. Science 306:1377–80
    [Google Scholar]
  213. 213.  Torres MA, Dangl JL 2005. Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr. Opin. Plant Biol. 8:397–403
    [Google Scholar]
  214. 214.  Tu B, Liu L, Xu C, Zhai J, Li S et al. 2015. Distinct and cooperative activities of HESO1 and URT1 nucleotidyl transferases in microRNA turnover in Arabidopsis. PLOS Genet 11:e1005119
    [Google Scholar]
  215. 215.  Turner M, Nizampatnam NR, Baron M, Coppin S, Damodaran S et al. 2013. Ectopic expression of miR160 results in auxin hypersensitivity, cytokinin hyposensitivity, and inhibition of symbiotic nodule development in soybean. Plant Physiol 162:2042–55
    [Google Scholar]
  216. 216.  Várallyay E, Oláh E, Havelda Z 2014. Independent parallel functions of p19 plant viral suppressor of RNA silencing required for effective suppressor activity. Nucleic Acids Res 42:599–608
    [Google Scholar]
  217. 217.  Várallyay E, Válóczi A, Ágyi A, Burgyán J, Havelda Z 2010. Plant virus-mediated induction of miR168 is associated with repression of ARGONAUTE1 accumulation. EMBO J 29:3507–19
    [Google Scholar]
  218. 218.  Vaucheret H, Mallory AC, Bartel DP 2006. AGO1 homeostasis entails coexpression of MIR168 and AGO1 and preferential stabilization of miR168 by AGO1. Mol. Cell 22:129–36
    [Google Scholar]
  219. 219.  Vaucheret H, Vazquez F, Crété P, Bartel DP 2004. The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev 18:1187–97
    [Google Scholar]
  220. 220.  Vazquez F, Gasciolli V, Crété P, Vaucheret H 2004. The nuclear dsRNA binding protein HYL1 is required for microRNA accumulation and plant development, but not posttranscriptional transgene silencing. Curr. Biol. 14:346–51
    [Google Scholar]
  221. 221.  Vidal EA, Araus V, Lu C, Parry G, Green PJ et al. 2010. Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana. PNAS 107:4477–82
    [Google Scholar]
  222. 222.  Wang C, Yue W, Ying Y, Wang S, Secco D et al. 2015. Rice SPX-Major Facility Superfamily3, a vacuolar phosphate efflux transporter, is involved in maintaining phosphate homeostasis in rice. Plant Physiol 169:2822–31
    [Google Scholar]
  223. 223.  Wang F, Perry SE 2013. Identification of direct targets of FUSCA3, a key regulator of Arabidopsis seed development. Plant Physiol 161:1251–64
    [Google Scholar]
  224. 224.  Wang H, Jiao X, Kong X, Hamera S, Wu Y et al. 2016. A signaling cascade from miR444 to RDR1 in rice antiviral RNA silencing pathway. Plant Physiol 170:2365–77
    [Google Scholar]
  225. 225.  Wang H, Wang H 2015. The miR156/SPL module, a regulatory hub and versatile toolbox, gears up crops for enhanced agronomic traits. Mol. Plant 8:677–88
    [Google Scholar]
  226. 226.  Wang JW, Czech B, Weigel D 2009. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138:738–49
    [Google Scholar]
  227. 227.  Wang L, Song X, Gu L, Li X, Cao S et al. 2013. NOT2 proteins promote polymerase II–dependent transcription and interact with multiple microRNA biogenesis factors in Arabidopsis. Plant Cell 25:715–27
    [Google Scholar]
  228. 228.  Wang W, Ye R, Xin Y, Fang X, Li C et al. 2011. An importin β protein negatively regulates microRNA activity in Arabidopsis. Plant Cell 23:3565–76
    [Google Scholar]
  229. 229.  Wang X, Wang Y, Dou Y, Chen L, Wang J et al. 2018. Degradation of unmethylated miRNA/miRNA*s by a DEDDy-type 3′ to 5′ exoribonuclease Atrimmer 2 in Arabidopsis. PNAS 115:E6659–67
    [Google Scholar]
  230. 230.  Wang X, Zhang S, Dou Y, Zhang C, Chen X et al. 2015. Synergistic and independent actions of multiple terminal nucleotidyl transferases in the 3′ tailing of small RNAs in Arabidopsis. PLOS Genet 11:e1005091
    [Google Scholar]
  231. 231.  Wang Y, Li K, Chen L, Zou Y, Liu H et al. 2015. MicroRNA167-directed regulation of the auxin response factors GmARF8a and GmARF8b is required for soybean nodulation and lateral root development. Plant Physiol 168:984–99
    [Google Scholar]
  232. 232.  Wang Y, Wang L, Zou Y, Chen L, Cai Z et al. 2014. Soybean miR172c targets the repressive AP2 transcription factor NNC1 to activate ENOD40 expression and regulate nodule initiation. Plant Cell 26:4782–801
    [Google Scholar]
  233. 233.  Wang Z, Ma Z, Castillo-González C, Sun D, Li Y et al. 2018. SWI2/SNF2 ATPase CHR2 remodels pri-miRNAs via Serrate to impede miRNA production. Nature 557:516–21Discovers that pri-miRNAs can be remodeled by a chromatin remodeling factor.
    [Google Scholar]
  234. 234.  Wang Z, Xia Y, Lin S, Wang Y, Guo B et al. 2018. Osa-miR164a targets OsNAC60 and negatively regulates rice immunity against the blast fungus Magnaporthe oryzae. Plant J 95:584–97
    [Google Scholar]
  235. 235.  Wong J, Gao L, Yang Y, Zhai J, Arikit S et al. 2014. Roles of small RNAs in soybean defense against Phytophthora sojae infection. Plant J 79:928–40
    [Google Scholar]
  236. 236.  Wu G, Park MY, Conway SR, Wang JW, Weigel D, Poethig RS 2009. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138:750–59
    [Google Scholar]
  237. 237.  Wu HJ, Wang ZM, Wang M, Wang XJ 2013. Widespread long noncoding RNAs as endogenous target mimics for microRNAs in plants. Plant Physiol 161:1875–84
    [Google Scholar]
  238. 238.  Wu J, Yang R, Yang Z, Yao S, Zhao S et al. 2017. ROS accumulation and antiviral defence control by microRNA528 in rice. Nat. Plants 3:16203
    [Google Scholar]
  239. 239.  Wu J, Yang Z, Wang Y, Zheng L, Ye R et al. 2015. Viral-inducible Argonaute18 confers broad-spectrum virus resistance in rice by sequestering a host microRNA. eLife 4:e05733
    [Google Scholar]
  240. 240.  Wu L, Zhou H, Zhang Q, Zhang J, Ni F et al. 2010. DNA methylation mediated by a microRNA pathway. Mol. Cell 38:465–75
    [Google Scholar]
  241. 241.  Wu X, Shi Y, Li J, Xu L, Fang Y et al. 2013. A role for the RNA-binding protein MOS2 in microRNA maturation in Arabidopsis. Cell Res 23:645–57
    [Google Scholar]
  242. 242.  Xie Y, Liu Y, Wang H, Ma X, Wang B et al. 2017. Phytochrome-interacting factors directly suppress MIR156 expression to enhance shade-avoidance syndrome in Arabidopsis. Nat. Commun 8:348
    [Google Scholar]
  243. 243.  Xie Z, Allen E, Fahlgren N, Calamar A, Givan SA, Carrington JC 2005. Expression of Arabidopsis MIRNA genes. Plant Physiol 138:2145–54
    [Google Scholar]
  244. 244.  Xie Z, Kasschau KD, Carrington JC 2003. Negative feedback regulation of Dicer-Like1 in Arabidopsis by microRNA-guided mRNA degradation. Curr. Biol. 13:784–89
    [Google Scholar]
  245. 245.  Xu J, Chua NH 2011. Processing bodies and plant development. Curr. Opin. Plant Biol. 14:88–93
    [Google Scholar]
  246. 246.  Xu L, Hu Y, Cao Y, Li J, Ma L et al. 2018. An expression atlas of miRNAs in Arabidopsis thaliana. Sci. China Life Sci. 61:178–89
    [Google Scholar]
  247. 247.  Xu W, Meng Y, Wise RP 2014. Mla- and Rom1-mediated control of microRNA398 and chloroplast copper/zinc superoxide dismutase regulates cell death in response to the barley powdery mildew fungus. New Phytol 201:1396–412
    [Google Scholar]
  248. 248.  Yamaguchi A, Wu MF, Yang L, Wu G, Poethig RS, Wagner D 2009. The microRNA-regulated SBP-box transcription factor SPL3 is a direct upstream activator of LEAFY, FRUITFULL, and APETALA1. Dev. Cell 17:268–78
    [Google Scholar]
  249. 249.  Yamasaki H, Abdel-Ghany SE, Cohu CM, Kobayashi Y, Shikanai T, Pilon M 2007. Regulation of copper homeostasis by micro-RNA in Arabidopsis. J. Biol. Chem. 282:16369–78
    [Google Scholar]
  250. 250.  Yamasaki H, Hayashi M, Fukazawa M, Kobayashi Y, Shikanai T 2009. SQUAMOSA promoter binding protein–like7 is a central regulator for copper homeostasis in Arabidopsis. Plant Cell 21:347–61
    [Google Scholar]
  251. 251.  Yan J, Wang P, Wang B, Hsu CC, Tang K et al. 2017. The SnRK2 kinases modulate miRNA accumulation in Arabidopsis. PLOS Genet 13:e1006753
    [Google Scholar]
  252. 252.  Yan J, Zhao C, Zhou J, Yang Y, Wang P et al. 2016. The miR165/166 mediated regulatory module plays critical roles in ABA homeostasis and response in Arabidopsis thaliana. PLOS Genet 12:e1006416
    [Google Scholar]
  253. 253.  Yan K, Liu P, Wu CA, Yang GD, Xu R et al. 2012. Stress-induced alternative splicing provides a mechanism for the regulation of microRNA processing in Arabidopsis thaliana. Mol. Cell 48:521–31
    [Google Scholar]
  254. 254.  Yan Y, Wang H, Hamera S, Chen X, Fang R 2014. miR444a has multiple functions in the rice nitrate-signaling pathway. Plant J 78:44–55
    [Google Scholar]
  255. 255.  Yan Z, Hossain MS, Arikit S, Valdés-López O, Zhai J et al. 2015. Identification of microRNAs and their mRNA targets during soybean nodule development: functional analysis of the role of miR393j-3p in soybean nodulation. New Phytol 207:748–59
    [Google Scholar]
  256. 256.  Yang C, Li D, Mao D, Liu X, Ji C et al. 2013. Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativa L.). Plant Cell Environ 36:2207–18
    [Google Scholar]
  257. 257.  Yang GD, Yan K, Wu BJ, Wang YH, Gao YX, Zheng CC 2012. Genomewide analysis of intronic microRNAs in rice and Arabidopsis. J. Genet. 91:313–24
    [Google Scholar]
  258. 258.  Yang JY, Iwasaki M, Machida C, Machida Y, Zhou X, Chua NH 2008. βC1, the pathogenicity factor of TYLCCNV, interacts with AS1 to alter leaf development and suppress selective jasmonic acid responses. Genes Dev 22:2564–77
    [Google Scholar]
  259. 259.  Yang L, Liu Z, Lu F, Dong A, Huang H 2006. SERRATE is a novel nuclear regulator in primary microRNA processing in Arabidopsis. Plant J 47:841–50
    [Google Scholar]
  260. 260.  Yang L, Wu G, Poethig RS 2012. Mutations in the GW-repeat protein SUO reveal a developmental function for microRNA-mediated translational repression in Arabidopsis. PNAS 109:315–20
    [Google Scholar]
  261. 261.  Yang SW, Chen HY, Yang J, Machida S, Chua NH, Yuan YA 2010. Structure of Arabidopsis HYPO-NASTIC LEAVES1 and its molecular implications for miRNA processing. Structure 18:594–605
    [Google Scholar]
  262. 262.  Yang X, Ren W, Zhao Q, Zhang P, Wu F, He Y 2014. Homodimerization of HYL1 ensures the correct selection of cleavage sites in primary miRNA. Nucleic Acids Res 42:12224–36
    [Google Scholar]
  263. 263.  Yant L, Mathieu J, Dinh TT, Ott F, Lanz C et al. 2010. Orchestration of the floral transition and floral development in Arabidopsis by the bifunctional transcription factor APETALA2. Plant Cell 22:2156–70
    [Google Scholar]
  264. 264.  Yu B, Bi L, Zheng B, Ji L, Chevalier D et al. 2008. The FHA domain proteins DAWDLE in Arabidopsis and SNIP1 in humans act in small RNA biogenesis. PNAS 105:10073–78
    [Google Scholar]
  265. 265.  Yu B, Yang Z, Li J, Minakhina S, Yang M et al. 2005. Methylation as a crucial step in plant microRNA biogenesis. Science 307:932–35
    [Google Scholar]
  266. 266.  Yu X, Hou Y, Chen W, Wang S, Wang P, Qu S 2017. Malus hupehensis miR168 targets to ARGO-NAUTE1 and contributes to the resistance against Botryosphaeria dothidea infection by altering defense responses. Plant Cell Physiol 58:1541–57
    [Google Scholar]
  267. 267.  Yu Y, Ji L, Le BH, Zhai J, Chen J et al. 2017. ARGONAUTE10 promotes the degradation of miR165/6 through the SDN1 and SDN2 exonucleases in Arabidopsis. PLOS Biol 15:e2001272
    [Google Scholar]
  268. 268.  Yu Y, Jia T, Chen X 2017. The ‘how’ and ‘where’ of plant microRNAs. New Phytol 216:1002–17
    [Google Scholar]
  269. 269.  Yuan N, Yuan S, Li Z, Li D, Hu Q, Luo H 2016. Heterologous expression of a rice miR395 gene in Nicotiana tabacum impairs sulfate homeostasis. Sci. Rep. 6:28791
    [Google Scholar]
  270. 270.  Yuan S, Li Z, Li D, Yuan N, Hu Q, Luo H 2015. Constitutive expression of rice microRNA528 alters plant development and enhances tolerance to salinity stress and nitrogen starvation in creeping bentgrass. Plant Physiol 169:576–93
    [Google Scholar]
  271. 271.  Yuan YR, Pei Y, Ma JB, Kuryavyi V, Zhadina M et al. 2005. Crystal structure of A. aeolicus argonaute, a site-specific DNA-guided endoribonuclease, provides insights into RISC-mediated mRNA cleavage. Mol. Cell 19:3405–19
    [Google Scholar]
  272. 272.  Yue E, Liu Z, Li C, Li Y, Liu Q, Xu JH 2017. Overexpression of miR529a confers enhanced resistance to oxidative stress in rice (Oryza sativa L.). Plant Cell Rep 36:1171–82
    [Google Scholar]
  273. 273.  Yue W, Ying Y, Wang C, Zhao Y, Dong C et al. 2017. OsNLA1, a RING-type ubiquitin ligase, maintains phosphate homeostasis in Oryza sativa via degradation of phosphate transporters. Plant J 90:1040–51
    [Google Scholar]
  274. 274.  Yumul RE, Kim YJ, Liu X, Wang R, Ding J et al. 2013. POWERDRESS and diversified expression of the MIR172 gene family bolster the floral stem cell network. PLOS Genet 9:e1003218
    [Google Scholar]
  275. 275.  Zhai J, Jeong DH, De Paoli E, Park S, Rosen BD et al. 2011. MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs. Genes Dev 25:2540–53
    [Google Scholar]
  276. 276.  Zhan X, Wang B, Li H, Liu R, Kalia RK et al. 2012. Arabidopsis proline-rich protein important for development and abiotic stress tolerance is involved in microRNA biogenesis. PNAS 109:18198–203
    [Google Scholar]
  277. 277.  Zhang C, Ding Z, Wu K, Yang L, Li Y et al. 2016. Suppression of jasmonic acid-mediated defense by viral-inducible microRNA319 facilitates virus infection in rice. Mol. Plant 9:1302–14
    [Google Scholar]
  278. 278.  Zhang H, Zhao X, Li J, Cai H, Deng XW, Li L 2014. MicroRNA408 is critical for the HY5-SPL7 gene network that mediates the coordinated response to light and copper. Plant Cell 26:4933–53
    [Google Scholar]
  279. 279.  Zhang J, Zhang H, Srivastava AK, Pan Y, Bai J et al. 2018. Knock-down of rice microRNA166 confers drought resistance by causing leaf rolling and altering stem xylem development. Plant Physiol 177:1691–703
    [Google Scholar]
  280. 280.  Zhang S, Liu Y, Yu B 2014. PRL1, an RNA-binding protein, positively regulates the accumulation of miRNAs and siRNAs in Arabidopsis. PLOS Genet 10:e1004841
    [Google Scholar]
  281. 281.  Zhang S, Xie M, Ren G, Yu B 2013. CDC5, a DNA binding protein, positively regulates posttranscriptional processing and/or transcription of primary microRNA transcripts. PNAS 110:17588–93
    [Google Scholar]
  282. 282.  Zhang T, Zhao YL, Zhao JH, Wang S, Jin Y et al. 2016. Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen. Nat. Plants 2:16153Reveals that miRNAs can move and mediate cross-kingdom gene regulation.
    [Google Scholar]
  283. 283.  Zhang W, Gao S, Zhou X, Chellappan P, Chen Z et al. 2011. Bacteria-responsive microRNAs regulate plant innate immunity by modulating plant hormone networks. Plant Mol. Biol. 75:93–105
    [Google Scholar]
  284. 284.  Zhang X, Niu D, Carbonell A, Wang A, Lee A et al. 2014. ARGONAUTE PIWI domain and microRNA duplex structure regulate small RNA sorting in Arabidopsis. Nat. Commun 5:5468
    [Google Scholar]
  285. 285.  Zhang X, Zhao H, Gao S, Wang WC, Katiyar-Agarwal S et al. 2011. Arabidopsis Argonaute 2 regulates innate immunity via miRNA393*-mediated silencing of a Golgi-localized SNARE gene, MEMB12. Mol. Cell 42:356–66
    [Google Scholar]
  286. 286.  Zhang X, Zou Z, Gong P, Zhang J, Ziaf K et al. 2011. Over-expression of microRNA169 confers enhanced drought tolerance to tomato. Biotechnol. Lett. 33:403–9
    [Google Scholar]
  287. 287.  Zhang Y, Xia R, Kuang H, Meyers BC 2016. The diversification of plant NBS-LRR defense genes directs the evolution of microRNAs that target them. Mol. Biol. Evol. 33:2692–705
    [Google Scholar]
  288. 288.  Zhang Z, Guo X, Ge C, Ma Z, Jiang M et al. 2017. KETCH1 imports HYL1 to nucleus for miRNA biogenesis in Arabidopsis. PNAS 114:4011–16
    [Google Scholar]
  289. 289.  Zhang Z, Hu F, Sung MW, Shu C, Castillo-González C et al. 2017. RISC-interacting clearing 3′-5′ exoribonucleases (RICEs) degrade uridylated cleavage fragments to maintain functional RISC in Arabidopsis thaliana. eLife 6:e24466
    [Google Scholar]
  290. 290.  Zhao M, Ding H, Zhu JK, Zhang F, Li WX 2011. Involvement of miR169 in the nitrogen-starvation responses in Arabidopsis. New Phytol 190:906–15
    [Google Scholar]
  291. 291.  Zhao W, Li Z, Fan J, Hu C, Yang R et al. 2015. Identification of jasmonic acid-associated microRNAs and characterization of the regulatory roles of the miR319/TCP4 module under root-knot nematode stress in tomato. J. Exp. Bot. 66:4653–67
    [Google Scholar]
  292. 292.  Zhao X, Zhang H, Li L 2013. Identification and analysis of the proximal promoters of microRNA genes in Arabidopsis. Genomics 101:187–94
    [Google Scholar]
  293. 293.  Zhao Y, Yu Y, Zhai J, Ramachandran V, Dinh TT et al. 2012. The Arabidopsis nucleotidyl transferase HESO1 uridylates unmethylated small RNAs to trigger their degradation. Curr. Biol. 22:689–94
    [Google Scholar]
  294. 294.  Zhou CM, Zhang TQ, Wang X, Yu S, Lian H et al. 2013. Molecular basis of age-dependent vernalization in Cardamine flexuosa. Science 340:1097–100
    [Google Scholar]
  295. 295.  Zhou M, Li D, Li Z, Hu Q, Yang C et al. 2013. Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass. Plant Physiol 161:1375–91
    [Google Scholar]
  296. 296.  Zhou Y, Honda M, Zhu H, Zhang Z, Guo X et al. 2015. Spatiotemporal sequestration of miR165/166 by Arabidopsis Argonaute10 promotes shoot apical meristem maintenance. Cell Rep 10:1819–27
    [Google Scholar]
  297. 297.  Zhu H, Hu F, Wang R, Zhou X, Sze SH et al. 2011. Arabidopsis Argonaute10 specifically sequesters miR166/165 to regulate shoot apical meristem development. Cell 145:242–56
    [Google Scholar]
  298. 298.  Zhu H, Zhou Y, Castillo-González C, Lu A, Ge C et al. 2013. Bidirectional processing of pri-miRNAs with branched terminal loops by Arabidopsis Dicer-like1. Nat. Struct. Mol. Biol. 20:1106–15
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-050718-100334
Loading
/content/journals/10.1146/annurev-arplant-050718-100334
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error