Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Association of total and calculated free testosterone with androgen deficiency symptoms in patients with type 2 diabetes

Abstract

The Androgen Deficiency in the Aging Male (ADAM) questionnaire is commonly used to screen type 2 diabetes mellitus (T2DM) patients for androgen deficiency symptoms, but the association of low total (TT) and free testosterone (FT) levels with divergent responses to the ADAM questionnaire remains unclear. The aim of this study was to assess the predictive ability of TT and calculated FT (cFT) levels for accurately classifying ADAM status. We recruited 70 patients each with positive (group A) and negative (group B) responses to the ADAM questionnaire and 70 age-matched healthy controls (group C) (mean age, 50.5 years); serum levels of TT were estimated and cFT were estimated using Vermeulen equation. Hypogonadism was defined as the presence of symptoms (positive ADAM score) along with TT level < 300 ng/dL or calculated (cFT) <6.35 ng/dL. BMI was highest in group A (P < 0.05), followed by groups B and C. Group A had longer diabetes durations (P < 0.05) and higher fasting plasma glucose (FPG) and HbA1c levels than group B (P < 0.001). TT levels and cFT were significantly lower in Group A than in the other two groups. In group A, 51 (73%) men had low TT levels (<300 ng/dL) and 48 (69%) had low cFT (<6.35 ng/dL). TT levels < 300 ng/dL had higher sensitivity and specificity (73 and 96%, respectively) than cFT < 6.35 ng/dL (69 and 90%, respectively) for predicting ADAM status. Multivariate-adjusted logistic regression showed that diabetes duration, HbA1c level, and BMI predicted low TT levels, whereas diabetes duration and HbA1c and high-density lipoprotein levels were significant predictors of low cFT. TT levels were a better predictor of ADAM responses than cFT in male T2DM patients. Our results suggest that TT level is better than cFT for diagnosing hypogonadism in T2DM patients when equilibrium dialysis is not feasible.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Grossmann M. Low testosterone in men with type 2 diabetes: significance andtreatment. J Clin Endocrinol Metab. 2011;96:2341–53. https://doi.org/10.1210/jc.2011-0118

    Article  CAS  Google Scholar 

  2. Betancourt-Albrecht M, Cunningham GR. Hypogonadism and diabetes. Int J Impot Res. 2003;15(Suppl 4):S14–20.

    Article  Google Scholar 

  3. Wallace IR, McKinley MC, Bell PM, Hunter SJ. Sex hormone binding globulin and insulin resistance. Clin Endocrinol. 2013;78:321–9. https://doi.org/10.1111/cen.12086

    Article  CAS  Google Scholar 

  4. Le TN, Nestler JE, Strauss JF 3rd, Wickham EP 3rd. Sex hormone-binding globulin and type 2 diabetes mellitus. Trends Endocrinol Metab. 2012;23:32–40. https://doi.org/10.1016/j.tem.2011.09.005

    Article  CAS  PubMed  Google Scholar 

  5. Dhindsa S, Prabhakar S, Sethi M, Bandyopadhyay A, Chaudhuri A, Dandona P. Frequent occurrence of hypogonadotropic hypogonadism in type 2 diabetes. J Clin Endocrinol Metab. 2004;89:5462–8.

    Article  CAS  Google Scholar 

  6. Bhasin S, Brito JP, Cunningham GR, Hayes FJ, Hodis HN, Matsumoto AM, et al. Testosterone therapy in men with hypogonadism: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2018;103:1715–44. https://doi.org/10.1210/jc.2018-00229

    Article  PubMed  Google Scholar 

  7. Gooren L. Diagnosing hypogonadism and treating decisions in different parts of the world: shifts in patterns between 2006 and 2015. Aging Male. 2016;19:46–53. https://doi.org/10.3109/13685538.2015.1100601

    Article  CAS  PubMed  Google Scholar 

  8. Kapoor D, Aldred H, Clark S, Channer KS, Jones TH. Clinical and biochemical assessment of hypogonadism in men with type 2 diabetes: correlations with bioavailable testosterone and visceral adiposity. Diabetes Care. 2007;30:911–7.

    Article  CAS  Google Scholar 

  9. Al Hayek AA, Khawaja NM, Khader YS, Jaffal SK, Ajlouni KM. The prevalence of Hypogonadism among diabetic and non-diabetic men in Jordan. J Diabetes Complicat. 2014;28:135–40. https://doi.org/10.1016/j.jdiacomp.2013.11.004

    Article  PubMed  Google Scholar 

  10. Kapoor D, Clarke S, Channer KS, Jones TH. Erectile dysfunction is associated with low bioactive testosterone levels and visceral adiposity in men with type 2 diabetes. Int J Androl. 2007;30:500–7.

    Article  CAS  Google Scholar 

  11. Boeri L, Capogrosso P, Ventimiglia E, Cazzaniga W, Pederzoli F, Moretti D, et al. Does calculated free testosterone overcome total testosterone in protecting from sexual symptom impairment? Findings of a cross-sectional study. J Sex Med. 2017;14:1549–57. https://doi.org/10.1016/j.jsxm.2017.10.070

    Article  PubMed  Google Scholar 

  12. Fukui M, Kitagawa Y, Nakamura N, Kadono M, Mogami S, Hirata C, et al. Association between serum testosterone concentration and carotid atherosclerosis in men with type 2 diabetes. Diabetes Care. 2003;26:1869–73.

    Article  CAS  Google Scholar 

  13. Hernández-Mijares A, García-Malpartida K, Solá-Izquierdo E, Bañuls C, Rocha M, Gómez-Martínez MJ, et al. Testosterone levels in males with type 2 diabetes and their relationship with cardiovascular risk factors and cardiovascular disease. J Sex Med. 2010;7:1954–64. https://doi.org/10.1111/j.1743-6109.2010.01705

    Article  PubMed  Google Scholar 

  14. Laughlin GA, Barrett-Connor E, Bergstrom J. Low serum testosterone and mortality in older men. J Clin Endocrinol Metab. 2008;93:68–75.

    Article  CAS  Google Scholar 

  15. Cheung KK, Luk AO, So WY, Ma RC, Kong AP, Chow FC, et al. Testosterone level in men with type 2 diabetes mellitus and related metabolic effects: A review of current evidence. J Diabetes Investig. 2015;6:112–23. https://doi.org/10.1111/jdi.12288

    Article  CAS  PubMed  Google Scholar 

  16. Trost LW, Mulhall JP. Challenges in testosterone measurement, data interpretation, and methodological appraisal of interventional trials. J Sex Med. 2016;13:1029–46. https://doi.org/10.1016/j.jsxm.2016.04.068

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tancredi A, Reginster JY, Schleich F, Pire G, Maassen P, Luyckx F, et al. Interest of the androgen deficiency in aging males (ADAM) questionnaire for the identification of hypogonadism in elderly community-dwelling male volunteers. Eur J Endocrinol. 2004;151:355–60.

    Article  CAS  Google Scholar 

  18. Morley JE, Charlton E, Patrick P, Kaiser FE, Cadeau P, McCready D, et al. Validation of a screening questionnaire for androgen deficiency in aging males. Metabolism. 2000;49:1239–42.

    Article  CAS  Google Scholar 

  19. Backinger CL, Lawrence D, Swan J, Winn DM, Breen N, Hartman A, et al. Using the National Health Interview Survey to understand and address the impact of tobacco in the United States: past perspectives and future considerations. Epidemiol Perspect Innov. 2008;5:8.

    Article  Google Scholar 

  20. Bohn MJ, Babor TF, Kranzler HR, et al. The Alcohol Use Disorders Identification Test (AUDIT): validation of a screening instrument for use in medical settings. J Stud Alcohol. 1995;56:423–32. https://doi.org/10.15288/jsa.1995.56.423

  21. Vermeulen A, Verdonck L, Kaufman JM. A critical evaluation of simple methods for the estimation of free testosterone in serum. J Clin Endocrinol Metab. 1999;84:3666–67.

    Article  CAS  Google Scholar 

  22. Stanworth RD, Jones TH. Testosterone in obesity, metabolic syndrome and type 2 diabetes. Front Horm Res. 2009;37:74–90.

    Article  CAS  Google Scholar 

  23. Bhasin S, Cunningham GR, Hayes FJ, Matsumoto AM, Snyder PJ, Swerdloff RS, et al. Task Force, Endocrine Society. Testosterone therapy in men with androgen deficiency syndromes: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2010;95:2536–59. https://doi.org/10.1210/jc.2009-2354

    Article  CAS  PubMed  Google Scholar 

  24. Chaudhary S, Kaushik M, Jaswal V, Raina R, Thakur R, Thakur MK, et al. Testosterone levels in men with type 2 diabetes mellitus. Int J Res Med Sci. 2018;6:23013–2317. https://doi.org/10.18203/2320-6012.ijrms20182809

    Article  Google Scholar 

  25. Antonio L, Wu FC, O’Neill TW, Pye SR, Ahern TB, Laurent MR, et al. Low free testosterone is associated with hypogonadal signs and symptoms in men with normal total testosterone. J Clin Endocrinol Metab. 2016;101:2647–57. https://doi.org/10.1210/jc.2015-4106

    Article  CAS  PubMed  Google Scholar 

  26. Martínez-Jabaloyas JM, Queipo-Zaragozá A, Pastor-Hernández F, Gil-Salom M, Chuan-Nuez P. Testosterone levels in men with erectile dysfunction. BJU Int. 2006;97:1278–83.

    Article  Google Scholar 

  27. Liao M, Huang X, Gao Y, Tan A, Lu Z, Wu C, et al. Testosterone is associated with erectile dysfunction: a cross-sectional study in Chinese men. PLoS One. 2012;7:e39234. https://doi.org/10.1371/journal.pone.0039234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim JS, Kim BS, Jeon JY, Choi YJ, Chung YS. Testosterone deficiency associated with poor glycemic control in korean male diabetics. Endocrinol Metab. 2014;29:300–6. https://doi.org/10.3803/EnM.2014.29.3.300.

    Article  Google Scholar 

  29. O’Connor DB, Lee DM, Corona G, Forti G, Tajar A, O’Neill TW, et al. The relationships between sex hormones and sexual function in middle-aged and older European men. J Clin Endocrinol Metab. 2011;96:E1577–87. https://doi.org/10.1210/jc.2010-2216.

    Article  PubMed  Google Scholar 

  30. Ho CK, Stoddart M, Walton M, Anderson RA, Beckett GJ. Calculated free testosterone in men: comparison of four equations and with free androgen index. Ann Clin Biochem. 2006;43(Pt 5):389–9.

    Article  CAS  Google Scholar 

  31. Kacker R, Hornstein A, Morgentaler A. Free testosterone by direct and calculated measurement versus equilibrium dialysis in a clinical population. Aging Male. 2013;16:164–8. https://doi.org/10.3109/13685538.2013.835800

    Article  CAS  PubMed  Google Scholar 

  32. Nanjee MN, Wheeler MJ. Plasma free testosterone–is an index sufficient? Ann Clin Biochem. 1985;22(Pt 4):387–90.

    Article  Google Scholar 

  33. Södergård R, Bäckström T, Shanbhag V, Carstensen H. Calculation of free and bound fractions of testosterone and estradiol-17 beta to human plasma proteins at body temperature. J Steroid Biochem. 1982;16:801–10.

    Article  Google Scholar 

  34. Ly LP, Handelsman DJ. Empirical estimation of free testosterone from testosterone and sex hormone-binding globulin immunoassays. Eur J Endocrinol. 2005;152:471–8.

    Article  CAS  Google Scholar 

  35. Krakowsky Y, Grober ED. Testosterone deficiency–establishing a biochemical diagnosis. EJIFCC. 2015;26:105–13.

    PubMed  PubMed Central  Google Scholar 

  36. Winters SJ, Kelley DE, Goodpaster B. The analog free testosterone assay: are the results in men clinically useful? Clin Chem. 1998;44:2178–82.

    Article  CAS  Google Scholar 

  37. Cooper LA, Page ST, Amory JK, Anawalt BD, Matsumoto AM. The association of obesity with sex hormone-binding globulin is stronger than the association with ageing–implications for the interpretation of total testosterone measurements. Clin Endocrinol. 2015;83:828–33. https://doi.org/10.1111/cen.12768

    Article  CAS  Google Scholar 

  38. Dhindsa S, Miller MG, McWhirter CL, Mager DE, Ghanim H, Chaudhuri A, et al. Testosterone concentrations in diabetic and nondiabetic obese men. Diabetes Care. 2010;33:1186–92. https://doi.org/10.2337/dc09-1649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Heald AH, Ivison F, Anderson SG, Cruickshank K, Laing I, Gibson JM. Significant ethnic variation in total and free testosterone concentration. Clin Endocrinol. 2003;58:262–6.

    Article  CAS  Google Scholar 

  40. Orwoll ES, Nielson CM, Labrie F, Barrett-Connor E, Cauley JA, Cummings SR, et al. Osteoporotic Fractures in Men (MrOS) Research Group. Evidence for geographical and racial variation in serum sex steroid levels in older men. J Clin Endocrinol Metab. 2010;95:E151–60. https://doi.org/10.1210/jc.2009-2435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hammes A, Andreassen TK, Spoelgen R, Raila J, Hubner N, Schulz H, et al. Role of endocytosis in cellular uptake of sex steroids. Cell. 2005;122:751–62.

    Article  CAS  Google Scholar 

  42. Pitteloud N, Mootha VK, Dwyer AA, Hardin M, Lee H, Eriksson KF, et al. Relationship between testosterone levels, insulin sensitivity, and mitochondrial function in men. Diabetes Care. 2005;28:1636–42.

    Article  CAS  Google Scholar 

  43. Brambilla DJ, O’Donnell AB, Matsumoto AM, McKinlay JB. Intraindividual variation in levels of serum testosterone and other reproductive and adrenal hormones in men. Clin Endocrinol. 2007;67:853–62.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Jyothi Dwivedi for her assistance in data collection and Sumitra Selvan for her assistance with data analysis. We would also like to thank all the study participants

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Channabasappa Shivaprasad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anupam, B., Shivaprasad, C., Sridevi, A. et al. Association of total and calculated free testosterone with androgen deficiency symptoms in patients with type 2 diabetes. Int J Impot Res 32, 289–296 (2020). https://doi.org/10.1038/s41443-019-0144-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41443-019-0144-9

Search

Quick links