Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Safe and neuroprotective vectors for long-term traumatic brain injury gene therapy

Abstract

Traumatic brain injury (TBI) is a complex and progressive brain injury with no approved treatments that needs both short- and long-term therapeutic strategies to cope with the variety of physiopathological mechanisms involved. In particular, neuroinflammation is a key process modulating TBI outcome, and the potentiation of these mechanisms by pro-inflammatory gene therapy vectors could contribute to the injury progression. Here, we evaluate in the controlled cortical impact model of TBI, the safety of integrative-deficient lentiviral vectors (IDLVs) or the non-viral HNRK recombinant modular protein/DNA nanovector. These two promising vectors display different tropisms, transduction efficiencies, short- or long-term transduction or inflammatory activation profile. We show that the brain intraparenchymal injection of these vectors overexpressing green fluorescent protein after a CCI is not neurotoxic, and interestingly, can decrease the short-term sensory neurological deficits, and diminish the brain tissue loss at 90 days post lesion (dpl). Moreover, only IDLVs were able to mitigate the memory deficits elicited by a CCI. These vectors did not alter the microglial or astroglial reactivity at 90 dpl, suggesting that they do not potentiate the on-going neuroinflammation. Taken together, these data suggest that both types of vectors could be interesting tools for the design of gene therapy strategies targeting immediate or long-term neuropathological mechanisms of TBI.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Simon DW, McGeachy MJ, Bayir H, Clark RSB, Loane DJ, Kochanek PM. The far-reaching scope of neuroinflammation after traumatic brain injury. Nat Rev Neurol. 2017;13:572.

    Article  Google Scholar 

  2. Taylor CA, Bell JM, Breiding MJ, Xu L. Traumatic brain injury-related emergency department visits, hospitalizations, and deaths—United States, 2007 and 2013. MMWR Surveill Summ. 2017;1–16. https://doi.org/10.15585/mmwr.ss6609a1

    Article  Google Scholar 

  3. Burnside ER, De Winter F, Didangelos A, James ND, Andreica EC, Layard-Horsfall H, et al. Immune-evasive gene switch enables regulated delivery of chondroitinase after spinal cord injury. Brain. 2018;141:2362–81.

    Article  Google Scholar 

  4. Bradbury EJ, Moon LD, Popat RJ, King VR, Bennett GS, Patel PN, et al. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature. 2002;416:636–40.

    Article  CAS  Google Scholar 

  5. Bartus K, James ND, Didangelos A, Bosch KD, Verhaagen J, Yanez-Munoz RJ, et al. Large-scale chondroitin sulfate proteoglycan digestion with chondroitinase gene therapy leads to reduced pathology and modulates macrophage phenotype following spinal cord contusion injury. J Neurosci. 2014;34:4822–36.

    Article  Google Scholar 

  6. Negro-Demontel ML, Saccardo P, Giacomini C, Yáñez-Muñoz RJ, Ferrer-Miralles N, Vazquez E, et al. Comparative analysis of lentiviral vectors and modular protein nanovectors for traumatic brain injury gene therapy. Mol Ther. 2014;1:14047.

    Google Scholar 

  7. Domingo-Espin J, Petegnief V, de Vera N, Conchillo-Sole O, Saccardo P, Unzueta U, et al. RGD-based cell ligands for cell-targeted drug delivery act as potent trophic factors. Nanomedicine. 2012;8:1263–6.

    Article  CAS  Google Scholar 

  8. Domingo-Espin J, Vazquez E, Ganz J, Conchillo O, Garcia-Fruitos E, Cedano J, et al. Nanoparticulate architecture of protein-based artificial viruses is supported by protein–DNA interactions. Nanomedicine (Lond). 2011;6:1047–61.

    Article  CAS  Google Scholar 

  9. Peluffo H, Foster E, Ahmed SG, Lago N, Hutson TH, Moon L, et al. Efficient gene expression from integration-deficient lentiviral vectors in the spinal cord. Gene Ther. 2013;20:645–57.

    Article  CAS  Google Scholar 

  10. Yanez-Munoz RJ, Balaggan KS, MacNeil A, Howe SJ, Schmidt M, Smith AJ, et al. Effective gene therapy with nonintegrating lentiviral vectors. Nat Med. 2006;12:348–53.

    Article  CAS  Google Scholar 

  11. Richter M, Negro-Demontel ML, Blanco-Ocampo D, Taranto E, Lago N, Peluffo H. Thy1-YFP-H mice and the parallel rod floor test to evaluate short- and long-term progression of traumatic brain injury. Curr. Protocols Immunol. 2018;120:24.1.1–24.1.25.

    Article  Google Scholar 

  12. Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39:175–91.

    Article  Google Scholar 

  13. Smith DH, Soares HD, Pierce JS, Perlman KG, Saatman KE, Meaney DF, et al. A model of parasagittal controlled cortical impact in the mouse: cognitive and histopathologic effects. J Neurotrauma. 1995;12:169–78.

    Article  CAS  Google Scholar 

  14. d’Avila JC, Lam TI, Bingham D, Shi J, Won SJ, Kauppinen TM, et al. Microglial activation induced by brain trauma is suppressed by post-injury treatment with a PARP inhibitor. J Neuroinflamm. 2012;9:31.

    Article  Google Scholar 

  15. Kochanek PM, Jackson TC, Jha R, Clark RSB, Okonkwo DO, Bayir H, et al. Paths to successful translation of new therapies for severe TBI in the golden age of traumatic brain injury research: a Pittsburgh vision. J Neurotrauma. 2019. https://doi.org/10.1089/neu.2018.6203. [Epub ahead of print].

  16. Dixon CE, Kochanek PM, Yan HQ, Schiding JK, Griffith RG, Baum E, et al. One-year study of spatial memory performance, brain morphology, and cholinergic markers after moderate controlled cortical impact in rats. J Neurotrauma. 1999;16:109–22.

    Article  CAS  Google Scholar 

  17. Palfi S, Gurruchaga JM, Lepetit H, Howard K, Ralph GS, Mason S, et al. Long-term follow-up of a phase I/II study of prosavin, a lentiviral vector gene therapy for Parkinson’s disease. Human gene therapy. Clinical development. 2018;29:148–55.

    Article  CAS  Google Scholar 

  18. Deverman BE, Ravina BM, Bankiewicz KS, Paul SM, Sah DWY. Gene therapy for neurological disorders: progress and prospects. Nat Rev Drug Discov. 2018;17:767.

    Article  CAS  Google Scholar 

  19. Hwu WL, Muramatsu S, Tseng SH, Tzen KY, Lee NC, Chien YH, et al. Gene therapy for aromatic l-amino acid decarboxylase deficiency. Sci Transl Med. 2012;4:134ra61. https://doi.org/10.1126/scitranslmed.3003640

    Article  Google Scholar 

  20. LeWitt PA, Rezai AR, Leehey MA, Ojemann SG, Flaherty AW, Eskandar EN, et al. AAV2-GAD gene therapy for advanced Parkinson’s disease: a double-blind, sham-surgery controlled, randomised trial. Lancet Neurol. 2011;10:309–19. https://doi.org/10.1016/S1474-4422(11)70039-4

    Article  CAS  Google Scholar 

  21. Mittermeyer G, Christine CW, Rosenbluth KH, Baker SL, Starr P, Larson P, et al. Long-term evaluation of a phase 1 study of AADC gene therapy for Parkinson’s disease. Hum Gene Ther. 2012;23:377–81. https://doi.org/10.1089/hum.2011.220. Epub 2012 Apr 10.

    Article  CAS  Google Scholar 

  22. Stoessl AJ. Gene therapy for Parkinson’s disease: a step closer? Lancet. 2014;383:1107–9.

    Article  Google Scholar 

  23. Niethammer M, Tang CC, Vo A, Nguyen N, Spetsieris P, Dhawan V, et al. Gene therapy reduces Parkinson’s disease symptoms by reorganizing functional brain connectivity. Sci Transl Med. 2018;10. pii: eaau0713. https://doi.org/10.1126/scitranslmed.aau0713

    Article  CAS  Google Scholar 

  24. Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 2005;308:1314–8.

    Article  CAS  Google Scholar 

  25. Liddelow SA, Barres BA. Reactive astrocytes: production, function, and therapeutic potential. Immunity. 2017;46:957–67.

    Article  CAS  Google Scholar 

  26. Latta-Mahieu M, Rolland M, Caillet C, Wang M, Kennel P, Mahfouz I, et al. Gene transfer of a chimeric trans-activator is immunogenic and results in short-lived transgene expression. Hum Gene Ther. 2002;13:1611–20.

    Article  CAS  Google Scholar 

  27. Burger C, Gorbatyuk OS, Velardo MJ, Peden CS, Williams P, Zolotukhin S, et al. Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Mol Ther. 2004;10:302–17.

    Article  CAS  Google Scholar 

  28. Peluffo H, Gonzalez P, Aris A, Acarin L, Saura J, Villaverde A, et al. RGD domains neuroprotect the immature brain by a glial-dependent mechanism. Ann Neurol. 2007;62:251–61.

    Article  Google Scholar 

  29. Peluffo H, Acarin L, Aris A, Gonzalez P, Villaverde A, Castellano B, et al. Neuroprotection from NMDA excitotoxic lesion by Cu/Zn superoxide dismutase gene delivery to the postnatal rat brain by a modular protein vector. BMC Neurosci. 2006;7:35.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Fundació Marató TV3 (110533), Catalunya, Spain; Comisión Sectorial de Investigación Científica (CSIC-UDELAR), Uruguay; Agencia Nacional de Investigación e Innovación (ANII), Uruguay; PEDECIBA, Uruguay; FOCEM (MERCOSUR Structural Convergence Fund), COF 03/1111; and Banco de Seguros del Estado (BSE), Uruguay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Peluffo.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blanco-Ocampo, D., Cawen, F.A., Álamo-Pindado, L.A. et al. Safe and neuroprotective vectors for long-term traumatic brain injury gene therapy. Gene Ther 27, 96–103 (2020). https://doi.org/10.1038/s41434-019-0073-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-019-0073-8

This article is cited by

Search

Quick links