1932

Abstract

Animal- and plant-based proteins are present in a wide variety of raw and processed foods. They play an important role in determining the final structure of food matrices. Food proteins are diverse in terms of their biological origin, molecular structure, and supramolecular assembly. This diversity has led to segmented experimental studies that typically focus on one or two proteins but hinder a more general understanding of food protein structuring as a whole. In this review, we propose a unified view of how soft-matter physics can be used to control food protein assembly. We discuss physical models from polymer and colloidal science that best describe and predict the phase behavior of proteins. We explore the occurrence of phase transitions along two axes: increasing protein concentration and increasing molecular attraction. This review provides new perspectives on the link between the interactions, phase transitions, and assembly of proteins that can help in designing new food products and innovative food processing operations.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-032818-121907
2019-03-25
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/food/10/1/annurev-food-032818-121907.html?itemId=/content/journals/10.1146/annurev-food-032818-121907&mimeType=html&fmt=ahah

Literature Cited

  1. Adal E, Sadeghpour A, Connell S, Rappolt M, Ibanoglu E, Sarkar A 2017. Heteroprotein complex formation of bovine lactoferrin and pea protein isolate: a multiscale structural analysis. Biomacromolecules 18:625–35
    [Google Scholar]
  2. Amine C, Boire A, Davy J, Marquis M, Renard D 2017. Droplets-based millifluidic for the rapid determination of biopolymers phase diagrams. Food Hydrocoll 70:134–42
    [Google Scholar]
  3. Anema SG, de Kruif CG 2016. Phase separation and composition of coacervates of lactoferrin and caseins. Food Hydrocoll 52:670–77
    [Google Scholar]
  4. Annunziata O, Asherie N, Lomakin A, Pande J, Ogun O, Benedek GB 2002. Effect of polyethylene glycol on the liquid-liquid phase transition in aqueous protein solutions. PNAS 99:2214165–70
    [Google Scholar]
  5. Argos P, Narayanal SVL, Nielsen NC 1985. Structural similarity between legumnin and vicilin storage proteins from legumes. EMBO J 4:1111–17
    [Google Scholar]
  6. Asherie N 2004. Protein crystallization and phase diagrams. Methods 34:266–72
    [Google Scholar]
  7. Asherie N, Lomakin A, Benedek GB 1996. Phase diagram of colloidal solutions. Phys. Rev. Lett. 77:4832–35
    [Google Scholar]
  8. Auger F 2008. Etude des mécanismes d'agglomération du gluten au cours du pétrissage de suspensions farine-eau PhD Thesis Montpellier SupAgro Montpellier, Fr.:
    [Google Scholar]
  9. Banc A, Charbonneau C, Dahesh M, Appavou M, Fu Z et al. 2016. Small angle neutron scattering contrast variation reveals heterogeneities of interactions in protein gels. Soft Matter 12:5340–52
    [Google Scholar]
  10. Belloni L 2000. Colloidal interactions. J. Phys. Condens. Matter 12:R549
    [Google Scholar]
  11. Boire A, Bouchoux A, Bouhallab S, Chapeau A-L, Croguennec T et al. 2017. Proteins for the future: a soft matter approach to link basic knowledge and innovative applications. Innov. Food Sci. Emerg. Technol. 46:18–28
    [Google Scholar]
  12. Boire A, Menut P, Morel M-H, Sanchez C 2013. Phase behaviour of a wheat protein isolate. Soft Matter 9:11417–26
    [Google Scholar]
  13. Boire A, Menut P, Morel M-H, Sanchez C 2015. Osmotic compression of anisotropic proteins: interaction properties and associated structures in wheat gliadin dispersions. J. Phys. Chem. B 119:5412–21
    [Google Scholar]
  14. Boire A, Sanchez C, Morel M-H, Lettinga MP, Menut P 2018. Dynamics of liquid-liquid phase separation of wheat gliadins. Sci. Rep. 8:14441
    [Google Scholar]
  15. Bonnet-Gonnet C, Belloni L, Cabane B 1994. Osmotic pressure of latex dispersion. Langmuir 10:4012–21
    [Google Scholar]
  16. Bouchoux A, Cayemitte PE, Jardin J, Gésan-Guiziou G, Cabane B 2009.a Casein micelle dispersions under osmotic stress. Biophys. J. 96:693–706
    [Google Scholar]
  17. Bouchoux A, Debbou B, Gésan-Guiziou G, Famelart MH, Doublier JL, Cabane B 2009.b Rheology and phase behavior of dense casein micelle dispersions. J. Chem. Phys. 131:165106–11
    [Google Scholar]
  18. Bouchoux A, Gésan-Guiziou G, Pérez J, Cabane B 2010. How to squeeze a sponge: casein micelles under osmotic stress, a SAXS study. Biophys. J. 99:3754–62
    [Google Scholar]
  19. Bouchoux A, Schorr D, Daffé A, Cambert M, Gésan-Guiziou G, Mariette F 2012. Molecular mobility in dense protein systems: an investigation through 1H NMR relaxometry and diffusometry. J. Phys. Chem. B 116:11744–53
    [Google Scholar]
  20. Bouhid de Aguiar I, van de Laar T, Meireles M, Bouchoux A, Sprakel J, Schroën K 2017. Deswelling and deformation of microgels in concentrated packings. Sci. Rep. 7:10223
    [Google Scholar]
  21. Braun MK, Grimaldo M, Roosen-Runge F, Hoffmann I, Czakkel O et al. 2017. Crowding-controlled cluster size in concentrated aqueous protein solutions: structure, self- and collective diffusion. J. Phys. Chem. Lett. 8:2590–96
    [Google Scholar]
  22. Broide ML, Tominc TM, Saxowsky MD 1996. Using phase transitions to investigate the effect of salts on protein interactions. Phys. Rev. E 53:6325–35
    [Google Scholar]
  23. Bungenberg de Jong H, Kruyt H 1929. Coacervation (partial miscibility in colloid systems). PNAS 32:849–56
    [Google Scholar]
  24. Cardinaux F, Gibaud T, Stradner A, Schurtenberger P 2007. Interplay between spinodal decomposition and glass formation in proteins exhibiting short-range attractions. Phys. Rev. Lett. 99:118301
    [Google Scholar]
  25. Carnahan NF, Starling KE 1969. Equation of state for nonattracting rigid spheres. J. Chem. Phys. 51:635–36
    [Google Scholar]
  26. Carrière D, Page M, Dubois M, Zemb T, Colfen H et al. 2007. Osmotic pressure in colloid science: clay dispersions, catanionics, polyelectrolyte complexes and polyelectrolyte multilayers. Colloids Surf. A 303:137–43
    [Google Scholar]
  27. Chapeau A-L, Tavares GM, Hamon P, Croguennec T, Poncelet D, Bouhallab S 2016. Spontaneous co-assembly of lactoferrin and β-lactoglobulin as a promising biocarrier for vitamin B9. Food Hydrocoll 57:280–90
    [Google Scholar]
  28. Cohen JA, Podgornik R, Hansen PL, Parsegian VA 2009. A phenomenological one-parameter equation of state for osmotic pressures of PEG and other neutral flexible polymers in good solvents. J. Phys. Chem. B 113:3709–14
    [Google Scholar]
  29. Comert F, Dubin PL 2017. Liquid-liquid and liquid-solid phase separation in protein-polyelectrolyte systems. Adv. Colloid Interface Sci. 239:213–17
    [Google Scholar]
  30. Cooper CL, Dubin PL, Kayitmazer AB, Turksen S 2005. Polyelectrolyte–protein complexes. Curr. Opin. Colloid Interface Sci. 10:52–78
    [Google Scholar]
  31. Da Vela S, Braun MK, Dörr A, Greco A, Möller J et al. 2016. Kinetics of liquid–liquid phase separation in protein solutions exhibiting LCST phase behavior studied by time-resolved USAXS and VSANS. Soft Matter 12:9334–41
    [Google Scholar]
  32. Da Vela S, Exner C, Schäufele RS, Möller J, Fu Z et al. 2017. Arrested and temporarily arrested states in a protein–polymer mixture studied by USAXS and VSANS. Soft Matter 13:8756–65
    [Google Scholar]
  33. Dahbi L, Alexander M, Trappe V, Dhont JKG, Schurtenberger P 2010. Rheology and structural arrest of casein suspensions. J. Colloid Interface Sci. 342:564–70
    [Google Scholar]
  34. Dahesh M, Banc A, Duri A, Morel M, Ramos L 2014. Polymeric assembly of gluten proteins in an aqueous ethanol solvent. J. Phys. Chem. B 118:11065–76
    [Google Scholar]
  35. Dahesh M, Banc A, Duri A, Morel M-H, Ramos L 2016. Spontaneous gelation of wheat gluten proteins in a food grade solvent. Food Hydrocoll 52:1–10
    [Google Scholar]
  36. Delboni LA, Barroso da Silva FL 2016. On the complexation of whey proteins. Food Hydrocoll 55:89–99
    [Google Scholar]
  37. des Cloizeaux J 1975. The Lagrangian theory of polymer solutions at intermediate concentrations. J. Phys. 36:281–91
    [Google Scholar]
  38. Desfougères Y, Croguennec T, Lechevalier V, Bouhallab S, Nau F 2010. Charge and size drive spontaneous self-assembly of oppositely charged globular proteins into microspheres. J. Phys. Chem. B 114:4138–44
    [Google Scholar]
  39. Diarrassouba F, Garrait G, Remondetto G, Alvarez P, Beyssac E, Subirade M 2015. Food protein–based microspheres for increased uptake of vitamin D3. Food Chem 173:1066–72
    [Google Scholar]
  40. Dickinson E 1999. Adsorbed protein layers at fluid interfaces: interactions, structure and surface rheology. Colloids Surf. B 15:161–76
    [Google Scholar]
  41. Dickinson E 2016. Exploring the frontiers of colloidal behaviour where polymers and particles meet. Food Hydrocoll 52:497–509
    [Google Scholar]
  42. Elbaum-Garfinkle S, Kim Y, Szczepaniak K, Chen CC-H, Eckmann CR et al. 2015. The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics. PNAS 112:7189–94
    [Google Scholar]
  43. Farrer D, Lips A 1999. On the self-assembly of sodium caseinate. Int. Dairy J. 9:281–86
    [Google Scholar]
  44. Flanagan SE, Malanowski AJ, Kizilay E, Seeman D, Dubin PL et al. 2015. Complex equilibria, speciation, and heteroprotein coacervation of lactoferrin and β-lactoglobulin. Langmuir 31:1776–83
    [Google Scholar]
  45. Gibaud T, Cardinaux FF, Bergenholtz J, Stradner A, Schurtenberger P 2011. Phase separation and dynamical arrest for particles interacting with mixed potentials—the case of globular proteins revisited. Soft Matter 7:857–60
    [Google Scholar]
  46. Gibaud T, Mahmoudi N, Oberdisse J, Lindner P, Pedersen JS et al. 2012. New routes to food gels and glasses. Faraday Discuss 158:267–84
    [Google Scholar]
  47. Gögelein C, Nägele G, Tuinier R, Gibaud T, Stradner A, Schurtenberger P 2008. A simple patchy colloid model for the phase behavior of lysozyme dispersions. J. Chem. Phys. 129:085102
    [Google Scholar]
  48. Hachisu S, Kobayashi Y 1974. Kirkwood–Alder transition in monodisperse latexes. II. Aqueous latexes of high electrolyte concentration. J. Colloid Interface Sci. 46:470–76
    [Google Scholar]
  49. Heinen M, Zanini F, Roosen-Runge F, Fedunova D, Zhang F et al. 2012. Viscosity and diffusion: crowding and salt effects in protein solutions. Soft Matter 8:1404–19
    [Google Scholar]
  50. Holt C, Sawyer L 1993. Caseins as rheomorphic proteins: interpretation of primary and secondary structures of the αS1-, β- and κ-caseins. J. Chem. Soc. Faraday Trans. 89:2683–92
    [Google Scholar]
  51. Hristov P, Mitkov I, Sirakova D, Mehandgiiski I, Radoslavov G 2016. Measurement of casein micelle size in raw dairy cattle milk by dynamic light scattering. Milk Proteins: From Structure to Biological Properties and Health Aspects I Gigli 19–32 London: IntechOpen
    [Google Scholar]
  52. Huo M, Wang N, Fang T, Sun M, Wei Y, Yuan J 2015. Single-chain polymer nanoparticles: mimic the proteins. Polymer 66:A11–21
    [Google Scholar]
  53. Hyman AA, Weber CA, Jülicher F 2014. Liquid-liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 30:39–58
    [Google Scholar]
  54. Ianeselli L, Zhang F, Skoda MWA, Jacobs RMJ, Martin RA et al. 2010. Protein−protein interactions in ovalbumin solutions studied by small-angle scattering: effect of ionic strength and the chemical nature of cations. J. Phys. Chem. B 114:3776–83
    [Google Scholar]
  55. Kayitmazer AB, Strand SP, Tribet C, Jaeger W, Dubin PL 2007. Effect of polyelectrolyte structure on protein−polyelectrolyte coacervates: coacervates of bovine serum albumin with poly(diallyldimethy-lammonium chloride) versus chitosan. Biomacromolecules 8:3568–77
    [Google Scholar]
  56. Khaliq B, Falke S, Negm A, Buck F, Munawar A et al. 2017. SAXS and other spectroscopic analysis of 12S cruciferin isolated from the seeds of Brassica nigra. J. Mol. Struct 1137:60–66
    [Google Scholar]
  57. Kim S, Huang J, Lee Y, Dutta S, Yoo HY et al. 2016. Complexation and coacervation of like-charged polyelectrolytes inspired by mussels. PNAS 113:E847–53
    [Google Scholar]
  58. Kizilay E, Seeman D, Yan Y, Du X, Dubin PL et al. 2014. Structure of bovine β-lactoglobulin–lactoferrin coacervates. Soft Matter 10:7262
    [Google Scholar]
  59. Kohn JE, Millett IS, Jacob J, Zagrovic B, Dillon TM et al. 2004. Random-coil behavior and the dimensions of chemically unfolded proteins. PNAS 101:12491–96
    [Google Scholar]
  60. Kramer RM, Shende VR, Motl N, Pace CN, Scholtz JM 2012. Toward a molecular understanding of protein solubility: increased negative surface charge correlates with increased solubility. Biophys. J. 102:1907–15
    [Google Scholar]
  61. Kurut A, Persson BA, Åkesson T, Forsman J, Lund M 2012. Anisotropic interactions in protein mixtures: self assembly and phase behavior in aqueous solution. J. Phys. Chem. Lett. 3:731–34
    [Google Scholar]
  62. Le Floch-Fouéré C, Beaufils S, Lechevalier V, Nau F, Pézolet M et al. 2010. Sequential adsorption of egg-white proteins at the air–water interface suggests a stratified organization of the interfacial film. Food Hydrocoll 24:275–84
    [Google Scholar]
  63. Le Floch-Fouéré C, Pezennec S, Lechevalier V, Beaufils S, Desbat B et al. 2009. Synergy between ovalbumin and lysozyme leads to non-additive interfacial and foaming properties of mixtures. Food Hydrocoll 23:352–65
    [Google Scholar]
  64. Leneveu DM, Rand RP, Parsegian VA 1976. Measurement of forces between lecithin bilayers. Nature 259:601–3
    [Google Scholar]
  65. Leonard M, Hong H, Easwar N, Strey HH 2001. Soft matter under osmotic stress. Polymer 42:5823–27
    [Google Scholar]
  66. Li J, Turesson M, Haglund CA, Cabane B, Skepö M 2015. Equation of state of PEG/PEO in good solvent. Comparison between a one-parameter EOS and experiments. Polymer 80:Suppl. C205–13
    [Google Scholar]
  67. Lin YZ, Li YG, Lu JF 2001. Correlation and prediction of osmotic pressures for aqueous bovine serum albumin-NaCl solutions based on two yukawa potentials. J. Colloid Interface Sci. 239:58–63
    [Google Scholar]
  68. Lips A, Hart PM, Clark AH 1988. Compressive de-swelling of biopolymer gels. Food Hydrocoll 2:141–50
    [Google Scholar]
  69. Liu C, Asherie N, Lomakin A, Pande J, Ogun O, Benedek GB 1996. Phase separation in aqueous solutions of lens gamma-crystallins: special role of gamma s. PNAS 93:377–82
    [Google Scholar]
  70. Liu D, Nikoo M, Boran G, Zhou P, Regenstein JM 2015. Collagen and gelatin. Annu. Rev. Food Sci. Technol. 6:527–57
    [Google Scholar]
  71. Livney YD, Schwan AL, Dalgleish DG 2004. A study of β-casein tertiary structure by intramolecular crosslinking and mass spectrometry. J. Dairy Sci. 87:3638–47
    [Google Scholar]
  72. Loiseleux T 2017. Compétition interfaciale entre protéines solubles et agrégées: connectivité des gouttelettes et texture des émulsions laitières PhD Thesis Univ. Nantes Nantes, Fr.:
  73. Lomakin A, Asherie N, Benedek GB 1998. Monte Carlo study of phase separation in aqueous protein solutions. J. Chem. Phys. 104:1646–56
    [Google Scholar]
  74. Loussert C 2008. Accumulation et assemblage des prolamines au cours du développement du grain de blé: approches microscopiques et protéomiques. PhD Thesis Univ. Nantes Nantes, Fr.:
    [Google Scholar]
  75. Lund M, Jungwirth P, Woodward CE 2008. Ion specific protein assembly and hydrophobic surface forces. Phys. Rev. Lett. 100:258105
    [Google Scholar]
  76. Lutsko JF, Nicolis G 2005. The effect of the range of interaction on the phase diagram of a globular protein. J. Chem. Phys. 122:244907
    [Google Scholar]
  77. Mahmoudi N, Stradner A 2015. Making food protein gels via an arrested spinodal decomposition. J. Phys. Chem. B 119:15522–29
    [Google Scholar]
  78. Mahmoudi N, Stradner A 2017. Structural arrest and dynamic localization in biocolloidal gels. Soft Matter 13:4629–35
    [Google Scholar]
  79. Masci S, D'Ovidio R, Lafiandra D, Kasarda DD 1998. Characterization of a low-molecular-weight glutenin subunit gene from bread wheat and the corresponding protein that represents a major subunit of the glutenin polymer. Plant Physiol 118:1147–58
    [Google Scholar]
  80. McManus JJ, Charbonneau P, Zaccarelli E, Asherie N 2016. The physics of protein self-assembly. Curr. Opin. Colloid Interface Sci. 22:73–79
    [Google Scholar]
  81. Menut P, Seiffert S, Sprakel J, Weitz DA 2012. Does size matter? Elasticity of compressed suspensions of colloidal- and granular-scale microgels. Soft Matter 8:156–64
    [Google Scholar]
  82. Montel F, Delarue M, Elgeti J, Malaquin L, Basan M et al. 2011. Stress clamp experiments on multicellular tumor spheroids. Phys. Rev. Lett. 107:188102
    [Google Scholar]
  83. Moreno AJ, Lo Verso F, Arbe A, Pomposo JA, Colmenero J 2016. Concentrated solutions of single-chain nanoparticles: a simple model for intrinsically disordered proteins under crowding conditions. J. Phys. Chem. Lett. 7:838–84
    [Google Scholar]
  84. Nielsen NC, Dickinson CD, Cho T-J, Thanh VH, Scallon BJ et al. 1989. Characterization of the glycinin gene family in soybean. Plant Cell 1:313–28
    [Google Scholar]
  85. Nigen M, Gaillard C, Croguennec T, Madec M-N, Bouhallab S 2010. Dynamic and supramolecular organisation of α-lactalbumin/lysozyme microspheres: a microscopic study. Biophys. Chem. 146:30–35
    [Google Scholar]
  86. Normand V, Muller S, Ravey J-C, Parker A 2000. Gelation kinetics of gelatin:a master curve and network modeling. Macromolecules 33:1063–71
    [Google Scholar]
  87. Noro MG, Frenkel D 2000. Extended corresponding-states behavior for particles with variable range attractions. J. Chem. Phys. 113:2941–44
    [Google Scholar]
  88. Noro MG, Kern N, Frenkel D 1999. The role of long-range forces in the phase behavior of colloids and proteins. Europhys. Lett. 48:332–38
    [Google Scholar]
  89. Oldfield CJ, Dunker AK 2014. Intrinsically disordered proteins and intrinsically disordered protein regions. Annu. Rev. Biochem. 83:553–84
    [Google Scholar]
  90. Olechnowicz R, Masierak W, Bodurka J, Gutsze A 1999. 1H NMR relaxation measurements in highly concentrated water protein solutions. Magn. Reson. Chem. 37:S147–49
    [Google Scholar]
  91. Pak CW, Kosno M, Holehouse AS, Padrick SB, Mittal A et al. 2016. Sequence determinants of intracellular phase separation by complex coacervation of a disordered protein. Mol. Cell 63:72–85
    [Google Scholar]
  92. Parsegian V, Rand R, Fuller N, Rau D 1986. Osmotic stress for the direct measurement of intermolecular forces. Methods Enzymol 127:400–16
    [Google Scholar]
  93. Pasquier C, Beaufils S, Bouchoux A, Rigault S, Cabane B et al. 2016. Osmotic pressures of lysozyme solutions from gas-like to crystal states. Phys. Chem. Chem. Phys. 18:28458–65
    [Google Scholar]
  94. Pathak J, Priyadarshini E, Rawat K, Bohidar HB 2017. Complex coacervation in charge complementary biopolymers: Electrostatic versus surface patch binding. Adv. Colloid Interface Sci. 250:40–53
    [Google Scholar]
  95. Pauchard L, Allain C 2003. Mechanical instability induced by complex liquid desiccation. Crit. Rev. Phys. 4:231–39
    [Google Scholar]
  96. Peixoto PDS, Tavares GM, Croguennec T, Nicolas A, Hamon P et al. 2016. Structure and dynamics of heteroprotein coacervates. Langmuir 32:7821–28
    [Google Scholar]
  97. Pellet C, Cloitre M 2016. The glass and jamming transitions of soft polyelectrolyte microgel suspensions. Soft Matter 12:3710–20
    [Google Scholar]
  98. Persson BA, Lund M 2009. Association and electrostatic steering of α-lactalbumin–lysozyme heterodimers. Phys. Chem. Chem. Phys. 11:8879–85
    [Google Scholar]
  99. Pezennec S, Gauthier F, Alonso C, Graner F, Croguennec T et al. 2000. The protein net electric charge determines the surface rheological properties of ovalbumin adsorbed at the air–water interface. Food Hydrocoll 14:463–72
    [Google Scholar]
  100. Piazza R 2000. Interactions and phase transitions in protein solutions. Curr. Opin. Colloid Interface Sci. 5:38–43
    [Google Scholar]
  101. Pincemaille J, Banc A, Chauveau E, Fromental J-M, Ramos L et al. 2018. Methods for screening cloud point temperatures. Food BioPhysics 13:422–31
    [Google Scholar]
  102. Plamper FA, Richtering W 2017. Functional microgels and microgel systems. Acc. Chem. Res. 50:131–40
    [Google Scholar]
  103. Platten F, Valadez-Pérez NE, Castañeda-Priego R, Egelhaaf SU 2015. Extended law of corresponding states for protein solutions. J. Chem. Phys. 142:174905
    [Google Scholar]
  104. Poirier A, Banc A, Stocco A, In M, Ramos L 2018. Multistep building of a soft plant protein film at the air-water interface. J. Colloid Interface Sci. 526:337–46
    [Google Scholar]
  105. Popello IA, Suchkov VV, Grinberg VY, Tolstoguzov VB 1991. Liquid/liquid phase equilibrium in the globulin/salt/water systems. Vicilin. J. Sci. Food Agric. 54:239–44
    [Google Scholar]
  106. Popello IA, Suchkov VV, Grinberg VY, Tolstoguzov VB 1992. Effects of pH upon the liquid-liquid phase equilibria in solutions of legumins and vicilins from broad beans and peas. Food Hydrocoll 6:147–52
    [Google Scholar]
  107. Quiroz FG, Chilkoti A 2015. Sequence heuristics to encode phase behaviour in intrinsically disordered protein polymers. Nat. Mater. 14:1164–71
    [Google Scholar]
  108. Rickard DL, Duncan PB, Needham D 2010. Hydration potential of lysozyme: protein dehydration using a single microparticle technique. Biophys. J. 98:1075–84
    [Google Scholar]
  109. Sadek C, Pauchard L, Schuck P, Fallourd Y, Pradeau N et al. 2015. Mechanical properties of milk protein skin layers after drying: understanding the mechanisms of particle formation from whey protein isolate and native phosphocaseinate. Food Hydrocoll 48:8–16
    [Google Scholar]
  110. Salvatore D, Croguennec T, Bouhallab S, Forge V, Nicolai T 2011.b Kinetics and structure during self-assembly of oppositely charged proteins in aqueous solution. Biomacromolecules 12:1920–26
    [Google Scholar]
  111. Salvatore D, Duraffourg N, Favier A, Persson BA, Lund M et al. 2011.a Investigation at residue level of the early steps during the assembly of two proteins into supramolecular objects. Biomacromolecules 12:2200–10
    [Google Scholar]
  112. Sarangapani PS, Hudson SD, Jones RL, Douglas JF, Pathak JA 2015. Critical examination of the colloidal particle model of globular proteins. Biophys. J. 108:724–37
    [Google Scholar]
  113. Sathe SK, Zaffran VD, Gupta S, Li T 2018. Protein solubilization. JAOCS 958883–901
  114. Schmitt C, Sanchez C, Desobry-Banon S, Hardy J 1998. Structure and technofunctional properties of protein-polysaccharide complexes: a review. Crit. Rev. Food Sci. Nutr. 38:689–753
    [Google Scholar]
  115. Schmitt C, Turgeon SL 2011. Protein/polysaccharide complexes and coacervates in food systems. Adv. Colloid Interface Sci. 167:63–70
    [Google Scholar]
  116. Selimović Š, Gobeaux F, Fraden S 2010. Mapping and manipulating temperature–concentration phase diagrams using microfluidics. Lab Chip 10:1696–99
    [Google Scholar]
  117. Shewan HM, Stokes JR 2015. Viscosity of soft spherical micro-hydrogel suspensions. J. Colloid Interface Sci. 442:75–81
    [Google Scholar]
  118. Shukla A, Mylonas E, Di Cola E, Finet S, Timmins P et al. 2008. Absence of equilibrium cluster phase in concentrated lysozyme solutions. PNAS 105:5075–80
    [Google Scholar]
  119. Stradner A, Crassous JJ, van Gruijthuijsen K, Obiols-Rabasa M, Schurtenberger P et al. 2017. Interpenetration of polymeric microgels at ultrahigh densities. Sci. Rep. 7:1487
    [Google Scholar]
  120. Stradner A, Sedgwick H, Cardinaux F, Poon WCK, Egelhaaf SU, Schurtenberger P 2004. Equilibrium cluster formation in concentrated protein solutions and colloids. Nature 432:492–95
    [Google Scholar]
  121. Subirade M, Gueguen J 1994. Conformational changes upon dissociation of a globular protein from pea: a Fourier transform infrared spectroscopy study. Biochim. Biophys. Acta 1205:239–47
    [Google Scholar]
  122. Tavares GM, Croguennec T, Hamon P, Carvalho AF, Bouhallab S 2015. Selective coacervation between lactoferrin and the two isoforms of β-lactoglobulin. Food Hydrocoll 48:238–47
    [Google Scholar]
  123. Tilman D, Clark M 2014. Global diets link environmental sustainability and human health. Nature 515:518–22
    [Google Scholar]
  124. Venturi L, Woodward N, Hibberd D, Marigheto N, Gravelle A et al. 2008. Multidimensional cross-correlation relaxometry of aqueous protein systems. Appl. Magn. Reson. 33:213–34
    [Google Scholar]
  125. Vilker VL, Colton CK, Smith KA 1981. The osmotic pressure of concentrated protein solutions: effect of concentration and pH in saline solutions of bovine serum albumin. J. Colloid Interface Sci. 79:548–66
    [Google Scholar]
  126. Vlassopoulos D, Cloitre M 2014. Tunable rheology of dense soft deformable colloids. Curr. Opin. Colloid Interface Sci. 19:561–74
    [Google Scholar]
  127. Wang L, Bloomfield VA 1990. Osmotic pressure of polyelectrolytes without added salt. Macromolecules 23:804–9
    [Google Scholar]
  128. Wang S, Chen X, Shi M, Zhao L, Li W et al. 2015. Absorption of whey protein isolated (WPI)-stabilized β-carotene emulsions by oppositely charged oxidized starch microgels. Food Res. Int. 67:315–22
    [Google Scholar]
  129. Wang Y, Latypov RF, Lomakin A, Meyer JA, Kerwin BA et al. 2014. Quantitative evaluation of colloidal stability of antibody solutions using PEG-induced liquid−liquid phase separation. Mol. Pharm. 11:1391–402
    [Google Scholar]
  130. Weber SC, Brangwynne CP 2015. Inverse size scaling of the nucleolus by a concentration-dependent phase transition. Curr. Biol. 25:641–46
    [Google Scholar]
  131. Wu J, Prausnitz JM 1999. Osmotic pressures of aqueous bovine serum albumin solutions at high ionic strength. Fluid Phase Equilib 155:139–54
    [Google Scholar]
  132. Yousef MA, Datta R, Rodgers VGJ 1998. Understanding nonidealities of the osmotic pressure of concentrated bovine serum albumin. J. Colloid Interface Sci. 207:273–82
    [Google Scholar]
  133. Yousef MA, Datta R, Rodgers VGJ 2001. Confirmation of free solvent model assumptions in predicting the osmotic pressure of concentrated globular proteins. J. Colloid Interface Sci. 243:321–25
    [Google Scholar]
  134. Zhang F, Skoda MWA, Jacobs RMJ, Martin RA, Martin CM, Schreiber F 2007. Protein interactions studied by SAXS: effect of ionic strength and protein concentration for BSA in aqueous solutions. J. Phys. Chem. B 111:251–59
    [Google Scholar]
  135. Zhou H-X, Nguemaha V, Mazarakos K, Qin S 2018. Why do disordered and structured proteins behave differently in phase separation?. Trends Biochem. Sci. 43:7499–516
    [Google Scholar]
/content/journals/10.1146/annurev-food-032818-121907
Loading
/content/journals/10.1146/annurev-food-032818-121907
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error