Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Anti-metastatic effect of ranolazine in an in vivo rat model of prostate cancer, and expression of voltage-gated sodium channel protein in human prostate

Subjects

Abstract

Background

Voltage-gated Na+ channels (VGSCs) are functionally upregulated in rat and human prostate cancer (PCa) where channel activity promotes cellular invasiveness in vitro and metastasis in vivo. Ranolazine is a clinically used VGSC inhibitor/anti-anginal drug, which has been shown previously to inhibit breast cancer metastasis in vivo.

Methods

Using the Dunning model of rat PCa, the effect of ranolazine applied systemically (by gavage) was tested on the development of primary tumours and metastases following subcutaneous inoculation of Mat-LyLu cells into Copenhagen rats. In addition, human prostate tissue microarrays were used to determine VGSC protein expression in cancerous versus non-cancerous tissue. Several public databases were searched to compare Nav1.7/ SCN9A expression levels in ‘normal’ vs. PCa tissues.

Results

Ranolazine (2.5 and 5 µM) decreased the number of lung metastases by up to 63%. In contrast, primary tumourigenesis was not affected. Ranolazine also reduced the percentage of cells in the metastases expressing Nav1.7, the main VGSC subtype expressed in PCa, but the expression level was higher. In prostate tissue microarrays, VGSC protein expression was significantly higher in cancerous versus non-cancerous tissue. There was no correlation between the VGSC expression and either prostate-specific antigen or Gleason score. In public databases, little information could be found on Nav1.7 protein expression in PCa. In addition, the database information on Nav1.7 mRNA (SCN9A) expression levels did not correlate with previously reported upregulation in PCa cells and tissues.

Conclusions

The main conclusions were (i) ranolazine inhibited metastasis and (ii) it was a subpopulation of cells with particularly high levels of Nav1.7 protein that reached the metastatic sites. These data extend earlier studies and suggest that Nav1.7 expression could serve as a functional biomarker of metastatic PCa and that VGSC blockers may be useful as anti-metastatic agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66:7–30.

    Article  PubMed  Google Scholar 

  2. Torre LA, Siegel RL, Ward EM, Jemal A. Global Cancer Incidence and Mortality Rates and Trends--An Update. Cancer Epidemiol Biomark Prev. 2016;25:16–27.

    Article  Google Scholar 

  3. Guo G, Xu Y, Zhang X. TRUS-guided transperineal prostate 12+X core biopsy with template for the diagnosis of prostate cancer. Oncol Lett. 2017;13:4863–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Boccellino M, Alaia C, Misso G, Cossu AM, Facchini G, Piscitelli R, et al. Gene interference strategies as a new tool for the treatment of prostate cancer. Endocrine. 2015;49:588–605.

    Article  CAS  PubMed  Google Scholar 

  5. Carlsson SV, Roobol MJ. Improving the evaluation and diagnosis of clinically significant prostate cancer in 2017. Curr Opin Urol. 2017;27:198–204.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Huggins C. The diagnosis of cancer of the prostate including the interpretation of serum phosphatase values. Bull NY Acad Med. 1943;19:195–200.

    CAS  Google Scholar 

  7. Holzbeierlein J, Lal P, LaTulippe E, Smith A, Satagopan J, Zhang L, et al. Gene expression analysis of human prostate carcinoma during hormonal therapy identifies androgen-responsive genes and mechanisms of therapy resistance. Am J Pathol. 2004;164:217–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Djamgoz MBA, Coombes RC, Schwab A. Ion transport and cancer: from initiation to metastasis. Philos Trans R Soc Lond B Biol Sci. 2014;369:20130092.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Monteith GR, Prevarskaya N, Roberts-Thomson SJ. The calcium-cancer signalling nexus. Nat Rev Cancer. 2017;17:367–80.

    Article  CAS  PubMed  Google Scholar 

  10. Prevarskaya N, Skryma R, Shuba Y. Ion channels and the hallmarks of cancer. Trends Mol Med. 2010;16:107–21.

    Article  CAS  PubMed  Google Scholar 

  11. Ouadid-Ahidouch H, Ahidouch A, Pardo LA. Kv10.1 K+ channel: from physiology to cancer. Pflug Arch. 2016;468:751–62.

    Article  CAS  Google Scholar 

  12. Lastraioli E, Iorio J, Arcangeli A. Ion channel expression as promising cancer biomarker. Biochim Biophys Acta. 2015;1848:2685–702.

    Article  CAS  PubMed  Google Scholar 

  13. Brackenbury WJ. Voltage-gated sodium channels and metastatic disease. Channels (Austin). 2012;6:352–61.

    Article  CAS  Google Scholar 

  14. Besson P, Driffort V, Bon É, Gradek F, Chevalier S, Roger S. How do voltage-gated sodium channels enhance migration and invasiveness in cancer cells? Biochim Biophys Acta. 2015;1848:2493–501.

    Article  CAS  PubMed  Google Scholar 

  15. Onkal R, Djamgoz MBA. Molecular pharmacology of voltage-gated sodium channel expression in metastatic disease: Clinical potential of neonatal Nav1.5 in breast cancer. Eur J Pharmacol. 2009;625:206–19.

    Article  CAS  PubMed  Google Scholar 

  16. Grimes JA, Fraser SP, Stephens GJ, Downing JE, Laniado ME, Foster CS, et al. Differential expression of voltage-activated Na+ currents in two prostatic tumour cell lines: contribution to invasiveness in vitro. FEBS Lett. 1995;369:290–4.

    Article  CAS  PubMed  Google Scholar 

  17. Laniado ME, Lalani EN, Fraser SP, Grimes JA, Bhangal G, Djamgoz MBA, et al. Expression and functional analysis of voltage-activated Na+ channels in human prostate cancer cell lines and their contribution to invasiveness in vitro. Am J Pathol. 1997;150:1213–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Diss JK, Archer SN, Hirano J, Fraser SP, Djamgoz MBA. Expression profiles of voltage-gated Na+ channel alpha-subunit genes in rat and human prostate cancer cell lines. Prostate. 2001;48:165–78.

    Article  CAS  PubMed  Google Scholar 

  19. Diss JK, Stewart D, Pani F, Foster CS, Walker MM, Patel A, et al. A potential novel marker for human prostate cancer progression: Voltage-gated Na+ channel expression in vivo. Prostate Cancer Prostatic Dis. 2005;8:266–73.

    Article  CAS  PubMed  Google Scholar 

  20. Suy S, Hansen TP, Auto HD, Kallakury BV, Dailey V, Danner M et al. Expression of voltage-gated sodium channel Nav1.8 in human prostate cancer is associated with high histological grade. J Clin Exp Oncol. 2012;1.

  21. Shan B, Dong M, Tang H, Wang N, Zhang J, Yan C, et al. Voltage-gated sodium channels were differentially expressed in human normal prostate, benign prostatic hyperplasia and prostate cancer cells. Oncol Lett. 2014;8:345–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fraser SP, Ding Y, Liu A, Foster CS, Djamgoz MBA. Tetrodotoxin suppresses morphological enhancement of the metastatic MAT-LyLu rat prostate cancer cell line. Cell Tissue Res. 1999;295:505–12.

    Article  CAS  PubMed  Google Scholar 

  23. Fraser SP, Salvador V, Manning EA, Mizal J, Altun S, Raza M, et al. Contribution of functional voltage-gated Na+ channel expression to cell behaviours involved in the metastatic cascade in rat prostate cancer: I. Lateral motility. J Cell Physiol. 2003;195:479–87.

    Article  CAS  PubMed  Google Scholar 

  24. Mycielska ME, Fraser SP, Szatkowski M, Djamgoz MBA. Contribution of functional voltage-gated Na+ channel expression to cell behaviours involved in the metastatic cascade in rat prostate cancer: II. Secretory membrane activity. J Cell Physiol. 2003;195:461–9.

    Article  CAS  PubMed  Google Scholar 

  25. Bennett ES, Smith BA, Harper JM. Voltage-gated Na+ channels confer invasive properties on human prostate cancer cells. Pflug Arch. 2004;447:908–14.

    Article  CAS  Google Scholar 

  26. Yildirim S, Altun S, Gumushan H, Patel A, Djamgoz MBA. Voltage-gated sodium channel activity promotes prostate cancer metastasis in vivo. Cancer Lett. 2012;323:58–61.

    Article  CAS  PubMed  Google Scholar 

  27. Driffort V, Gillet L, Bon E, Marionneau-Lambot S, Oullier T, Joulin V, et al. Ranolazine inhibits NaV1.5-mediated breast cancer cell invasiveness and lung colonization. Mol Cancer. 2014;13:264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nelson M, Yang M, Millican-Slater R, Brackenbury WJ. Nav1.5 regulates breast tumor growth and metastatic dissemination in vivo. Oncotarget. 2015;6:32914–29.

    PubMed  PubMed Central  Google Scholar 

  29. Nelson M, Yang M, Dowle AA, Thomas JR, Brackenbury WJ. The sodium channel-blocking antiepileptic drug phenytoin inhibits breast tumour growth and metastasis. Mol Cancer. 2015;14:13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bugan I, Karagoz Z, Altun S, Djamgoz MBA. Gabapentin, an analgesic used against cancer-associated neuropathic pain: Effects on prostate cancer progression in an in vivo rat model. Basic Clin Pharmacol Toxicol. 2016;118:200–7.

    Article  CAS  PubMed  Google Scholar 

  31. Wang T, Huang W, Chen F. Baclofen, a GABAB receptor agonist, inhibits human hepatocellular carcinoma cell growth in vitro and in vivo. Life Sci. 2008;82:536–41.

    Article  CAS  PubMed  Google Scholar 

  32. Nguyen DH, Zhou T, Shu J. Mao JH. Quantifying chromogen intensity in immunohistochemistry via reciprocal intensity. Cancer InCytes. 2013;2.

  33. Dugandzija-Novakovic S, Koszowski AG, Levinson SR, Shrager P. Clustering of Na+ channels and node of Ranvier formation in remyelinating axons. J Neurosci. 1995;15:492–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fels B, Bulk E, Pethő Z, Schwab A. The role of TRP channels in the metastatic cascade. Pharm (Basel). 2018;11:E48.

    Article  CAS  Google Scholar 

  35. Abdul M, Hoosein N. Reduced Kv1.3 potassium channel expression in human prostate cancer. J Membr Biol. 2006;214:99–102.

    Article  CAS  PubMed  Google Scholar 

  36. Laniado ME, Fraser SP, Djamgoz MBA. Voltage-gated K+ channel activity in human prostate cancer cell lines of markedly different metastatic potential: distinguishing characteristics of PC-3 and LNCaP cells. Prostate. 2001;46:262–74.

    Article  CAS  PubMed  Google Scholar 

  37. Teisseyre A, Gąsiorowska J, Michalak K. Voltage-gated potassium channels Kv1.3-Potentially new molecular target in cancer diagnostics and therapy. Adv Clin Exp Med. 2015;24:517–24.

    Article  PubMed  Google Scholar 

  38. Agarwal JR, Griesinger F, Stühmer W, Pardo LA. The potassium channel Ether à go-go is a novel prognostic factor with functional relevance in acute myeloid leukemia. Mol Cancer. 2010;9:18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wu J, Wu X, Lian K, Lin B, Guo L, Ding Z. Overexpression of potassium channel ether à go-go in human osteosarcoma. Neoplasma. 2012;59:207–15.

    Article  CAS  PubMed  Google Scholar 

  40. Arcangeli A, Becchetti A. Novel perspectives in cancer therapy: Targeting ion channels. Drug Res Updat. 2015;21–2:11–9.

    Article  Google Scholar 

  41. Welch DR. Do we need to redefine a cancer metastasis and staging definitions? Breast Dis. 2006;26:3–12.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Antzelevitch C, Belardinelli L, Zygmunt AC, Burashnikov A, Di Diego JM, Fish JM, et al. Electrophysiological effects of ranolazine, a novel antianginal agent with antiarrhythmic properties. Circulation. 2004;110:904–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schlüter F, Leffler A. Oxidation differentially modulates the recombinant voltage-gated Na+ channel alpha-subunits Nav1.7 and Nav1.8. Brain Res. 2016;1648:127–35.

    Article  CAS  PubMed  Google Scholar 

  44. Berger JC, Vander Griend D, Stadler WM, Rinker-Schaeffer C. Metastasis suppressor genes: signal transduction, cross-talk and the potential for modulating the behavior of metastatic cells. Anticancer Drugs. 2004;15:559–68.

    Article  CAS  PubMed  Google Scholar 

  45. Vaidya KS, Welch DR. Metastasis suppressors and their roles in breast carcinoma. J Mammary Gland Biol Neoplasia. 2007;12:175–90.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Weigelt B, Peterse JL, van ‘t Veer LJ. Breast cancer metastasis: markers and models. Nat Rev Cancer. 2005;5:591–602.

    Article  CAS  PubMed  Google Scholar 

  47. Chioni AM, Shao D, Grose R, Djamgoz MBA. Protein kinase A and regulation of neonatal Nav1.5 expression in human breast cancer cells: activity-dependent positive feedback and cellular migration. Int J Biochem Cell Biol. 2010;42:346–58.

    Article  CAS  PubMed  Google Scholar 

  48. Brackenbury WJ, Djamgoz MBA. Activity-dependent regulation of voltage-gated Na+ channel expression in Mat-LyLu rat prostate cancer cell line. J Physiol. 2006;573:343–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Abdul M, Hoosein N. Voltage-gated sodium ion channels in prostate cancer: expression and activity. Anticancer Res. 2002;22:1727–30.

    CAS  PubMed  Google Scholar 

  50. Epstein JI, Egevad L, Amin MB, Delahunt B, Srigley JR, Humphrey PA; Grading Committee. The 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma: Definition of Grading Patterns and Proposal for a New Grading System. Am J Surg Pathol. 2016; 40: 244–52.

  51. Fraser SP, Diss JK, Chioni AM, Mycielska ME, Pan H, Yamaci RF, et al. Voltage-gated sodium channel expression and potentiation of human breast cancer metastasis. Clin Cancer Res. 2005;11:5381–9.

    Article  CAS  PubMed  Google Scholar 

  52. House CD, Vaske CJ, Schwartz AM, Obias V, Frank B, Luu T, et al. Voltage-gated Na+ channel SCN5A is a key regulator of a gene transcriptional network that controls colon cancer invasion. Cancer Res. 2010;70:6957–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sakr WA, Tefilli MV, Grignon DJ, Banerjee M, Dey J, Gheiler EL, et al. Gleason score 7 prostate cancer: a heterogeneous entity? Correlation with pathologic parameters and disease-free survival. Urology. 2000;56:730–4.

    Article  CAS  PubMed  Google Scholar 

  54. Xia J, Huang N, Huang H, Sun L, Dong S, Su J, et al. Voltage-gated sodium channel Nav 1.7 promotes gastric cancer progression through MACC1-mediated upregulation of NHE1. Int J Cancer. 2016;139:2553–69.

    Article  CAS  PubMed  Google Scholar 

  55. Arntzen MO, Boddie P, Frick R, Koehler CJ, Thiede B. Consolidation of proteomics data in the Cancer Proteomics database. Proteomics. 2015;15:3765–71.

    Article  CAS  PubMed  Google Scholar 

  56. Garbis SD, Townsend PA. Proteomics of human prostate cancer biospecimens: the global, systems-wide perspective for protein markers with potential clinical utility. Expert Rev Proteom. 2013;10:337–54.

    Article  CAS  Google Scholar 

  57. Pin E, Fredolini C, Petricoin EF 3rd. The role of proteomics in prostate cancer research: biomarker discovery and validation. Clin Biochem. 2013;46:524–38.

    Article  CAS  PubMed  Google Scholar 

  58. Yang Q, Zhang Y, Cui H, Chen L, Zhao Y, Lin Y, et al. dbDEPC 3.0: the database of differentially expressed proteins in human cancer with multi-level annotation and drug indication. Database (Oxf). 2018;2018:bay015.

    Google Scholar 

  59. Prevarskaya N, Skryma R, Shuba Y. Ion channels in cancer: are cancer hallmarks oncochannelopathies? Physiol Rev. 2018;98:559–621.

    Article  CAS  PubMed  Google Scholar 

  60. Guzel RM, Ogmen K, Ilieva KM, Fraser SP, Djamgoz MBA Colorectal cancer invasiveness in vitro: Predominant contribution of neonatal Nav1.5 under normoxia and hypoxia. J Cell Physiol. 2019;234:6582–93.

  61. Diaz D, Delgadillo DM, Hernández-Gallegos E, Ramírez-Domínguez ME, Hinojosa LM, Ortiz CS, et al. Functional expression of voltage-gated sodium channels in primary cultures of human cervical cancer. J Cell Physiol. 2007;210:469–78.

    Article  CAS  PubMed  Google Scholar 

  62. Gao R, Shen Y, Cai J, Lei M, Wang Z. Expression of voltage-gated sodium channel alpha subunit in human ovarian cancer. Oncol Rep. 2010;23:1293–9.

    CAS  PubMed  Google Scholar 

  63. Fraser SP, Özerlat-Gunduz I, Brackenbury WJ, Fitzgerald EM, Campbell T, Coombes RC, Djamgoz MBA. Regulation of voltage-gated sodium channel expression in cancer: Hormones, growth factors and auto-regulation. Philos Trans R Soc B. 2014;369:20130105.

    Article  Google Scholar 

  64. Tian Q, Stepaniants SB, Mao M, Weng L, Feetham MC, Doyle MJ, et al. Integrated genomic and proteomic analyses of gene expression in mammalian cells. Mol Cell Proteom. 2004;3:960–9.

    Article  CAS  Google Scholar 

  65. Zhang B, Wang J, Wang X, Zhu J, Liu Q, Shi Z, et al. Proteogenomic characterization of human colon and rectal cancer. Nature. 2014;513:382–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang J, Lu Z, Wu C, Li Y, Kong Y, Zhou R, et al. Evaluation of the anticancer and anti-metastasis effects of novel synthetic sodium channel blockers in prostate cancer cells in vitro and in vivo. Prostate 2019;79:62–72.

  67. Karagiannis GS, Pastoriza JM, Wang Y, Harney AS, Entenberg D, Pignatelli J, et al. Neoadjuvant chemotherapy induces breast cancer metastasis through a TMEM-mediated mechanism. Sci Transl Med. 2017;9:397.

    Article  CAS  Google Scholar 

  68. Djamgoz MBA, Onkal R. Persistent current blockers of voltage-gated sodium channels: a clinical opportunity for controlling metastatic disease. Recent Pat Anticancer Drug Discov. 2013;8:66–84.

    Article  CAS  PubMed  Google Scholar 

  69. Koltai T. Voltage-gated sodium channel as a target for metastatic risk reduction with re-purposed drugs. F1000Res. 2015;4:297.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by TUBITAK (The Scientific and Technological Research Council of Turkey), project number 110T890; the Istanbul University Research Fund (project numbers: 39488 and 47629) (IB, SK, ZK); The Prostate Cancer Charity (SPF, CSF, MBAD), the Pro Cancer Research Fund and the Robert Luff Foundation Ltd. (SPF, MBAD). Dr Steve Cook helped with the statistics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa B. A. Djamgoz.

Ethics declarations

Conflict of interest

MBAD is involved in a spinout company developing voltage-gated sodium channel blockers as anti-metastatic drugs. However, the current work received no financial support from this company that could have influenced its outcome.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bugan, I., Kucuk, S., Karagoz, Z. et al. Anti-metastatic effect of ranolazine in an in vivo rat model of prostate cancer, and expression of voltage-gated sodium channel protein in human prostate. Prostate Cancer Prostatic Dis 22, 569–579 (2019). https://doi.org/10.1038/s41391-019-0128-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41391-019-0128-3

This article is cited by

Search

Quick links