Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ILK promotes survival and self-renewal of hypoxic MSCs via the activation of lncTCF7-Wnt pathway induced by IL-6/STAT3 signaling

Abstract

Mesenchymal stem cells (MSCs) have been applied in treating various diseases including myocardial infarction (MI) and achieved a bit of success; however, the decreased survival rate of MSCs after transplantation greatly limited the efficacy for cell therapy. How to improve the MSC survival rate in stem cell transplantation has undoubtedly become urgent and genetic engineering may be an ideal and feasible way. In this study, we explored the effects on MSCs survival and self-renewal by overexpression of integrin-linked kinase (ILK) in MSCs under hypoxic stimulation and aimed to reveal the molecular mechanisms from the point of paracrine function of MSCs. We first found that overexpression of ILK induced the expression and secretion of IL-6 increased significantly in MSCs under hypoxic stimulation, and the survival and self-renewal of MSCs exposed to hypoxia were enhanced after ILK overexpression. Then the activation of JAK2/STAT3 signaling was detected because of the increased IL-6, and an lncRNA, named lncTCF7, was upregulated remarkably, promoting the activation of Wnt pathway that was required for keeping cell viability and stemness of MSCs. Moreover, we further verified that inhibition of STAT3 signaling by WP1066 and silencing lncTCF7 expression eliminated the protective effects of ILK overexpression on cell survival and self-renewal of MSCs under hypoxic sitmulation. In conclusion, our results uncovered a novel function of ILK to promote MSC survival and self-renewal, suggesting more application potentials of MSC cell therapy on MI.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zomer HD, Vidane AS, Gonçalves NN, Ambrósio CE. Mesenchymal and induced pluripotent stem cells: general insights and clinical perspectives. Stem Cells Cloning. 2015;8:125–34.

    PubMed  PubMed Central  Google Scholar 

  2. D’souza N, Rossignoli F, Golinelli G, Grisendi G, Spano C, Candini O, et al. Mesenchymal stem/stromal cells as a delivery platform in cell and gene therapies. BMC Med. 2015;13:186.

    Article  Google Scholar 

  3. Golpanian S, Wolf A, Hatzistergos KE, Hare JM. Rebuilding the damaged heart: mesenchymal stem cells, cell-based therapy, and engineered heart tissue. Physiol Rev. 2016;96:1127–68.

    Article  CAS  Google Scholar 

  4. Perico L, Morigi M, Rota C, Breno M, Mele C, Noris M, et al. Human mesenchymal stromal cells transplanted into mice stimulate renal tubular cells and enhance mitochondrial function. Nat Commun. 2017;8:983.

    Article  Google Scholar 

  5. Luk F, Carreras-Planella L, Korevaar SS, de Witte SFH, Borràs FE, Betjes MGH, et al. Inflammatory conditions dictate the effect of mesenchymal stem or stromal cells on B cell function. Front Immunol. 2017;8:1042.

    Article  Google Scholar 

  6. Karantalis V, Suncion-Loescher VY, Bagno L, Golpanian S, Wolf A, Sanina C, et al. Synergistic effects of combined cell therapy for chronic ischemic cardiomyopathy. J Am Coll Cardiol. 2015;66:1990–9.

    Article  Google Scholar 

  7. Natsumeda M, Florea V, Rieger AC, Tompkins BA, Banerjee MN, Golpanian S, et al. A combination of allogeneic stem cells promotes cardiac regeneration. J Am Coll Cardiol. 2017;70:2504–15.

    Article  CAS  Google Scholar 

  8. Luger D, Lipinski MJ, Westman PC, Glover DK, Dimastromatteo J, Frias JC, et al. Intravenously delivered mesenchymal stem cells: systemic anti-inflammatory effects improve left ventricular dysfunction in acute myocardial infarction and ischemic cardiomyopathy. Circ Res. 2017;120:1598–613.

    Article  CAS  Google Scholar 

  9. Kanelidis AJ, Premer C, Lopez J, Balkan W, Hare JM. Route of delivery modulates the efficacy of mesenchymal stem cell therapy for myocardial infarction: a meta-analysis of preclinical studies and clinical trials. Circ Res. 2017;120:1139–50.

    Article  CAS  Google Scholar 

  10. He H, Zhao ZH, Han FS, Liu XH, Wang R, Zeng YJ. Overexpression of protein kinase C varepsilon improves retention and survival of transplanted mesenchymal stem cells in rat acute myocardial infarction. Cell Death Dis. 2016;7:e2056.

    Article  CAS  Google Scholar 

  11. Blocki A, Beyer S, Dewavrin JY, Goralczyk A, Wang Y, Peh P, et al. Microcapsules engineered to support mesenchymal stem cell (MSC) survival and proliferation enable long-term retention of MSCs in infarcted myocardium. Biomaterials. 2015;53:12–24.

    Article  CAS  Google Scholar 

  12. Hannigan GE, Coles JG, Dedhar S. Integrin-linked kinase at the heart of cardiac contractility, repair, and disease. Circ Res. 2007;100:1408–14.

    Article  CAS  Google Scholar 

  13. Qin J, Wu C. a pseudokinase in the center stage of cell-matrix adhesion and signaling. Curr Opin Cell Biol. 2012;24:607–13.

    Article  CAS  Google Scholar 

  14. Ding L, Dong L, Chen X, Zhang L, Xu X, Ferro A, et al. Increased expression of integrin-linked kinase attenuates left ventricular remodeling and improves cardiac function after myocardial infarction. Circulation. 2009;120:764–73.

    Article  CAS  Google Scholar 

  15. Song SW, Chang W, Song BW, Song H, Lim S, Kim HJ, et al. Integrin-linked kinase is required in hypoxic mesenchymal stem cells for strengthening cell adhesion to ischemic myocardium. Stem Cells. 2009;27:1358–65.

    Article  CAS  Google Scholar 

  16. Mao Q, Lin C, Gao J, Liang X, Gao W, Shen L, et al. Mesenchymal stem cells overexpressing integrin-linked kinase attenuate left ventricular remodeling and improve cardiac function after myocardial infarction. Mol Cell Biochem. 2014;397:203–14.

    Article  CAS  Google Scholar 

  17. Hatzistergos KE, Quevedo H, Oskouei BN, Hu Q, Feigenbaum GS, Margitich IS, et al. Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation. Circ Res. 2010;107:913–22.

    Article  CAS  Google Scholar 

  18. Hatzistergos KE, Saur D, Seidler B, Balkan W, Breton M, Valasaki K, et al. Stimulatory effects of mesenchymal stem cells on cKit+ cardiac stem cells are mediated by SDF1/CXCR4 and SCF/cKit signaling pathways. Circ Res. 2016;119:921–30.

    Article  CAS  Google Scholar 

  19. Mirotsou M, Jayawardena TM, Schmeckpeper J, Gnecchi M, Dzau VJ, et al. Paracrine mechanisms of stem cell reparative and regenerative actions in the heart. J Mol Cell Cardiol. 2011;50:280–9.

    Article  CAS  Google Scholar 

  20. Humphrey RK, Beattie GM, Lopez AD, Bucay N, King CC, Firpo MT, et al. Maintenance of pluripotency in human embryonic stem cells is STAT3 independent. Stem Cells. 2004;22:522–30.

    Article  CAS  Google Scholar 

  21. Dreesen O, Brivanlou AH. Signaling pathways in cancer and embryonic stem cells. Stem Cell Rev. 2007;3:7–17.

    Article  CAS  Google Scholar 

  22. Wang Y, He L, Du Y, Zhu P, Huang G, Luo J, et al. The long noncoding RNA lncTCF7 promotes self-renewal of human liver cancer stem cells through activation of Wnt signaling. Cell Stem Cell. 2015;16:413–25.

    Article  CAS  Google Scholar 

  23. Wu J, Zhang J, Shen B, Yin K, Xu J, Gao W, et al. Long noncoding RNA lncTCF7, induced by IL-6/STAT3 transactivation, promotes hepatocellular carcinoma aggressiveness through epithelial-mesenchymal transition. J Exp Clin Cancer Res. 2015;34:116.

    Article  Google Scholar 

  24. Kinnaird T, Stabile E, Burnett MS, Shou M, Lee CW, Barr S, et al. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation. 2004;109:1543–9.

    Article  CAS  Google Scholar 

  25. Yang F, Wu R, Jiang Z, Chen J, Nan J, Su S, et al. Leptin increases mitochondrial OPA1 via GSK3-mediated OMA1 ubiquitination to enhance therapeutic effects of mesenchymal stem cell transplantation. Cell Death Dis. 2018;9:556.

    Article  Google Scholar 

  26. Srivastava D, Yu S. Stretching to meet needs: integrin-linked kinase and the cardiac pump. Genes Dev. 2006;20:2327–31.

    Article  CAS  Google Scholar 

  27. Mao Q, Lin CX, Liang XL, Gao JS, Xu B. Mesenchymal stem cells overexpressing integrin-linked kinase attenuate cardiac fibroblast proliferation and collagen synthesis through paracrine actions. Mol Med Rep. 2013;7:1617–23.

    Article  CAS  Google Scholar 

  28. Mu D, Zhang XL, Xie J, Yuan HH, Wang K, Huang W, et al. Intracoronary transplantation of mesenchymal stem cells with overexpressed integrin-linked kinase improves cardiac function in porcine myocardial infarction. Sci Rep. 2016;6:19155.

    Article  CAS  Google Scholar 

  29. Hsu EC, Kulp SK, Huang HL, Tu HJ, Chao MW, Tseng YC, et al. Integrin-linked kinase as a novel molecular switch of the IL-6-NF-kappaB signaling loop in breast cancer. Carcinogenesis. 2016;37:430–42.

    Article  CAS  Google Scholar 

  30. Hsu EC, Kulp SK, Huang HL, Tu HJ, Salunke SB, Sullivan NJ, et al. Function of integrin-linked kinase in modulating the stemness of IL-6-abundant breast cancer cells by regulating gamma-secretase-mediated Notch1 activation in caveolae. Neoplasia. 2015;17:497–508.

    Article  CAS  Google Scholar 

  31. Wani AA, Jafarnejad SM, Zhou J, Li G. Integrin-linked kinase regulates melanoma angiogenesis by activating NF-kappaB/interleukin-6 signaling pathway. Oncogene. 2011;30:2778–88.

    Article  CAS  Google Scholar 

  32. Wang X, Zhang Z, Yao C. Targeting integrin-linked kinase increases apoptosis and decreases invasion of myeloma cell lines and inhibits IL-6 and VEGF secretion from BMSCs. Med Oncol. 2011;28:1596–600.

    Article  CAS  Google Scholar 

  33. Wu J, Wang D. Long noncoding RNA TCF7 promotes invasiveness and self-renewal of human non-small cell lung cancer cells. Hum Cell. 2017;30:23–29.

    Article  CAS  Google Scholar 

  34. Li T, Zhu J, Wang X, Chen G, Sun L, Zuo S, et al. Long non-coding RNA lncTCF7 activates the Wnt/beta-catenin pathway to promote metastasis and invasion in colorectal cancer. Oncol Lett. 2017;14:7384–90.

    PubMed  PubMed Central  Google Scholar 

  35. Zeng B, Liu L, Wang S, Dai Z. ILK regulates MSCs survival and angiogenesis partially through AKT and mTOR signaling pathways. Acta Histochem. 2017;119:400–6.

    Article  CAS  Google Scholar 

  36. Shabbir A, Zisa D, Lin H, Mastri M, Roloff G, Suzuki G, et al. Activation of host tissue trophic factors through JAK-STAT3 signaling: a mechanism of mesenchymal stem cell-mediated cardiac repair. Am J Physiol Heart Circ Physiol. 2010;299:H1428–38.

    Article  CAS  Google Scholar 

  37. Yu SJ, Kim HJ, Lee ES, Park CG, Cho SJ, Jeon SH. beta-Catenin accumulation is associated with increased expression of Nanog protein and predicts maintenance of MSC self-renewal. Cell Transplant. 2017;26:365–77.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by The General Program of Guangxi Natural Science Foundation (No. 2017GXNSFAA198214).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Mao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, Q., Liang, XL., Wu, YF. et al. ILK promotes survival and self-renewal of hypoxic MSCs via the activation of lncTCF7-Wnt pathway induced by IL-6/STAT3 signaling. Gene Ther 26, 165–176 (2019). https://doi.org/10.1038/s41434-018-0055-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-018-0055-2

This article is cited by

Search

Quick links