1932

Abstract

The gastrointestinal mucosa, structurally formed by the epithelium and lamina propria, serves as a selective barrier that separates luminal contents from the underlying tissues. Gastrointestinal mucosal wound repair is orchestrated by a series of spatial and temporal events that involve the epithelium, recruited immune cells, resident stromal cells, and the microbiota present in the wound bed. Upon injury, repair of the gastrointestinal barrier is mediated by collective migration, proliferation, and subsequent differentiation of epithelial cells. Epithelial repair is intimately regulated by a number of wound-associated cells that include immune cells and stromal cells in addition to mediators released by luminal microbiota. The highly regulated interaction of these cell types is perturbed in chronic inflammatory diseases that are associated with impaired wound healing. An improved understanding of prorepair mechanisms in the gastrointestinal mucosa will aid in the development of novel therapeutics that promote mucosal healing and reestablish the critical epithelial barrier function.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-020518-114504
2019-02-10
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/physiol/81/1/annurev-physiol-020518-114504.html?itemId=/content/journals/10.1146/annurev-physiol-020518-114504&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Moens E, Veldhoen M 2012. Epithelial barrier biology: good fences make good neighbours. Immunology 135:1–8
    [Google Scholar]
  2. 2.  Cheng LK, O'Grady G, Du P, Egbuji JU, Windsor JA, Pullan AJ 2010. Gastrointestinal system. Wiley Interdisc. Rev. Syst. Biol. Med. 2:65–79
    [Google Scholar]
  3. 3.  Iizuka M, Konno S 2011. Wound healing of intestinal epithelial cells. World J. Gastroenterol. 17:2161–71
    [Google Scholar]
  4. 4.  Gurtner GC, Werner S, Barrandon Y, Longaker MT 2008. Wound repair and regeneration. Nature 453:314–21
    [Google Scholar]
  5. 5.  Sugimoto MA, Sousa LP, Pinho V, Perretti M, Teixeira MM 2016. Resolution of inflammation: What controls its onset?. Front. Immunol. 7:160
    [Google Scholar]
  6. 6.  Sonnemann KJ, Bement WM 2011. Wound repair: toward understanding and integration of single-cell and multicellular wound responses. Annu. Rev. Cell Dev. Biol. 27:237–63
    [Google Scholar]
  7. 7.  Lin L, Zhang J 2017. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. BMC Immunol 18:2
    [Google Scholar]
  8. 8.  Saenz JB, Mills JC 2018. Acid and the basis for cellular plasticity and reprogramming in gastric repair and cancer. Nat. Rev. Gastroenterol. Hepatol. 15:257–73
    [Google Scholar]
  9. 9.  Peterson LW, Artis D 2014. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat. Rev. Immunol. 14:141–53
    [Google Scholar]
  10. 10.  Sturm A, Dignass AU 2008. Epithelial restitution and wound healing in inflammatory bowel disease. World J. Gastroenterol. 14:348–53
    [Google Scholar]
  11. 11.  Schmidt S, Friedl P 2010. Interstitial cell migration: integrin-dependent and alternative adhesion mechanisms. Cell Tissue Res 339:83–92
    [Google Scholar]
  12. 12.  Lotz MM, Nusrat A, Madara JL, Ezzell R, Wewer UM, Mercurio AM 1997. Intestinal epithelial restitution. Involvement of specific laminin isoforms and integrin laminin receptors in wound closure of a transformed model epithelium. Am. J. Pathol. 150:747–60
    [Google Scholar]
  13. 13.  Koivisto L, Heino J, Häkkinen L, Larjava H 2014. Integrins in wound healing. Adv. Wound Care 3:762–83
    [Google Scholar]
  14. 14.  Moyer RA, Wendt MK, Johanesen PA, Turner JR, Dwinell MB 2007. Rho activation regulates CXCL12 chemokine stimulated actin rearrangement and restitution in model intestinal epithelia. Lab. Investig. 87:807–17
    [Google Scholar]
  15. 15.  Babbin BA, Parkos CA, Mandell KJ, Winfree LM, Laur O et al. 2007. Annexin 2 regulates intestinal epithelial cell spreading and wound closure through Rho-related signaling. Am. J. Pathol. 170:951–66
    [Google Scholar]
  16. 16.  Monteiro AC, Luissint AC, Sumagin R, Lai C, Vielmuth F et al. 2014. Trans-dimerization of JAM-A regulates Rap2 and is mediated by a domain that is distinct from the cis-dimerization interface. Mol. Biol. Cell 25:1574–85
    [Google Scholar]
  17. 17.  Liu L, Zhuang R, Xiao L, Chung HK, Luo J et al. 2017. HuR enhances early restitution of the intestinal epithelium by increasing Cdc42 translation. Mol. Cell. Biol. 37:e00574–16
    [Google Scholar]
  18. 18.  Seidelin JB, Larsen S, Linnemann D, Vainer B, Coskun M et al. 2015. Cellular inhibitor of apoptosis protein 2 controls human colonic epithelial restitution, migration, and Rac1 activation. Am. J. Physiol. Gastrointest. Liver Physiol. 308:G92–99
    [Google Scholar]
  19. 19.  Hinrichs BH, Matthews JD, Siuda D, O'Leary MN, Wolfarth AA et al. 2018. Serum amyloid A1 is an epithelial prorestitutive factor. Am. J. Pathol. 188:937–49
    [Google Scholar]
  20. 20.  Leoni G, Alam A, Neumann PA, Lambeth JD, Cheng G et al. 2013. Annexin A1, formyl peptide receptor, and NOX1 orchestrate epithelial repair. J. Clin. Investig. 123:443–54
    [Google Scholar]
  21. 21.  Maretzky T, Reiss K, Ludwig A, Buchholz J, Scholz F et al. 2005. ADAM10 mediates E-cadherin shedding and regulates epithelial cell-cell adhesion, migration, and beta-catenin translocation. PNAS 102:9182–87
    [Google Scholar]
  22. 22.  Gómez-Escudero J, Moreno V, Martin-Alonso M, Hernández-Riquer MV, Feinberg T et al. 2017. E-cadherin cleavage by MT2-MMP regulates apical junctional signaling and epithelial homeostasis in the intestine. J. Cell Sci. 130:4013–27
    [Google Scholar]
  23. 23.  Kamekura R, Nava P, Feng M, Quiros M, Nishio H et al. 2015. Inflammation-induced desmoglein-2 ectodomain shedding compromises the mucosal barrier. Mol. Biol. Cell 26:3165–77
    [Google Scholar]
  24. 24.  Luissint AC, Parkos CA, Nusrat A 2016. Inflammation and the intestinal barrier: leukocyte-epithelial cell interactions, cell junction remodeling, and mucosal repair. Gastroenterology 151:616–32
    [Google Scholar]
  25. 25.  Yulis M, Quiros M, Hilgarth R, Parkos CA, Nusrat A 2018. Intracellular Desmoglein-2 cleavage sensitizes epithelial cells to apoptosis in response to pro-inflammatory cytokines. Cell Death Dis 9:389
    [Google Scholar]
  26. 26.  Beigel F, Friedrich M, Probst C, Sotlar K, Goke B et al. 2014. Oncostatin M mediates STAT3-dependent intestinal epithelial restitution via increased cell proliferation, decreased apoptosis and upregulation of SERPIN family members. PLOS ONE 9:e93498
    [Google Scholar]
  27. 27.  Bradford EM, Ryu SH, Singh AP, Lee G, Goretsky T et al. 2017. Epithelial TNF receptor signaling promotes mucosal repair in inflammatory bowel disease. J. Immunol. 199:1886–97
    [Google Scholar]
  28. 28.  Kumar N, Mishra J, Narang VS, Waters CM 2007. Janus kinase 3 regulates interleukin 2-induced mucosal wound repair through tyrosine phosphorylation of villin. J. Biol. Chem. 282:30341–45
    [Google Scholar]
  29. 29.  Kuhn KA, Manieri NA, Liu TC, Stappenbeck TS 2014. IL-6 stimulates intestinal epithelial proliferation and repair after injury. PLOS ONE 9:e114195
    [Google Scholar]
  30. 30.  Quiros M, Nishio H, Neumann PA, Siuda D, Brazil JC et al. 2017. Macrophage-derived IL-10 mediates mucosal repair by epithelial WISP-1 signaling. J. Clin. Investig. 127:3510–20
    [Google Scholar]
  31. 31.  Pickert G, Neufert C, Leppkes M, Zheng Y, Wittkopf N et al. 2009. STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing. J. Exp. Med. 206:1465–72
    [Google Scholar]
  32. 32.  Scheibe K, Backert I, Wirtz S, Hueber A, Schett G et al. 2017. IL-36R signalling activates intestinal epithelial cells and fibroblasts and promotes mucosal healing in vivo. Gut. 66:823–38
    [Google Scholar]
  33. 33.  Medina-Contreras O, Harusato A, Nishio H, Flannigan KL, Ngo V et al. 2016. Cutting edge: IL-36 receptor promotes resolution of intestinal damage. J. Immunol. 196:34–38
    [Google Scholar]
  34. 34.  Mooseker MS, Pollard TD, Wharton KA 1982. Nucleated polymerization of actin from the membrane-associated ends of microvillar filaments in the intestinal brush border. J. Cell Biol. 95:223–33
    [Google Scholar]
  35. 35.  Chiriac MT, Buchen B, Wandersee A, Hundorfean G, Günther C et al. 2017. Activation of epithelial signal transducer and activator of transcription 1 by interleukin 28 controls mucosal healing in mice with colitis and is increased in mucosa of patients with inflammatory bowel disease. Gastroenterology 153:123–38.e8
    [Google Scholar]
  36. 36.  Hou SX, Zheng Z, Chen X, Perrimon N 2002. The Jak/STAT pathway in model organisms: emerging roles in cell movement. Dev. Cell 3:765–78
    [Google Scholar]
  37. 37.  Shah B, Mayer L 2010. Current status of monoclonal antibody therapy for the treatment of inflammatory bowel disease. Expert Rev. Clin. Immunol. 6:607–20
    [Google Scholar]
  38. 38.  Sandborn WJ, Hanauer SB, Katz S, Safdi M, Wolf DG et al. 2001. Etanercept for active Crohn's disease: a randomized, double-blind, placebo-controlled trial. Gastroenterology 121:1088–94
    [Google Scholar]
  39. 39.  Beck PL, Rosenberg IM, Xavier RJ, Koh T, Wong JF, Podolsky DK 2003. Transforming growth factor-β mediates intestinal healing and susceptibility to injury in vitro and in vivo through epithelial cells. Am. J. Pathol. 162:597–608
    [Google Scholar]
  40. 40.  Rhodes JA, Tam JP, Finke U, Saunders M, Bernanke J et al. 1986. Transforming growth factor alpha inhibits secretion of gastric acid. PNAS 83:3844–46
    [Google Scholar]
  41. 41.  Dignass AU, Tsunekawa S, Podolsky DK 1994. Fibroblast growth factors modulate intestinal epithelial cell growth and migration. Gastroenterology 106:1254–62
    [Google Scholar]
  42. 42.  Frey MR, Golovin A, Polk DB 2004. Epidermal growth factor-stimulated intestinal epithelial cell migration requires Src family kinase-dependent p38 MAPK signaling. J. Biol. Chem. 279:44513–21
    [Google Scholar]
  43. 43.  Han DS, Li F, Holt L, Connolly K, Hubert M et al. 2000. Keratinocyte growth factor-2 (FGF-10) promotes healing of experimental small intestinal ulceration in rats. Am. J. Physiol. Gastrointest. Liver Physiol. 279:G1011–22
    [Google Scholar]
  44. 44.  Chen K, Nezu R, Wasa M, Sando K, Kamata S et al. 1999. Insulin-like growth factor-1 modulation of intestinal epithelial cell restitution. J. Parenter. Enter. Nutr. 23:S89–92
    [Google Scholar]
  45. 45.  Nusrat A, Parkos CA, Bacarra AE, Godowski PJ, Delp-Archer C et al. 1994. Hepatocyte growth factor/scatter factor effects on epithelia. Regulation of intercellular junctions in transformed and nontransformed cell lines, basolateral polarization of c-met receptor in transformed and natural intestinal epithelia, and induction of rapid wound repair in a transformed model epithelium. J. Clin. Investig. 93:2056–65
    [Google Scholar]
  46. 46.  Song X, Dai D, He X, Zhu S, Yao Y et al. 2015. Growth factor FGF2 cooperates with interleukin-17 to repair intestinal epithelial damage. Immunity 43:488–501
    [Google Scholar]
  47. 47.  Miyoshi H, VanDussen KL, Malvin NP, Ryu SH, Wang Y et al. 2017. Prostaglandin E2 promotes intestinal repair through an adaptive cellular response of the epithelium. EMBO J 36:5–24
    [Google Scholar]
  48. 48.  Sturm A, Sudermann T, Schulte KM, Goebell H, Dignass AU 1999. Modulation of intestinal epithelial wound healing in vitro and in vivo by lysophosphatidic acid. Gastroenterology 117:368–77
    [Google Scholar]
  49. 49.  Kelly CJ, Zheng L, Campbell EL, Saeedi B, Scholz CC et al. 2015. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe 17:662–71
    [Google Scholar]
  50. 50.  Campbell EL, Serhan CN, Colgan SP 2011. Antimicrobial aspects of inflammatory resolution in the mucosa: a role for proresolving mediators. J. Immunol. 187:3475–81
    [Google Scholar]
  51. 51.  Miyoshi J, Takai Y 2008. Structural and functional associations of apical junctions with cytoskeleton. Biochim. Biophys. Acta 1778:670–91
    [Google Scholar]
  52. 52.  Ma X, Fan PX, Li LS, Qiao SY, Zhang GL, Li DF 2012. Butyrate promotes the recovering of intestinal wound healing through its positive effect on the tight junctions. J. Anim. Sci. 90:Suppl. 4266–68
    [Google Scholar]
  53. 53.  Bento AF, Claudino RF, Dutra RC, Marcon R, Calixto JB 2011. Omega-3 fatty acid-derived mediators 17(R)-hydroxy docosahexaenoic acid, aspirin-triggered resolvin D1 and resolvin D2 prevent experimental colitis in mice. J. Immunol. 187:1957–69
    [Google Scholar]
  54. 54.  Campbell EL, MacManus CF, Kominsky DJ, Keely S, Glover LE et al. 2010. Resolvin E1-induced intestinal alkaline phosphatase promotes resolution of inflammation through LPS detoxification. PNAS 107:14298–303
    [Google Scholar]
  55. 55.  Marcon R, Bento AF, Dutra RC, Bicca MA, Leite DF, Calixto JB 2013. Maresin 1, a proresolving lipid mediator derived from omega-3 polyunsaturated fatty acids, exerts protective actions in murine models of colitis. J. Immunol. 191:4288–98
    [Google Scholar]
  56. 56.  Gobbetti T, Dalli J, Colas RA, Federici Canova D, Aursnes M et al. 2017. Protectin D1n-3 DPA and resolvin D5n-3 DPA are effectors of intestinal protection. PNAS 114:3963–68
    [Google Scholar]
  57. 57.  Vong L, Ferraz JG, Dufton N, Panaccione R, Beck PL et al. 2012. Up-regulation of Annexin-A1 and lipoxin A4 in individuals with ulcerative colitis may promote mucosal homeostasis. PLOS ONE 7:e39244
    [Google Scholar]
  58. 58.  Hoffman JM, Baritaki S, Ruiz JJ, Sideri A, Pothoulakis C 2016. Corticotropin-releasing hormone receptor 2 signaling promotes mucosal repair responses after colitis. Am. J. Pathol. 186:134–44
    [Google Scholar]
  59. 59.  Chen K, Liu M, Liu Y, Yoshimura T, Shen W et al. 2013. Formylpeptide receptor-2 contributes to colonic epithelial homeostasis, inflammation, and tumorigenesis. J. Clin. Investig. 123:1694–704
    [Google Scholar]
  60. 60.  Tsukahara T, Hamouda N, Utsumi D, Matsumoto K, Amagase K, Kato S 2017. G protein-coupled receptor 35 contributes to mucosal repair in mice via migration of colonic epithelial cells. Pharmacol. Res. 123:27–39
    [Google Scholar]
  61. 61.  Eltzschig HK, Rivera-Nieves J, Colgan SP 2009. Targeting the A2B adenosine receptor during gastrointestinal ischemia and inflammation. Expert Opin. Ther. Targets 13:1267–77
    [Google Scholar]
  62. 62.  Jones RM, Luo L, Ardita CS, Richardson AN, Kwon YM et al. 2013. Symbiotic lactobacilli stimulate gut epithelial proliferation via Nox-mediated generation of reactive oxygen species. EMBO J 32:3017–28
    [Google Scholar]
  63. 63.  Colgan SP, Eltzschig HK 2012. Adenosine and hypoxia-inducible factor signaling in intestinal injury and recovery. Annu. Rev. Physiol. 74:153–75
    [Google Scholar]
  64. 64.  Karhausen J, Furuta GT, Tomaszewski JE, Johnson RS, Colgan SP, Haase VH 2004. Epithelial hypoxia-inducible factor-1 is protective in murine experimental colitis. J. Clin. Investig. 114:1098–106
    [Google Scholar]
  65. 65.  Xue X, Ramakrishnan S, Anderson E, Taylor M, Zimmermann EM et al. 2013. Endothelial PAS domain protein 1 activates the inflammatory response in the intestinal epithelium to promote colitis in mice. Gastroenterology 145:831–41
    [Google Scholar]
  66. 66.  Engevik AC, Feng R, Yang L, Zavros Y 2013. The acid-secreting parietal cell as an endocrine source of Sonic Hedgehog during gastric repair. Endocrinology 154:4627–39
    [Google Scholar]
  67. 67.  Feng R, Aihara E, Kenny S, Yang L, Li J et al. 2014. Indian Hedgehog mediates gastrin-induced proliferation in stomach of adult mice. Gastroenterology 147:655–66.e9
    [Google Scholar]
  68. 68.  Fevr T, Robine S, Louvard D, Huelsken J 2007. Wnt/β-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells. Mol. Cell. Biol. 27:7551–59
    [Google Scholar]
  69. 69.  Koch S. 2017. Extrinsic control of Wnt signaling in the intestine. Differentiation 97:1–8
    [Google Scholar]
  70. 70.  Miyoshi H, Ajima R, Luo CT, Yamaguchi TP, Stappenbeck TS 2012. Wnt5a potentiates TGF-β signaling to promote colonic crypt regeneration after tissue injury. Science 338:108–13
    [Google Scholar]
  71. 71.  Panciera T, Azzolin L, Cordenonsi M, Piccolo S 2017. Mechanobiology of YAP and TAZ in physiology and disease. Nat. Rev. Mol. Cell Biol. 18:758–70
    [Google Scholar]
  72. 72.  Barry ER, Morikawa T, Butler BL, Shrestha K, de la Rosa R et al. 2013. Restriction of intestinal stem cell expansion and the regenerative response by YAP. Nature 493:106–10
    [Google Scholar]
  73. 73.  Cai J, Zhang N, Zheng Y, de Wilde RF, Maitra A, Pan D 2010. The Hippo signaling pathway restricts the oncogenic potential of an intestinal regeneration program. Genes Dev 24:2383–88
    [Google Scholar]
  74. 74.  Deng F, Peng L, Li Z, Tan G, Liang E et al. 2018. YAP triggers the Wnt/β-catenin signalling pathway and promotes enterocyte self-renewal, regeneration and tumorigenesis after DSS-induced injury. Cell Death Dis 9:153
    [Google Scholar]
  75. 75.  Yui S, Azzolin L, Maimets M, Pedersen MT, Fordham RP et al. 2018. YAP/TAZ-dependent reprogramming of colonic epithelium links ECM remodeling to tissue regeneration. Cell Stem Cell 22:35–49.e7
    [Google Scholar]
  76. 76.  Aihara E, Montrose MH 2014. Importance of Ca2+ in gastric epithelial restitution—new views revealed by real-time in vivo measurements. Curr. Opin. Pharmacol. 19:76–83
    [Google Scholar]
  77. 77.  Aihara E, Hentz CL, Korman AM, Perry NP, Prasad V, Shull GE, Montrose MH 2013. In vivo epithelial wound repair requires mobilization of endogenous intracellular and extracellular calcium. J. Biol. Chem. 288:33585–97
    [Google Scholar]
  78. 78.  Starodub OT, Demitrack ES, Baumgartner HK, Montrose MH 2008. Disruption of the Cox-1 gene slows repair of microscopic lesions in the mouse gastric epithelium. Am. J. Physiol. Cell Physiol. 294:C223–32
    [Google Scholar]
  79. 79.  Demitrack ES, Soleimani M, Montrose MH 2010. Damage to the gastric epithelium activates cellular bicarbonate secretion via SLC26A9 Cl/HCO3. Am. J. Physiol. Gastrointest. Liver Physiol. 299:G255–64
    [Google Scholar]
  80. 80.  Demitrack ES, Aihara E, Kenny S, Varro A, Montrose MH 2012. Inhibitors of acid secretion can benefit gastric wound repair independent of luminal pH effects on the site of damage. Gut. 61:804–11
    [Google Scholar]
  81. 81.  Xue L, Aihara E, Podolsky DK, Wang TC, Montrose MH 2010. In vivo action of trefoil factor 2 (TFF2) to speed gastric repair is independent of cyclooxygenase. Gut. 59:1184–91
    [Google Scholar]
  82. 82.  Xue L, Aihara E, Wang TC, Montrose MH 2011. Trefoil factor 2 requires Na/H exchanger 2 activity to enhance mouse gastric epithelial repair. J. Biol. Chem. 286:38375–82
    [Google Scholar]
  83. 83.  Brazil JC, Parkos CA 2016. Pathobiology of neutrophil-epithelial interactions. Immunol. Rev. 273:94–111
    [Google Scholar]
  84. 84.  Wang J. 2018. Neutrophils in tissue injury and repair. Cell Tissue Res 371:531–39
    [Google Scholar]
  85. 85.  Campbell EL, Bruyninckx WJ, Kelly CJ, Glover LE, McNamee EN et al. 2014. Transmigrating neutrophils shape the mucosal microenvironment through localized oxygen depletion to influence resolution of inflammation. Immunity 40:66–77
    [Google Scholar]
  86. 86.  Fu H, Ma Y, Yang M, Zhang C, Huang H et al. 2016. Persisting and increasing neutrophil infiltration associates with gastric carcinogenesis and E-cadherin downregulation. Sci. Rep. 6:29762
    [Google Scholar]
  87. 87.  Boxio R, Wartelle J, Nawrocki-Raby B, Lagrange B, Malleret L et al. 2016. Neutrophil elastase cleaves epithelial cadherin in acutely injured lung epithelium. Respir. Res. 17:129
    [Google Scholar]
  88. 88.  Sumagin R, Brazil JC, Nava P, Nishio H, Alam A et al. 2016. Neutrophil interactions with epithelial-expressed ICAM-1 enhances intestinal mucosal wound healing. Mucosal Immunol 9:1151–62
    [Google Scholar]
  89. 89.  Crawford J. 2002. Neutrophil growth factors. Curr. Hematol. Rep. 1:95–102
    [Google Scholar]
  90. 90.  Chandrasekharan JA, Sharma-Walia N 2015. Lipoxins: nature's way to resolve inflammation. J. Inflamm. Res. 8:181–92
    [Google Scholar]
  91. 91.  Kohli P, Levy BD 2009. Resolvins and protectins: mediating solutions to inflammation. Br. J. Pharmacol. 158:960–71
    [Google Scholar]
  92. 92.  Serhan CN. 2014. Pro-resolving lipid mediators are leads for resolution physiology. Nature 510:92–101
    [Google Scholar]
  93. 93.  El Kebir D, Gjorstrup P, Filep JG 2012. Resolvin E1 promotes phagocytosis-induced neutrophil apoptosis and accelerates resolution of pulmonary inflammation. PNAS 109:14983–88
    [Google Scholar]
  94. 94.  Fierro IM, Colgan SP, Bernasconi G, Petasis NA, Clish CB et al. 2003. Lipoxin A4 and aspirin-triggered 15-epi-lipoxin A4 inhibit human neutrophil migration: comparisons between synthetic 15 epimers in chemotaxis and transmigration with microvessel endothelial cells and epithelial cells. J. Immunol. 170:2688–94
    [Google Scholar]
  95. 95.  Schauer C, Janko C, Munoz LE, Zhao Y, Kienhöfer D et al. 2014. Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines. Nat. Med. 20:511–17
    [Google Scholar]
  96. 96.  Brubaker AL, Rendon JL, Ramirez L, Choudhry MA, Kovacs EJ 2013. Reduced neutrophil chemotaxis and infiltration contributes to delayed resolution of cutaneous wound infection with advanced age. J. Immunol. 190:1746–57
    [Google Scholar]
  97. 97.  Wilgus TA, Roy S, McDaniel JC 2013. Neutrophils and wound repair: positive actions and negative reactions. Adv. Wound Care 2:379–88
    [Google Scholar]
  98. 98.  Shaw TN, Houston SA, Wemyss K, Bridgeman HM, Barbera TA et al. 2018. Tissue-resident macrophages in the intestine are long lived and defined by Tim-4 and CD4 expression. J. Exp. Med. 215:1507–18
    [Google Scholar]
  99. 99.  Bain CC, Scott CL, Uronen-Hansson H, Gudjonsson S, Jansson O et al. 2013. Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6Chi monocyte precursors. Mucosal Immunol 6:498–510
    [Google Scholar]
  100. 100.  Mowat AM, Bain CC 2011. Mucosal macrophages in intestinal homeostasis and inflammation. J. Innate Immun. 3:550–64
    [Google Scholar]
  101. 101.  Mosser DM, Edwards JP 2008. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8:958–69
    [Google Scholar]
  102. 102.  Das A, Sinha M, Datta S, Abas M, Chaffee S et al. 2015. Monocyte and macrophage plasticity in tissue repair and regeneration. Am. J. Pathol. 185:2596–606
    [Google Scholar]
  103. 103.  Wynn TA, Vannella KM 2016. Macrophages in tissue repair, regeneration, and fibrosis. Immunity 44:450–62
    [Google Scholar]
  104. 104.  Tabas I, Bornfeldt KE 2016. Macrophage phenotype and function in different stages of atherosclerosis. Circ. Res. 118:653–67
    [Google Scholar]
  105. 105.  Bain CC, Mowat AM 2014. The monocyte-macrophage axis in the intestine. Cell Immunol 291:41–48
    [Google Scholar]
  106. 106.  Arango Duque G, Descoteaux A 2014. Macrophage cytokines: involvement in immunity and infectious diseases. Front. Immunol. 5:491
    [Google Scholar]
  107. 107.  Koh TJ, DiPietro LA 2011. Inflammation and wound healing: the role of the macrophage. Expert Rev. Mol. Med. 13:e23
    [Google Scholar]
  108. 108.  D'Angelo F, Bernasconi E, Schafer M, Moyat M, Michetti P et al. 2013. Macrophages promote epithelial repair through hepatocyte growth factor secretion. Clin. Exp. Immunol. 174:60–72
    [Google Scholar]
  109. 109.  Dalli J, Serhan C 2016. Macrophage proresolving mediators—the when and where. Microbiol. Spectr. 4. https://doi.org/10.1128/microbiolspec.MCHD-0001-2014
    [Crossref]
  110. 110.  Hesketh M, Sahin KB, West ZE, Murray RZ 2017. Macrophage phenotypes regulate scar formation and chronic wound healing. Int. J. Mol. Sci. 18:1545
    [Google Scholar]
  111. 111.  Lucas T, Waisman A, Ranjan R, Roes J, Krieg T et al. 2010. Differential roles of macrophages in diverse phases of skin repair. J. Immunol. 184:3964–77
    [Google Scholar]
  112. 112.  Pull SL, Doherty JM, Mills JC, Gordon JI, Stappenbeck TS 2005. Activated macrophages are an adaptive element of the colonic epithelial progenitor niche necessary for regenerative responses to injury. PNAS 102:99–104
    [Google Scholar]
  113. 113.  Seno H, Miyoshi H, Brown SL, Geske MJ, Colonna M, Stappenbeck TS 2009. Efficient colonic mucosal wound repair requires Trem2 signaling. PNAS 106:256–61
    [Google Scholar]
  114. 114.  Neurath MF, Travis SP 2012. Mucosal healing in inflammatory bowel diseases: a systematic review. Gut 61:1619–35
    [Google Scholar]
  115. 115.  Cader MZ, Kaser A 2013. Recent advances in inflammatory bowel disease: mucosal immune cells in intestinal inflammation. Gut 62:1653–64
    [Google Scholar]
  116. 116.  Kurashima Y, Kiyono H 2017. Mucosal ecological network of epithelium and immune cells for gut homeostasis and tissue healing. Annu. Rev. Immunol. 35:119–47
    [Google Scholar]
  117. 117.  Groschwitz KR, Ahrens R, Osterfeld H, Gurish MF, Han X et al. 2009. Mast cells regulate homeostatic intestinal epithelial migration and barrier function by a chymase/Mcpt4-dependent mechanism. PNAS 106:22381–86
    [Google Scholar]
  118. 118.  Krystel-Whittemore M, Dileepan KN, Wood JG 2015. Mast cell: a multi-functional master cell. Front. Immunol. 6:620
    [Google Scholar]
  119. 119.  Tyler CJ, McCarthy NE, Lindsay JO, Stagg AJ, Moser B, Eberl M 2017. Antigen-presenting human γδ T cells promote intestinal CD4+ T cell expression of IL-22 and mucosal release of calprotectin. J. Immunol. 198:3417–25
    [Google Scholar]
  120. 120.  Chen Y, Chou K, Fuchs E, Havran WL, Boismenu R 2002. Protection of the intestinal mucosa by intraepithelial γδ T cells. PNAS 99:14338–43
    [Google Scholar]
  121. 121.  Sirbulescu RF, Boehm CK, Soon E, Wilks MQ, Ilies I et al. 2017. Mature B cells accelerate wound healing after acute and chronic diabetic skin lesions. Wound Repair Regen 25:774–91
    [Google Scholar]
  122. 122.  Manieri NA, Stappenbeck TS 2011. Mesenchymal stem cell therapy of intestinal disease: are their effects systemic or localized?. Curr. Opin. Gastroenterol. 27:119–24
    [Google Scholar]
  123. 123.  Manieri NA, Mack MR, Himmelrich MD, Worthley DL, Hanson EM et al. 2015. Mucosally transplanted mesenchymal stem cells stimulate intestinal healing by promoting angiogenesis. J. Clin. Investig. 125:3606–18
    [Google Scholar]
  124. 124.  Roulis M, Flavell RA 2016. Fibroblasts and myofibroblasts of the intestinal lamina propria in physiology and disease. Differentiation 92:116–31
    [Google Scholar]
  125. 125.  Goke M, Kanai M, Podolsky DK 1998. Intestinal fibroblasts regulate intestinal epithelial cell proliferation via hepatocyte growth factor. Am. J. Physiol. 274:G809–18
    [Google Scholar]
  126. 126.  Darby IA, Laverdet B, Bonte F, Desmouliere A 2014. Fibroblasts and myofibroblasts in wound healing. Clin. Cosmet. Investig. Dermatol. 7:301–11
    [Google Scholar]
  127. 127.  McDermott AJ, Huffnagle GB 2014. The microbiome and regulation of mucosal immunity. Immunology 142:24–31
    [Google Scholar]
  128. 128.  Zocco MA, Ainora ME, Gasbarrini G, Gasbarrini A 2007. Bacteroides thetaiotaomicron in the gut: molecular aspects of their interaction. Dig. Liver Dis. 39:707–12
    [Google Scholar]
  129. 129.  Alam A, Leoni G, Quiros M, Wu H, Desai C et al. 2016. The microenvironment of injured murine gut elicits a local pro-restitutive microbiota. Nat. Microbiol. 1:15021
    [Google Scholar]
  130. 130.  Poutahidis T, Kearney SM, Levkovich T, Qi P, Varian BJ et al. 2013. Microbial symbionts accelerate wound healing via the neuropeptide hormone oxytocin. PLOS ONE 8:e78898
    [Google Scholar]
  131. 131.  Zhao R, Liang H, Clarke E, Jackson C, Xue M 2016. Inflammation in chronic wounds. Int. J. Mol. Sci. 17:2085
    [Google Scholar]
  132. 132.  Guo S, Dipietro LA 2010. Factors affecting wound healing. J. Dent. Res. 89:219–29
    [Google Scholar]
  133. 133.  Rieder F, Karrasch T, Ben-Horin S, Schirbel A, Ehehalt R et al. 2012. Results of the 2nd scientific workshop of the ECCO (III): basic mechanisms of intestinal healing. J. Crohns Colitis 6:373–85
    [Google Scholar]
  134. 134.  Diegelmann RF. 2003. Excessive neutrophils characterize chronic pressure ulcers. Wound Repair Regen 11:490–95
    [Google Scholar]
  135. 135.  Eming SA, Martin P, Tomic-Canic M 2014. Wound repair and regeneration: mechanisms, signaling, and translation. Sci. Transl. Med. 6:265sr6
    [Google Scholar]
  136. 136.  O'Sullivan S, Gilmer JF, Medina C 2015. Matrix metalloproteinases in inflammatory bowel disease: an update. Mediat. Inflamm. 2015:964131
    [Google Scholar]
  137. 137.  von Lampe B, Barthel B, Coupland SE, Riecken EO, Rosewicz S 2000. Differential expression of matrix metalloproteinases and their tissue inhibitors in colon mucosa of patients with inflammatory bowel disease. Gut 47:63–73
    [Google Scholar]
  138. 138.  Castaneda FE, Walia B, Vijay-Kumar M, Patel NR, Roser S et al. 2005. Targeted deletion of metalloproteinase 9 attenuates experimental colitis in mice: central role of epithelial-derived MMP. Gastroenterology 129:1991–2008
    [Google Scholar]
  139. 139.  Leeb SN, Vogl D, Gunckel M, Kiessling S, Falk W et al. 2003. Reduced migration of fibroblasts in inflammatory bowel disease: role of inflammatory mediators and focal adhesion kinase. Gastroenterology 125:1341–54
    [Google Scholar]
  140. 140.  Tong Q, Vassilieva EV, Ivanov AI, Wang Z, Brown GT et al. 2005. Interferon-γ inhibits T84 epithelial cell migration by redirecting transcytosis of β1 integrin from the migrating leading edge. J. Immunol. 175:4030–38
    [Google Scholar]
  141. 141.  Cintolo M, Costantino G, Pallio S, Fries W 2016. Mucosal healing in inflammatory bowel disease: maintain or de-escalate therapy. World J. Gastrointest. Pathophysiol. 7:1–16
    [Google Scholar]
  142. 142.  Danese S, Vuitton L, Peyrin-Biroulet L 2015. Biologic agents for IBD: practical insights. Nat. Rev. Gastroenterol. Hepatol. 12:537–45
    [Google Scholar]
  143. 143.  Bitar KN, Zakhem E 2016. Bioengineering the gut: future prospects of regenerative medicine. Nat. Rev. Gastroenterol. Hepatol. 13:543–56
    [Google Scholar]
  144. 144.  Kamaly N, Fredman G, Subramanian M, Gadde S, Pesic A et al. 2013. Development and in vivo efficacy of targeted polymeric inflammation-resolving nanoparticles. PNAS 110:6506–11
    [Google Scholar]
  145. 145.  Leoni G, Neumann PA, Kamaly N, Quiros M, Nishio H et al. 2015. Annexin A1-containing extracellular vesicles and polymeric nanoparticles promote epithelial wound repair. J. Clin. Investig. 125:1215–27
    [Google Scholar]
  146. 146.  Yui S, Nakamura T, Sato T, Nemoto Y, Mizutani T et al. 2012. Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5+ stem cell. Nat. Med. 18:618–23
    [Google Scholar]
  147. 147.  Cruz-Acuña R, Quirós M, Farkas AE, Dedhia PH, Huang S et al. 2017. Synthetic hydrogels for human intestinal organoid generation and colonic wound repair. Nat. Cell Biol. 19:1326–35
    [Google Scholar]
  148. 148.  Miyazawa M, Aikawa M, Watanabe Y, Takase K, Okamoto K et al. 2015. Extensive regeneration of the stomach using bioabsorbable polymer sheets. Surgery 158:1283–90
    [Google Scholar]
  149. 149.  Baldauf KJ, Royal JM, Kouokam JC, Haribabu B, Jala VR et al. 2017. Oral administration of a recombinant cholera toxin B subunit promotes mucosal healing in the colon. Mucosal Immunol 10:887–900
    [Google Scholar]
  150. 150.  Cory G. 2011. Scratch-wound assay. Methods Mol. Biol. 769:25–30
    [Google Scholar]
  151. 151.  Okabe S, Amagase K 2005. An overview of acetic acid ulcer models—the history and state of the art of peptic ulcer research. Biol. Pharm. Bull. 28:1321–41
    [Google Scholar]
  152. 152.  Whittem CG, Williams AD, Williams CS 2010. Murine colitis modeling using dextran sulfate sodium (DSS). J. Vis. Exp. 35:1652
    [Google Scholar]
  153. 153.  Brückner M, Lenz P, Nowacki TM, Pott F, Foell D, Bettenworth D 2014. Murine endoscopy for in vivo multimodal imaging of carcinogenesis and assessment of intestinal wound healing and inflammation. J. Vis. Exp. 90:51875
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-020518-114504
Loading
/content/journals/10.1146/annurev-physiol-020518-114504
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error