1932

Abstract

Bubbly flows involve bubbles randomly distributed within a liquid. At large Reynolds number, they experience an agitation that can combine shear-induced turbulence (SIT), large-scale buoyancy-driven flows, and bubble-induced agitation (BIA). The properties of BIA strongly differ from those of SIT. They have been determined from studies of homogeneous swarms of rising bubbles. Regarding the bubbles, agitation is mainly caused by the wake-induced path instability. Regarding the liquid, two contributions must be distinguished. The first one corresponds to the anisotropic flow disturbances generated near the bubbles, principally in the vertical direction. The second one is the almost isotropic turbulence induced by the flow instability through a population of bubbles, which turns out to be the main cause of horizontal fluctuations. Both contributions generate a −3 spectral subrange and exponential probability density functions. The subsequent issue will be to understand how BIA interacts with SIT.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-122316-045003
2018-01-05
2024-03-30
Loading full text...

Full text loading...

/deliver/fulltext/fluid/50/1/annurev-fluid-122316-045003.html?itemId=/content/journals/10.1146/annurev-fluid-122316-045003&mimeType=html&fmt=ahah

Literature Cited

  1. Alméras E 2014. Étude des propriétés de transport et de mélange dans les écoulements à bulles PhD Thesis, Univ. Toulouse
  2. Alméras E, Risso F, Roig V, Cazin S, Plais C, Augier F. 2015. Mixing by bubble-induced turbulence. J. Fluid Mech. 776:458–74 [Google Scholar]
  3. Amoura Z. 2008. Étude hydrodynamique de l'écoulement traversant un réseau aléatoire de sphères fixes PhD Thesis, Univ. Toulouse
  4. Amoura Z, Besnaci C, Risso F, Roig V. 2017. Velocity fluctuations generated by the flow through a random array of spheres: a model of bubble-induced agitation. J. Fluid Mech. 823:592–616 [Google Scholar]
  5. Aybers NM, Tapucu A. 1969. The motion of gas bubbles rising through stagnant liquid. Wärme Stoffübertrag. 2:118–28 [Google Scholar]
  6. Balachandar S, Eaton JK. 2010. Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42:111–33 [Google Scholar]
  7. Batchelor GK. 1967. An Introduction to Fluid Dynamics Cambridge, UK: Cambridge Univ. Press
  8. Bel Fdhila R, Duineveld PC. 1996. The effect of surfactant on the rise of a spherical bubble at high Reynolds and Peclet numbers. Phys. Fluids 8:310–21 [Google Scholar]
  9. Biesheuvel A, van Wijngaarden L. 1984. Two-phase flow equations for a dilute dispersion of gas bubbles in liquid. J. Fluid Mech. 148:301–18 [Google Scholar]
  10. Bouche E, Roig V, Risso F, Billet AM. 2012. Homogeneous swarm of high-Reynolds-number bubbles rising within a thin gap. Part 1. Bubble dynamics. J. Fluid Mech. 704:211–31 [Google Scholar]
  11. Bouche E, Roig V, Risso F, Billet AM. 2014. Homogeneous swarm of high-Reynolds-number bubbles rising within a thin gap. Part 2. Liquid dynamics. J. Fluid Mech. 758:508–21 [Google Scholar]
  12. Brücker C. 1999. Structure and dynamics of the wake of bubbles and its relevance for bubble interaction. Phys. Fluids 11:1781–96 [Google Scholar]
  13. Bunner B, Tryggvason G. 2002a. Dynamics of homogeneous bubbly flows. Part 1. Rise velocity and microstructure of the bubbles. J. Fluid Mech. 466:17–52 [Google Scholar]
  14. Bunner B, Tryggvason G. 2002b. Dynamics of homogeneous bubbly flows. Part 2. Velocity fluctuations. J. Fluid Mech. 466:53–84 [Google Scholar]
  15. Bunner B, Tryggvason G. 2003. Effect of bubble deformation on the properties of bubbly flows. J. Fluid Mech. 495:77–118 [Google Scholar]
  16. Caflisch RE, Luke JHC. 1985. Variance in the sedimentation speed of a suspension. Phys. Fluids 28:759–53 [Google Scholar]
  17. Cartellier A, Andreotti M, Séchet P. 2009. Induced agitation in homogeneous bubbly flows at moderate particle Reynolds number. Phys. Rev. E 80:065301 [Google Scholar]
  18. Cartellier A, Rivière N. 2001. Bubble-induced agitation and microstructure in uniform bubbly flows at small to moderate particle Reynolds numbers. Phys. Fluids 13:2165–81 [Google Scholar]
  19. Chahed J, Roig V, Masbernat L. 2003. Eulerian–Eulerian two-fluid model for turbulent gas–liquid bubbly flows. Int. J. Multiph. Flow 29:23–49 [Google Scholar]
  20. Climent E, Magnaudet J. 1999. Large-scale simulations of bubble-induced convection in a liquid layer. Phys. Rev. Lett. 82:4827–30 [Google Scholar]
  21. Colombet D, Legendre D, Risso F, Cockx A, Guiraud P. 2015. Dynamics and mass transfer of rising bubbles in a homogenous swarm at large gas volume fraction. J. Fluid Mech. 763:254–85 [Google Scholar]
  22. Cuenot B, Magnaudet J, Spennato B. 1997. The effects of slightly soluble surfactants on the flow around a spherical bubble. J. Fluid Mech. 339:25–53 [Google Scholar]
  23. Duineveld PC. 1995. The rise velocity and shape of bubbles in pure water at high Reynolds number. J. Fluid Mech. 292:325–32 [Google Scholar]
  24. Ellingsen K, Risso F. 2001. On the rise of an ellipsoidal bubble in water: oscillatory paths and liquid-induced velocity. J. Fluid Mech. 440:235–68 [Google Scholar]
  25. Ern P, Risso F, Fabre D, Magnaudet J. 2012. Wake-induced oscillatory paths of bodies freely rising or falling in fluids. Annu. Rev. Fluid Mech. 44:97–121 [Google Scholar]
  26. Esmaeeli A, Tryggvason G. 1999. Direct numerical simulations of bubbly flows. Part 2. Moderate Reynolds number arrays. J. Fluid Mech. 385:325–58 [Google Scholar]
  27. Esmaeeli A, Tryggvason G. 2005. A direct numerical simulation study of the buoyant rise of bubbles at O(100) Reynolds number. Phys. Fluids 17:093303 [Google Scholar]
  28. Figueroa-Espinoza B, Zenit R. 2005. Clustering in high Re monodispersed bubbly flows. Phys. Fluids 17:091701 [Google Scholar]
  29. Ford B, Loth E. 1998. Forces on ellipsoidal bubbles in a turbulent shear layer. Phys. Fluids 10:178–88 [Google Scholar]
  30. Garnier C, Lance M, Marié JL. 2002. Measurement of local flow characteristics in buoyancy-driven bubbly flow at high void fraction. Exp. Therm. Fluid Sci. 26:811–15 [Google Scholar]
  31. Gatignol R. 1983. The Faxén formulas for a rigid particle in an unsteady non-uniform Stokes flow. J. Mec. Theor. Appl. 2:143–60 [Google Scholar]
  32. Hallez Y, Legendre D. 2011. Interaction between two spherical bubbles rising in a viscous liquid. J. Fluid Mech. 673:406–31 [Google Scholar]
  33. Harteveld WK. 2005. Bubble columns: structures or stability? PhD Thesis, Tech. Univ. Delft
  34. Harteveld WK, Mudde RF. 2003. Dynamics of a bubble column: influence of gas distribution on coherent structures. Can. J. Chem. Eng. 81:389–94 [Google Scholar]
  35. Hunt J, Eames I. 2002. The disappearance of laminar and turbulent wakes in complex flows. J. Fluid Mech. 457:111–32 [Google Scholar]
  36. Kiambi SL, Duquenne AM, Dupont JB, Colin C, Risso F, Delmas H. 2003. Measurements of bubble characteristics: comparison between double optical probe and imaging. Can. J. Chem. Eng. 81:764–70 [Google Scholar]
  37. Koch DL, Shaqfeh E. 1991. Screening in sedimenting suspensions. J. Fluid Mech. 224:275–303 [Google Scholar]
  38. Lance M, Bataille J. 1991. Turbulence in the liquid-phase of a uniform bubbly air–water flow. J. Fluid Mech. 222:95–118 [Google Scholar]
  39. Magnaudet J, Mougin G. 2007. Wake instability of a fixed spheroidal bubble. J. Fluid Mech. 572:311–27 [Google Scholar]
  40. Martínez Mercado J, Chehata Gómez D, Van Gils D, Sun C, Lohse D. 2010. On bubble clustering and energy spectra in pseudo-turbulence. J. Fluid Mech. 650:287–306 [Google Scholar]
  41. Martínez Mercado J, Palacios-Morales CA, Zenit R. 2007. Measurement of pseudoturbulence intensity in monodispersed bubbly liquids for 10 < Re < 500. Phys. Fluids 19:103302 [Google Scholar]
  42. Mathai V, Prakash VN, Brons J, Sun C, Lohse D. 2015. Wake-driven dynamics of finite-sized buoyant spheres in turbulence. Phys. Rev. Lett. 115:124501 [Google Scholar]
  43. Maxworthy T, Gnann C, Kürten M, Durst F. 1996. Experiments on the rise of air bubbles in clean viscous liquids. J. Fluid Mech. 321:421–41 [Google Scholar]
  44. Mazzitelli IM, Lohse D. 2009. Evolution of energy in flow driven by rising bubbles. Phys. Rev. E 79:066317 [Google Scholar]
  45. Mendez-Diaz S, Serrano-García JC, Zenit R, Hernández-Cordero JA. 2013. Power spectral distributions of pseudo-turbulent bubbly flows. Phys. Fluids 25:043303 [Google Scholar]
  46. Moore DW. 1963. The boundary layer on a spherical gas bubble. J. Fluid Mech. 16:161–76 [Google Scholar]
  47. Mudde RF. 2005. Gravity-driven bubbly flows. Annu. Rev. Fluid Mech. 37:393–423 [Google Scholar]
  48. Mudde RF, Saito T. 2001. Hydrodynamical similarities between bubble column and bubbly pipe flow. J. Fluid Mech. 437:203–28 [Google Scholar]
  49. Parthasarathy RN, Faeth GM. 1990. Turbulence modulation in homogeneous dilute particle-laden flows. J. Fluid Mech. 220:485–514 [Google Scholar]
  50. Peters F, Els C. 2012. An experimental study on slow and fast bubbles in tap water. Chem. Eng. Sci. 82:194–99 [Google Scholar]
  51. Prakash VN, Martínez Mercado J, van Wijngaarden L, Mancilla E, Tagawa Y. et al. 2016. Energy spectra in turbulent bubbly flows. J. Fluid Mech. 791:174–90 [Google Scholar]
  52. Rensen J, Luther S, Lohse D. 2005. The effect of bubbles on developed turbulence. J. Fluid Mech. 538:153–87 [Google Scholar]
  53. Riboux G, Legendre D, Risso F. 2013. A model of bubble-induced turbulence based on large-scale wake interactions. J. Fluid Mech. 719:362–87 [Google Scholar]
  54. Riboux G, Risso F, Legendre D. 2010. Experimental characterization of the agitation generated by bubbles rising at high Reynolds number. J. Fluid Mech. 643:509–39 [Google Scholar]
  55. Risso F. 2011. Theoretical model for k−3 spectra in dispersed multiphase flows. Phys. Fluids 23:011701 [Google Scholar]
  56. Risso F. 2016. Physical interpretation of probability density functions of bubble-induced agitation. J. Fluid Mech. 809:240–63 [Google Scholar]
  57. Risso F, Ellingsen K. 2002. Velocity fluctuations in a homogeneous dilute dispersion of high-Reynolds-number rising bubbles. J. Fluid Mech. 453:395–410 [Google Scholar]
  58. Risso F, Roig V, Amoura Z, Riboux G, Billet AM. 2008. Wake attenuation in large Reynolds number dispersed two-phase flows. Philos. Trans. R. Soc. A 366:2177–90 [Google Scholar]
  59. Roghair I, Lau YM, Deen NG, Slagter HM, Baltussen MW. et al. 2011a. On the drag force of bubbles in bubble swarms at intermediate and high Reynolds numbers. Chem. Eng. Sci. 66:3204–11 [Google Scholar]
  60. Roghair I, Martínez Mercado J, van Sint Annaland M, Kuipers H, Sun C, Lohse D. 2011b. Energy spectra and bubble velocity distributions in pseudo-turbulence: numerical simulations versus experiments. Int. J. Multiph. Flow 37:1093–98 [Google Scholar]
  61. Roghair I, van Sint Annaland M, Kuipers HJAM. 2013. Drag force and clustering in bubble swarms. AIChE J. 59:1791–800 [Google Scholar]
  62. Roig V, de Tournemine AL. 2007. Measurement of interstitial velocity of homogeneous bubbly flows at low to moderate void fraction. J. Fluid Mech. 572:87–24 [Google Scholar]
  63. Roig V, Roudet M, Risso F, Billet AM. 2012. Dynamics of a high-Reynolds-number bubble rising within a thin gap. J. Fluid Mech. 707:444–66 [Google Scholar]
  64. Rzehak R, Krepper E. 2013. CFD modeling of bubble-induced turbulence. Int. J. Multiph. Flow 55:138–55 [Google Scholar]
  65. Sangani AS, Didwania AK. 2006. Dynamic simulations of flows of bubbly liquids at large Reynolds numbers. J. Fluid Mech. 250:307–37 [Google Scholar]
  66. Sato Y, Sadatomi M, Sekoguchi K. 1981. Momentum and heat transfer in two-phase bubble flow. I. Theory. Int. J. Multiph. Flow 7:167–77 [Google Scholar]
  67. Shew WL, Poncet S, Pinton JF. 2006. Force measurements on rising bubbles. J. Fluid Mech. 569:51–60 [Google Scholar]
  68. Smereka P. 1993. On the motion of bubbles in a periodic box. J. Fluid Mech. 254:79–112 [Google Scholar]
  69. Takagi S, Matsumoto Y. 2011. Surfactant effects on bubble motion and bubbly flows. Annu. Rev. Fluid Mech. 43:615–36 [Google Scholar]
  70. Takagi S, Ogasawara T, Matsumoto Y. 2008. The effects of surfactant on the multiscale structure of bubbly flows. Philos. Trans. R. Soc. A 366:2117–29 [Google Scholar]
  71. Tennekes H, Lumley JL. 1972. A First Course in Turbulence Cambridge, MA: MIT Press
  72. Vélez-Cordero JR, Lantenet J, Hernández-Cordero J, Zenit R. 2014. Compact bubble clusters in Newtonian and non-Newtonian liquids. Phys. Fluids 26:053101 [Google Scholar]
  73. Yurkovetsky Y, Brady JF. 1996. Statistical mechanics of bubbly liquids. Phys. Fluids 8:881–95 [Google Scholar]
  74. Zenit R, Koch DL, Sangani AS. 2001. Measurements of the average properties of a suspension of bubbles rising in a vertical channel. J. Fluid Mech. 429:307–42 [Google Scholar]
  75. Zenit R, Magnaudet J. 2008. Path instability of rising spheroidal air bubbles: a shape-controlled process. Phys. Fluids 20:061702 [Google Scholar]
  76. Ziegenhein T, Rzehak R, Ma T, Lucas D. 2017. Towards a unified approach for modelling uniform and non-uniform bubbly flows. Can. J. Chem. Eng. 95:170–79 [Google Scholar]
/content/journals/10.1146/annurev-fluid-122316-045003
Loading
/content/journals/10.1146/annurev-fluid-122316-045003
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error