1932

Abstract

We review current progress with respect to ultrafast, atomic-scale resolution X-ray scattering studies of materials. In the last decade, advances in sources and techniques have opened up new possibilities for probing the dynamics of how materials change in situ and in real time. These developments have enabled direct measurements of the first primary steps in how complex/functional materials transform and the flow of energy between different degrees of freedom. Unique insight into the mechanisms underlying how materials function is obtained through these studies. An outlook on future developments and new opportunities is also presented.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-070616-124152
2017-07-03
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/matsci/47/1/annurev-matsci-070616-124152.html?itemId=/content/journals/10.1146/annurev-matsci-070616-124152&mimeType=html&fmt=ahah

Literature Cited

  1. Barends TRM, Foucar L, Ardevol A, Nass K, Aquila A. 1.  et al. 2015. Direct observation of ultrafast collective motions in CO myoglobin upon ligand dissociation. Science 350:445–50 [Google Scholar]
  2. Sokolowski-Tinten K, Blome C, Blums J, Cavalleri A, Dietrich C. 2.  et al. 2003. Femtosecond X-ray measurement of coherent lattice vibrations near the Lindemann stability limit. Nature 422:287–89 [Google Scholar]
  3. Fritz DM, Reis DA, Adams B, Akre RA, Arthur J. 3.  et al. 2007. Ultrafast bond softening in bismuth: mapping a solid's interatomic potential with X-rays. Science 316:633–36 [Google Scholar]
  4. Bostedt C, Boutet S, Fritz DM, Huang Z, Lee HJ. 4.  et al. 2016. Linac Coherent Light Source: the first five years. Rev. Mod. Phys. 88:015007 [Google Scholar]
  5. Cavalieri AL, Fritz DM, Lee SH, Bucksbaum PH, Reis DA. 5.  et al. 2005. Clocking femtosecond X-rays. Phys. Rev. Lett. 94:114801 [Google Scholar]
  6. Harmand M, Coffee R, Bionta M, Chollet M, French D. 6.  et al. 2013. Achieving few-femtosecond time-sorting at hard X-ray free-electron lasers. Nat. Photon. 7:215–218 [Google Scholar]
  7. Bionta MR, Hartmann N, Weaver M, French D, Nicholson DJ. 7.  et al. 2014. Spectral encoding method for measuring the relative arrival time between X-ray/optical pulses. Rev. Sci. Instrum. 85:083116 [Google Scholar]
  8. Lindenberg AM, Larsson J, Sokolowski-Tinten K, Gaffney KJ, Blome C. 8.  et al. 2005. Atomic-scale visualization of inertial dynamics. Science 308:392–95 [Google Scholar]
  9. Neutze R, Hajdu J. 9.  1997. Femtosecond time resolution in X-ray diffraction experiments. PNAS 94:5651–55 [Google Scholar]
  10. Reis D, Lindenberg A. 10.  2007. Ultrafast X-Ray Scattering in Solids Berlin/Heidelberg: Springer
  11. Murnane MM, Kapteyn HC. 11.  1991. Ultrafast X-ray pulses from laser-produced plasmas. Science 251:531–36 [Google Scholar]
  12. Rousse A, Audebert P, Geindre JP, Falliès F, Gauthier JC. 12.  et al. 1994. Efficient Kα X-ray source from femtosecond laser-produced plasmas. Phys. Rev. E 50:2200–7 [Google Scholar]
  13. von der Linde D, Sokolowski-Tinten K, Blome C, Dietrich C, Tarasevitch A. 13.  et al. 2001. `Ultrafast’ extended to X-rays: femtosecond time-resolved X-ray diffraction. Z. Phys. Chem. 215:1527–41 [Google Scholar]
  14. Siders CW, Cavalleri A, Sokolowski-Tinten K, Tóth C, Guo T. 14.  et al. 1999. Detection of nonthermal melting by ultrafast X-ray diffraction. Science 286:1340–42 [Google Scholar]
  15. Weisshaupt J, Juvé V, Holtz M, Ku S, Woerner M. 15.  et al. 2014. High-brightness table-top hard X-ray source driven by sub-100-femtosecond mid-infrared pulses. Nat. Photon. 8:927–30 [Google Scholar]
  16. Schick D, Herzog M, Wen H, Chen P, Adamo C. 16.  et al. 2014. Localized excited charge carriers generate ultrafast inhomogeneous strain in the multiferroic BiFeO3. Phys. Rev. Lett. 112:097602 [Google Scholar]
  17. Chang Z, Rundquist A, Zhou J, Murnane MM. 17.  1996. Demonstration of a subpicosecond X-ray streak camera. Appl. Phys. Lett. 69:133–35 [Google Scholar]
  18. Larsson J, Heimann P, Lindenberg A, Schuck P, Bucksbaum P. 18.  et al. 1998. Ultrafast structural changes measured by time-resolved X-ray diffraction. Appl. Phys. A 66:587–91 [Google Scholar]
  19. Lindenberg AM, Kang I, Johnson SL, Missalla T. 19.  et al. 2000. Time-resolved X-ray diffraction from coherent phonons during a laser-induced phase transition. Phys. Rev. Lett. 84:111–14 [Google Scholar]
  20. DeCamp MF, Reis DA, Cavalieri A, Bucksbaum PH, Clarke R. 20.  et al. 2003. Transient strain driven by a dense electron-hole plasma. Phys. Rev. Lett. 91:165502 [Google Scholar]
  21. Kozina M, Hu T, Wittenberg J, Szilagyi E, Trigo M. 21.  et al. 2014. Measurement of transient atomic displacements in thin films with picosecond and femtometer resolution. Struct. Dyn. 1:034301 [Google Scholar]
  22. Navirian H, Shayduk R, Leitenberger W, Goldshteyn J, Gaal P, Bargheer M. 22.  2012. Synchrotron-based ultrafast X-ray diffraction at high repetition rates. Rev. Sci. Instrum. 83:063303 [Google Scholar]
  23. March AM, Stickrath A, Doumy G, Kanter EP, Krässig B. 23.  et al. 2011. Development of high-repetition-rate laser pump/X-ray probe methodologies for synchrotron facilities. Rev. Sci. Instrum. 82:073110 [Google Scholar]
  24. Zholents A, Zolotorev M. 24.  1996. Femtosecond X-ray pulses of synchrotron radiation. Phys. Rev. Lett. 76:912–15 [Google Scholar]
  25. Schoenlein RW, Chattopadhyay S, Chong HHW, Glover TE, Heimann PA. 25.  et al. 2000. Generation of femtosecond pulses of synchrotron radiation. Science 287:2237–40 [Google Scholar]
  26. Khan S, Holldack K, Kachel T, Mitzner R, Quast T. 26.  2006. Femtosecond undulator radiation from sliced electron bunches. Phys. Rev. Lett. 97:074801 [Google Scholar]
  27. Beaud P, Johnson SL, Streun A, Abela R, Abramsohn D. 27.  et al. 2007. Spatiotemporal stability of a femtosecond hard-X-ray undulator source studied by control of coherent optical phonons. Phys. Rev. Lett. 99:174801 [Google Scholar]
  28. Issenmann D, Ibrahimkutty S, Steininger R, Göttlicher J, Baumbach T. 28.  et al. 2013. Ultrafast laser pump X-ray probe experiments by means of asynchronous sampling. J. Phys. Conf. Ser. 425:092007 [Google Scholar]
  29. Laulhé C, Cammarata M, Servol M, Miller RJD, Hada M, Ravy S. 29.  2013. Impact of laser on bismuth thin-films. Eur. Phys. J. Spec. Top. 222:1277–85 [Google Scholar]
  30. Huang X, Safranek J, Corbett J, Nosochkov Y, Sebek J, Terebilo A. 30.  2007. Low alpha mode for SPEAR3. 2007 IEEE Particle Accelerator Conference (PAC) June25–29
  31. Fritz DM, Reis DA, Adams B, Akre R, Arthur J. 31.  et al. 2007. Ultrafast bond softening in bismuth: mapping a solid's interatomic potential with X-rays. Science 315:633–36 [Google Scholar]
  32. Emma P, Akre R, Arthur J, Bionta R, Bostedt C. 32.  et al. 2010. First lasing and operation of an angstrom-wavelength free-electron laser. Nat. Photon. 4:641–47 [Google Scholar]
  33. Ishikawa T, Aoyagi H, Asaka T, Asano Y, Azumi N. 33.  et al. 2012. A compact X-ray free-electron laser emitting in the sub-ångström region. Nat. Photon. 6:540–44 [Google Scholar]
  34. Altarelli M.34.  2015. The European X-Ray Free-Electron Laser: toward an ultra-bright, high repetition-rate X-ray source. High Power Laser Sci. Eng. 3:e18 [Google Scholar]
  35. Ko IS, Han JH. 35.  2014. Current status of PAL-XFEL. Proc. LINAC2014 Geneva: [Google Scholar]
  36. Patterson BD, Beaud P, Braun HH, Dejoiea C, Ingold G. 36.  et al. 2014. Science opportunities at the SwissFEL X-ray laser. Chimia 68:73–78 [Google Scholar]
  37. Glauber R.37.  1963. Coherent and incoherent states of the radiation field. Phys. Rev. 131:2766–88 [Google Scholar]
  38. Thomsen C, Grahn H, Maris H, Tauc J. 38.  1986. Surface generation and detection of phonons by picosecond light pulses. Phys. Rev. B 34:4129–38 [Google Scholar]
  39. Rose-Petruck C, Jimenez R, Guo T, Cavalleri A, Siders CW. 39.  et al. 1999. Picosecond–milliångström lattice dynamics measured by ultrafast X-ray diffraction. Nature 398:310–12 [Google Scholar]
  40. Reis DA, DeCamp M, Bucksbaum P, Clarke R, Dufresne E. 40.  et al. 2001. Probing impulsive strain propagation with X-ray pulses. Phys. Rev. Lett. 86:3072–75 [Google Scholar]
  41. Henighan T, Trigo M, Bonetti S, Granitzka P, Higley D. 41.  et al. 2016. Generation mechanism of terahertz coherent acoustic phonons in Fe. Phys. Rev. B 93:220301 [Google Scholar]
  42. Chen J, Tomov IV, Elsayed-Ali HE. 42.  2006. Hot electrons blast wave generated by femtosecond laser pulses on thin Au(111) crystal, monitored by subpicosecond X-ray diffraction. Chem. Phys. Lett. 419:374–78 [Google Scholar]
  43. Zeiger HJ, Vidal J, Cheng TK, Ippen EP, Dresselhaus G, Dresselhaus MS. 43.  1992. Theory for displacive excitation of coherent phonons. Phys. Rev. B 45:768–78 [Google Scholar]
  44. Kuznetsov AV, Stanton CJ. 44.  1994. Theory of coherent phonon oscillations in semiconductors. Phys. Rev. Lett. 73:3243–46 [Google Scholar]
  45. Merlin R.45.  1997. Generating coherent THz phonons with light pulses. Solid State Commun. 102:207–20 [Google Scholar]
  46. Henighan T, Trigo M, Chollet M, Clark JN, Fahy S. 46.  et al. 2016. Control of two-phonon correlations and the mechanism of high-wavevector phonon generation by ultrafast light pulses. Phys. Rev. B 94:020302 [Google Scholar]
  47. Carles R, Zwick A, Renucci M, Renucci J. 47.  1982. A new experimental method for the determination of the one phonon density of states in GaAs. Solid State Commun. 41:557–60 [Google Scholar]
  48. Johnson SL, Vorobeva E, Beaud P, Milne CJ, Ingold G. 48.  2009. Full reconstruction of a crystal unit cell structure during coherent femtosecond motion. Phys. Rev. Lett. 103:205501 [Google Scholar]
  49. Johnson SL, Beaud P, Milne CJ, Krasniqi FS, Zijlstra ES. 49.  et al. 2008. Nanoscale depth-resolved coherent femtosecond motion in laser-excited bismuth. Phys. Rev. Lett. 100:155501 [Google Scholar]
  50. Johnson SL, Beaud P, Möhr-Vorobeva E, Caviezel A, Ingold G, Milne CJ. 50.  2013. Direct observation of non-fully-symmetric coherent optical phonons by femtosecond X-ray diffraction. Phys. Rev. B 87:054301 [Google Scholar]
  51. Li JJ, Chen J, Reis DA, Fahy S, Merlin R. 51.  2013. Optical probing of ultrafast electronic decay in Bi and Sb with slow phonons. Phys. Rev. Lett. 110:047401 [Google Scholar]
  52. Huang K.52.  1951. Lattice vibrations and optical waves in ionic crystals. Nature 167:779–80 [Google Scholar]
  53. Forst M, Manzoni C, Kaiser S, Tomioka Y, Tokura Y. 53.  et al. 2011. Nonlinear phononics as an ultrafast route to lattice control. Nat. Phys. 7:854–56 [Google Scholar]
  54. Mankowsky R, Först M, Cavalleri A. 54.  2016. Non-equilibrium control of complex solids by nonlinear phononics. Rep. Prog. Phys. 79:064503 [Google Scholar]
  55. Subedi A, Cavalleri A, Georges A. 55.  2014. Theory of nonlinear phononics for coherent light control of solids. Phys. Rev. B 89:220301(R) [Google Scholar]
  56. Wallis R, Maradudin A. 56.  1971. Ionic Raman effect. II. The first-order ionic Raman effect. Phys. Rev. B 3:2063 [Google Scholar]
  57. Martin T, Genzel L. 57.  1974. Ionic Raman scattering and ionic frequency mixing. Phys. Status Solid. B 61:493–502 [Google Scholar]
  58. Hu W, Kaiser S, Nicoletti D, Hunt CR, Gierz I. 58.  et al. 2014. Optically enhanced coherent transport in YBa2Cu3O6.5 by ultrafast redistribution of interlayer coupling. Nat. Mater. 13:705–11 [Google Scholar]
  59. Nicoletti D, Casandruc E, Laplace Y, Khanna V, Hunt CR. 59.  et al. 2014. Optically induced superconductivity in striped La2–x BaxCuO4 by polarization-selective excitation in the near infrared. Phys. Rev. B 90:100503 [Google Scholar]
  60. Kaiser S, Hunt CR, Nicoletti D, Hu W, Gierz I. 60.  et al. 2014. Optically induced coherent transport far above tc in underdoped YBa2Cu3O6+δ. Phys. Rev. B 89:184516 [Google Scholar]
  61. Fausti D, Tobey RI, Dean N, Kaiser S, Dienst A. 61.  et al. 2011. Light-induced superconductivity in a stripe-ordered cuprate. Science 331:189–91 [Google Scholar]
  62. Mitrano M, Cantaluppi A, Nicoletti D, Kaiser S, Perucchi A. 62.  et al. 2016. Possible light-induced superconductivity in K3C60 at high temperature. Nature 530:461–64 [Google Scholar]
  63. Mankowsky R, Subedi A, Forst M, Mariager SO, Chollet M. 63.  et al. 2014. Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa2Cu3O6.5. Nature 516:71–73 [Google Scholar]
  64. Pimenov A, Mukhin AA, Ivanov VY, Travkin VD, Balbashov AM, Loidl A. 64.  2006. Possible evidence for electromagnons in multiferroic manganites. Nat. Phys. 2:97–100 [Google Scholar]
  65. Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, Tokura Y. 65.  2003. Magnetic control of ferroelectric polarization. Nature 426:55–58 [Google Scholar]
  66. Kenzelmann M, Harris AB, Jonas S, Broholm C, Schefer J. 66.  et al. 2005. Magnetic inversion symmetry breaking and ferroelectricity in TbMnO3. Phys. Rev. Lett. 95:087206 [Google Scholar]
  67. Katsura H, Nagaosa N, Balatsky AV. 67.  2005. Spin current and magnetoelectric effect in noncollinear magnets. Phys. Rev. Lett. 95:057205 [Google Scholar]
  68. Sergienko IA, Dagotto E. 68.  2006. Role of the Dzyaloshinskii-Moriya interaction in multiferroic perovskites. Phys. Rev. B 73:094434 [Google Scholar]
  69. Malashevich A, Vanderbilt D. 69.  2008. First principles study of improper ferroelectricity in TbMnO3. Phys. Rev. Lett. 101:037210 [Google Scholar]
  70. Mochizuki M, Nagaosa N. 70.  2010. Theoretically predicted picosecond optical switching of spin chirality in multiferroics. Phys. Rev. Lett. 105:147202 [Google Scholar]
  71. Kubacka T, Johnson JA, Hoffmann MC, Vicario C, de Jong S. 71.  et al. 2014. Large-amplitude spin dynamics driven by a THz pulse in resonance with an electromagnon. Science 343:1333–36 [Google Scholar]
  72. Trigo M, Fuchs M, Chen J, Jiang MP, Cammarata M. 72.  et al. 2013. Fourier-transform inelastic X-ray scattering from time-and momentum-dependent phonon-phonon correlations. Nat. Phys. 9:790–94 [Google Scholar]
  73. Van Hove L. 73.  1954. Correlations in space and time and born approximation scattering in systems of interacting particles. Phys. Rev. 95:249 [Google Scholar]
  74. Krisch M, Sette F. 74.  2007. Inelastic X-Ray Scattering from Phonons Berlin/Heidelberg: Springer
  75. Baron AQR.75.  2014. High-Resolution Inelastic X-Ray Scattering. I. Context, Spectrometers, Samples, and Superconductors Cham: Springer Int.
  76. Baron AQR.76.  2014. High-Resolution Inelastic X-Ray Scattering. II. Scattering Theory, Harmonic Phonons, and Calculations Cham: Springer Int.
  77. Zhu D, Robert A, Henighan T, Lemke HT, Chollet M. 77.  et al. 2015. Phonon spectroscopy with sub-meV resolution by femtosecond X-ray diffuse scattering. Phys. Rev. B 92:054303 [Google Scholar]
  78. Garrett GA, Rojo AG, Sood AK, Whitaker JF, Merlin R. 78.  1997. Vacuum squeezing of solids: macroscopic quantum states driven by light pulses. Science 275:1638–40 [Google Scholar]
  79. Johnson SL, Beaud P, Vorobeva E, Milne CJ, Murray ED. 79.  et al. 2009. Directly observing squeezed phonon states with femtosecond X-ray diffraction. Phys. Rev. Lett. 102:175503–4 [Google Scholar]
  80. Jiang MP, Trigo M, Savic I, Fahy S, Murray ED. 80.  et al. 2016. The origin of incipient ferroelectricity in lead telluride. Nat. Commun. 7:12291 [Google Scholar]
  81. Rousse A, Rischel C, Fourmaux S, Uschmann I, Sebban S. 81.  et al. 2001. Non-thermal melting in semiconductors measured at femtosecond resolution. Nature 410:65–68 [Google Scholar]
  82. Lindenberg AM, Kang I, Johnson SL, Missalla T, Heimann PA. 82.  et al. 2000. Time-resolved X-ray diffraction from coherent phonons during a laser-induced phase transition. Phys. Rev. Lett. 84:111–14 [Google Scholar]
  83. Shumay IL, Höfer U. 83.  1996. Phase transformations of an InSb surface induced by strong femtosecond laser pulses. Phys. Rev. B 53:15878–84 [Google Scholar]
  84. Shank CV, Yen R, Hirlimann C. 84.  1983. Time-resolved reflectivity measurements of femtosecond-optical-pulse-induced phase transitions in silicon. Phys. Rev. Lett. 50:454–57 [Google Scholar]
  85. Milathianaki D, Boutet S, Williams GJ, Higginbotham A, Ratner D. 85.  et al. 2013. Femtosecond visualization of lattice dynamics in shock-compressed matter. Science 342:220 [Google Scholar]
  86. Loveridge-Smith A, Allen A, Belak J, Boehly T, Hauer A. 86.  et al. 2001. Anomalous elastic response of silicon to uniaxial shock compression on nanosecond time scales. 862349–52
  87. Lings B, Wark JS, DeCamp MF, Reis DA, Fahy S. 87.  2006. Simulations of time-resolved X-ray diffraction in Laue geometry. J. Phys. Condens. Matter 18:9231–44 [Google Scholar]
  88. Szilagyi E, Wittenberg JS, Miller TA, Lutker K, Quirin F. 88.  et al. 2015. Visualization of nanocrystal breathing modes at extreme strains. Nat. Commun. 6:6577 [Google Scholar]
  89. Wittenberg JS, Miller TA, Szilagyi E, Lutker K, Quirin F. 89.  et al. 2014. Real-time visualization of nanocrystal solidsolid transformation pathways. Nano Lett. 14:1995–99 [Google Scholar]
  90. Turnbull D.90.  1950. Kinetics of heterogeneous nucleation. J. Chem. Phys. 18:198–203 [Google Scholar]
  91. Chen C, Herhold A, Johnson C, Alivisatos A. 91.  1997. Size dependence of structural metastability in semiconductor nanocrystals. Science 276:398–401 [Google Scholar]
  92. Jacobs K, Zaziski D, Scher EC, Herhold EB, Alivisatos AP. 92.  2001. Activation volumes for solid-solid transformations in nanocrystals. Science 293:1803–6 [Google Scholar]
  93. Grünwald M, Dellago C. 93.  2009. Nucleation and growth in structural transformations of nanocrystals. Nano Lett. 9:2099–102 [Google Scholar]
  94. Morgan B, Madden P. 94.  2006. Simulation of the pressure-driven wurtzite to rock salt phase transition in nanocrystals. Phys. Chem. Chem. Phys. 8:3304–13 [Google Scholar]
  95. Clark JN, Beitra L, Xiong G, Higginbotham A, Fritz DM. 95.  et al. 2013. Ultrafast three-dimensional imaging of lattice dynamics in individual gold nanocrystals. Science 341:56–59 [Google Scholar]
  96. Newton MC, Sao M, Fujisawa Y, Onitsuka R, Kawaguchi T. 96.  et al. 2014. Time-resolved coherent diffraction of ultrafast structural dynamics in a single nanowire. Nano Lett. 14:2413–18 [Google Scholar]
  97. Clark JN, Beitra L, Xiong G, Fritz DM, Lemke HT. 97.  et al. 2015. Imaging transient melting of a nanocrystal using an X-ray laser. PNAS 112:7444–48 [Google Scholar]
  98. Beaud P, Caviezel A, Mariager SO, Rettig L, Ingold G. 98.  et al. 2014. A time-dependent order parameter for ultrafast photoinduced phase transitions. Nat. Mater. 13:923–27 [Google Scholar]
  99. Mansart B, Cottet MJG, Mancini GF, Jarlborg T, Dugdale SB. 99.  et al. 2013. Temperature-dependent electron-phonon coupling in La2–xSrxCuO4 probed by femtosecond X-ray diffraction. Phys. Rev. B 88:054507 [Google Scholar]
  100. Mannebach EM, Li R, Duerloo KA, Nyby C, Zalden P. 100.  et al. 2015. Dynamic structural response and deformations of monolayer MoS2 visualized by femtosecond electron diffraction. Nano Lett. 15:6889–95 [Google Scholar]
  101. Nie S, Wang X, Park H, Clinite R, Cao J. 101.  2006. Measurement of the electronic Grüneisen constant using femtosecond electron diffraction. Phys. Rev. Lett. 96:025901 [Google Scholar]
  102. Singer A, Patel SKK, Kukreja R, Uhlíř V, Wingert J. 102.  et al. 2016. Photoinduced enhancement of the charge density wave amplitude. Phys. Rev. Lett. 117:056401 [Google Scholar]
  103. Daranciang D, Highland MJ, Wen H, Young SM, Brandt NC. 103.  et al. 2012. Ultrafast photovoltaic response in ferroelectric nanolayers. Phys. Rev. Lett. 108:087601 [Google Scholar]
  104. Wang RV, Fong DD, Jiang F, Highland MJ, Fuoss PH. 104.  et al. 2009. Reversible chemical switching of a ferroelectric film. Phys. Rev. Lett. 102:047601 [Google Scholar]
  105. Spanier JE, Kolpak AM, Urban JJ, Grinberg I, Ouyang L. 105.  et al. 2006. Ferroelectric phase transition in individual single-crystalline BaTiO3 nanowires. Nano Lett. 6:735–39 [Google Scholar]
  106. Batra IP, Wurfel P, Silverman BD. 106.  1973. Phase transition, stability, and depolarization field in ferroelectric thin films. Phys. Rev. B 8:3257–65 [Google Scholar]
  107. Lichtensteiger C, Triscone JM, Junquera J, Ghosez P. 107.  2005. Ferroelectricity and tetragonality in ultrathin PbTiO3 films. Phys. Rev. Lett. 94:047603 [Google Scholar]
  108. Yang SY, Seidel J, Byrnes SJ, Shafer P, Yang CH. 108.  et al. 2010. Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotechnol. 5:143–47 [Google Scholar]
  109. Young S, Rappe A. 109.  2012. First principles calculation of the shift current photovoltaic effect in ferroelectrics. Phys. Rev. Lett. 109:116601 [Google Scholar]
  110. Glass AM, Von der Linde D, Negran TJ. 110.  1974. High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3. Appl. Phys. Lett. 25:233–35 [Google Scholar]
  111. Fong DD, Kolpak AM, Eastman JA, Streiffer SK, Fuoss PH. 111.  et al. 2006. Stabilization of monodomain polarization in ultrathin PbTiO3 films. Phys. Rev. Lett. 96:127601 [Google Scholar]
  112. Wen H, Chen P, Cosgriff MP, Walko DA, Lee JH. 112.  et al. 2013. Electronic origin of ultrafast photoinduced strain in BiFeO3. Phys. Rev. Lett. 110:037601 [Google Scholar]
  113. Chen F, Zhu Y, Liu S, Qi Y, Hwang HY. 113.  et al. 2016. Ultrafast terahertz-field-driven ionic response in ferroelectric BaTiO3. Phys. Rev. B 94:180104 [Google Scholar]
  114. Cohen MH, Falicov L, Golin S. 114.  1964. Crystal chemistry and band structures of the group V semimetals and the IV–VI semiconductors. IBM J. Res. Dev. 8:215–27 [Google Scholar]
  115. Kawamura H.115.  1980. Phase transition in IV-VI compounds. Narrow Gap Semiconductors: Physics and Applications W Zawadzki 470–94 Berlin: Springer [Google Scholar]
  116. Zhang Y, Ke X, Kent PRC, Yang J, Chen C. 116.  2011. Anomalous lattice dynamics near the ferroelectric instability in PbTe. Phys. Rev. Lett. 107:175503 [Google Scholar]
  117. Delaire O, Ma J, Marty K, May AF, McGuire MA. 117.  et al. 2011. Giant anharmonic phonon scattering in PbTe. Nat. Mater. 10:614–19 [Google Scholar]
  118. Jensen KM, Božin ES, Malliakas CD, Stone MB, Lumsden MD. 118.  et al. 2012. Lattice dynamics reveals a local symmetry breaking in the emergent dipole phase of PbTe. Phys. Rev. B 86:085313 [Google Scholar]
  119. Lee S, Esfarjani K, Luo T, Zhou J, Tian Z, Chen G. 119.  2014. Resonant bonding leads to low lattice thermal conductivity. Nat. Commun. 5:3525 [Google Scholar]
  120. Newton MC, Sao M, Fujisawa Y, Onitsuka R, Kawaguchi T. 120.  et al. 2014. Time-resolved coherent diffraction of ultrafast structural dynamics in a single nanowire. Nano Lett. 14:2413–18 [Google Scholar]
  121. Ferguson KR, Bucher M, Gorkhover T, Boutet S, Fukuzawa H. 121.  et al. 2016. Transient lattice contraction in the solid-to-plasma transition. Sci. Adv. 2:e1500837 [Google Scholar]
  122. Ulvestad A, Singer A, Clark JN, Cho HM, Kim JW. 122.  et al. 2015. Topological defect dynamics in operando battery nanoparticles. Science 348:1344–47 [Google Scholar]
  123. Ulvestad A, Clark JN, Harder R, Robinson IK, Shpyrko OG. 123.  2015. 3D imaging of twin domain defects in gold nanoparticles. Nano Lett. 15:4066–70 [Google Scholar]
  124. Robinson I, Clark J, Harder R. 124.  2016. Materials science in the time domain using Bragg coherent diffraction imaging. J. Opt. 18:054007 [Google Scholar]
  125. Inoue I, Inubushi Y, Sato T, Tono K, Katayama T. 125.  et al. 2016. Observation of femtosecond X-ray interactions with matter using an X-ray–X-ray pump–probe scheme. PNAS 113:1492–97 [Google Scholar]
  126. Stephenson GB, Robert A, Grübel G. 126.  2009. X-ray spectroscopy: revealing the atomic dance. Nat. Mater. 8:702–3 [Google Scholar]
  127. Alonso-Mori R, Caronna C, Chollet M, Curtis R, Damiani DS. 127.  et al. 2015. The X-ray Correlation Spectroscopy instrument at the Linac Coherent Light Source. J. Synchrotron Radiat. 22:508–13 [Google Scholar]
  128. Yabashi M, Tanaka H. 128.  2017. The next ten years of X-ray science. Nat. Photon. 11:12–14 [Google Scholar]
  129. Billinge SJL, Levin I. 129.  2007. The problem with determining atomic structure at the nanoscale. Science 316:561–65 [Google Scholar]
/content/journals/10.1146/annurev-matsci-070616-124152
Loading
/content/journals/10.1146/annurev-matsci-070616-124152
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error