1932

Abstract

Computations of natural optical activity (OA) from first principles (ab initio) have become indispensable in chiroptical studies of molecular systems. Calculations are used to assign absolute configurations and to analyze chiroptical data, providing a basis for understanding their origin as well as for assigning and predicting experimental results. In this article, methodology for OA computations is outlined and accompanied by a review of selected, mainly recent (ca. 2010–2016) achievements in optical rotation, electronic and vibrational circular dichroism, and Raman OA calculations. We discuss some important aspects of the computational models and methodological developments, along with recently proposed approaches to analyze and interpret OA parameters. We highlight applications of chiroptical computational methods in studies of helicenes and chiral nanoparticles.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-052516-044827
2017-05-05
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/physchem/68/1/annurev-physchem-052516-044827.html?itemId=/content/journals/10.1146/annurev-physchem-052516-044827&mimeType=html&fmt=ahah

Literature Cited

  1. Polavarapu PL. 1.  2007. Renaissance in chiroptical spectroscopic methods for molecular structure determination. Chem. Rec. 7:125–36 [Google Scholar]
  2. Wagniére GH. 2.  2012. On the interaction of light with molecules: pathways to the theoretical interpretation of chiroptical phenomena. Comprehensive Chiroptical Spectroscopy 1 N Berova, PL Polavarapu, K Nakanishi, RW Woody 3–34 Hoboken, NJ: Wiley [Google Scholar]
  3. Wang B, Bouř P, Keiderling TA. 3.  2012. Rotationally resolved magnetic vibrational circular dichroism of the paramagnetic molecule NO. Phys. Chem. Chem. Phys. 14:9586–93 [Google Scholar]
  4. Šebestík J, Kapitán J, Pačes O, Bouř P. 4.  2016. Diamagnetic Raman optical activity of chlorine, bromine, and iodine gases. Angew. Chem. Int. Ed. 55:3504–8 [Google Scholar]
  5. Barron LD. 5.  2004. Molecular Light Scattering and Optical Activity Cambridge, UK: Cambridge Univ. Press, 2nd ed..
  6. Pecul M, Ruud K. 6.  2005. The ab initio calculation of optical rotation and electronic circular dichroism. Advances In Quantum Chemistry 50 Response Theory and Molecular Properties HJA Jensen, J Olsen 185–212 San Diego, CA: Elsevier [Google Scholar]
  7. Crawford TD. 7.  2006. Ab initio calculation of molecular chiroptical properties. Theor. Chem. Acc. 115:227–45 [Google Scholar]
  8. Autschbach J. 8.  2009. Computing chiroptical properties with first-principles theoretical methods: background and illustrative examples. Chirality 21:E116–52 [Google Scholar]
  9. Mukhopadhyay P, Wipf P, Beratan DN. 9.  2009. Optical signatures of molecular dissymmetry: combining theory with experiments to address stereochemical puzzles. Acc. Chem. Res. 42:809–19 [Google Scholar]
  10. Autschbach J, Nitsch-Velasquez L, Rudolph M. 10.  2011. Time-dependent density functional response theory for electronic chiroptical properties of chiral molecules. Top. Curr. Chem. 298:1–98 [Google Scholar]
  11. Buckingham AD, Dunn MB. 11.  1971. Optical activity of oriented molecules. J. Chem. Soc. A 1971:1988–91 [Google Scholar]
  12. Graham EB, Raab RE. 12.  1990. Light propagation in cubic and other anisotropic crystals. Proc. R. Soc. Lond. A 430:593–614 [Google Scholar]
  13. Autschbach J. 13.  2011. Time-dependent density functional theory for calculating origin-independent optical rotation and rotatory strength tensors. ChemPhysChem 12:3224–35 [Google Scholar]
  14. Murphy VL, Kahr B. 14.  2011. Planar hydrocarbons more optically active than their isomeric helicenes. J. Am. Chem. Soc. 133:12918–21 [Google Scholar]
  15. Richardson FS, Riehl JP. 15.  1977. Circularly polarized luminescence spectroscopy. Chem. Rev. 77:773–92 [Google Scholar]
  16. Norman P, Ruud K, Helgaker T. 16.  2004. Density-functional theory calculations of optical rotatory dispersion in the nonresonant and resonant frequency regions. J. Chem. Phys. 120:5027–35 [Google Scholar]
  17. Krykunov M, Kundrat MD, Autschbach J. 17.  2006. Calculation of circular dichroism spectra from optical rotatory dispersion, and vice versa, as complementary tools for theoretical studies of optical activity using time-dependent density functional theory. J. Chem. Phys. 125:194110 [Google Scholar]
  18. Rudolph M, Autschbach J. 18.  2008. Fast generation of nonresonant and resonant optical rotatory dispersion curves with the help of circular dichroism calculations and Kramers–Kronig transformations. Chirality 20:995–1008 [Google Scholar]
  19. Autschbach J. 19.  2016. Computation of optical rotation using time-dependent density functional theory. Comput. Lett. 3:131–150 [Google Scholar]
  20. Polavarapu PL, Hecht L, Barron LD. 20.  1993. Vibrational Raman optical activity in substituted oxiranes. J. Phys. Chem. 97:1793–99 [Google Scholar]
  21. Helgaker T, Ruud K, Bak KL, Jørgensen P, Olsen J. 21.  1994. Vibration Raman optical activity calculations using London atomic orbitals. Faraday Discuss. 99:165–80 [Google Scholar]
  22. Nafie LA. 22.  1996. Theory of resonance Raman optical activity: the single electronic state limit. Chem. Phys. 205:309–22 [Google Scholar]
  23. Jensen L, Autschbach J, Krykunov M, Schatz GC. 23.  2007. Resonance vibrational Raman optical activity: a time-dependent density functional theory approach. J. Chem. Phys. 127:134101 [Google Scholar]
  24. Vargek M, Freedman TB, Lee E, Nafie LA. 24.  1998. Experimental observation of resonance Raman optical activity. Chem. Phys. Lett. 287:359–64 [Google Scholar]
  25. Shen C, Loas G, Srebro-Hooper M, Vanthuyne N, Toupet L. 25.  et al. 2016. Iron alkynyl helicenes: redox-triggered chiroptical tuning in the IR and near-IR spectral regions and suitable for telecommunications applications. Angew. Chem. Int. Ed. 55:8062–66 [Google Scholar]
  26. Vidal LN, Giovannini T, Cappelli C. 26.  2016. Can the resonance Raman optical activity spectrum display sign alternation. J. Phys. Chem. Lett. 7:3585–90 [Google Scholar]
  27. Craig DP, Thirunamachandran T. 27.  1978. A theory of vibrational circular dichroism in terms of vibronic interactions. Mol. Phys. 35:825–40 [Google Scholar]
  28. Nafie LA, Freedman TB. 28.  1983. Vibronic coupling theory of infrared vibrational transitions. J. Chem. Phys. 78:7108–16 [Google Scholar]
  29. Stephens PJ. 29.  1985. Theory of vibrational circular dichroism. J. Phys. Chem. 89:748–52 [Google Scholar]
  30. Rauk A, Yang D. 30.  1992. Vibrational circular dichroism and infrared spectra of 2-methyloxirane and trans-2,3-dimethyloxirane: ab initio vibronic coupling theory with the 6-31G*(0.3) basis set. J. Phys. Chem. 96:437–46 [Google Scholar]
  31. Polavarapu PL. 31.  2016. Structural analysis using chiroptical spectroscopy: insights and cautions. Chirality 28:445–52 [Google Scholar]
  32. He Y, Wang B, Dukor RK, Nafie LA. 32.  2011. Determination of absolute configuration of chiral molecules using vibrational optical activity: a review. Appl. Spectrosc. 65:699–723 [Google Scholar]
  33. Nugroho AE, Morita H. 33.  2014. Circular dichroism calculation for natural products. J. Nat. Med. 68:1–10 [Google Scholar]
  34. Batista JM Jr., Blanch EW, da Silva Bolzani V. 34.  2015. Recent advances in the use of vibrational chiroptical spectroscopic methods for stereochemical characterization of natural products. Nat. Prod. Rep. 32:1280–302 [Google Scholar]
  35. Barron LD. 35.  2015. The development of biomolecular Raman optical activity spectroscopy. Biomed. Spectrosc. Imaging 4:223–53 [Google Scholar]
  36. Parchaňský V, Kapitán J, Bouř P. 36.  2014. Inspecting chiral molecules by Raman optical activity spectroscopy. RSC Adv. 4:57125–36 [Google Scholar]
  37. Wu T, You X-Z, Bouř P. 37.  2015. Applications of chiroptical spectroscopy to coordination compounds. Coord. Chem. Rev. 284:1–18 [Google Scholar]
  38. Hidalgo F, Noguez C. 38.  2010. Optically active nanoparticles: fullerenes, carbon nanotubes, and metal nanoparticles. Phys. Status Solidi B 247:1889–97 [Google Scholar]
  39. Knoppe S, Bürgi T. 39.  2014. Chirality in thiolate-protected gold clusters. Acc. Chem. Res. 47:1318–26 [Google Scholar]
  40. Aikens CM. 40.  2015. Optical properties and chirality. Frontiers of Nanoscience 9 Protected Metal Clusters: From Fundamentals to Applications T Tsukuda, H Häkkinen 223–61 Amsterdam: Elsevier [Google Scholar]
  41. Stephens PJ, Pan JJ, Devlin FJ, Cheeseman JR. 41.  2008. Determination of the absolute configurations of natural products using TDDFT optical rotation calculations: the iridoid oruwacin. J. Nat. Prod. 71:285–88 [Google Scholar]
  42. Jiménez-Romero C, Rode JE, Rodríguez AD. 42.  2016. Reassignment of the absolute configuration of plakinidone from the sponge consortium Plakortis halichondrioidesXestospongia deweerdtae using a combination of synthesis and a chiroptical approach. Tetrahedron: Asymmetry 27:410–19 [Google Scholar]
  43. Polavarapu PL. 43.  2012. Molecular structure determination using chiroptical spectroscopy: where we may go wrong. Chirality 24:909–20 [Google Scholar]
  44. Nicu VP, Baerends EJ. 44.  2009. Robust normal modes in vibrational circular dichroism spectra. Phys. Chem. Chem. Phys. 11:6107–18 [Google Scholar]
  45. Góbi S, Magyarfalvi G. 45.  2011. Reliability of computed signs and intensities for vibrational circular dichroism spectra. Phys. Chem. Chem. Phys. 13:16130–33 [Google Scholar]
  46. Tommasini M, Longhi G, Mazzeo G, Abbate S, Nieto-Ortega B. 46.  et al. 2014. Mode robustness in Raman optical activity. J. Chem. Theory Comput. 10:5520–27 [Google Scholar]
  47. Debie E, De Gussem E, Dukor RK, Herrebout W, Nafie LA, Bultinck P. 47.  2011. A confidence level algorithm for the determination of absolute configuration using vibrational circular dichroism or Raman optical activity. ChemPhysChem 12:1542–49 [Google Scholar]
  48. Bruhn T, Schaumlöffel A, Hemberger Y, Bringmann G. 48.  2013. SpecDis: quantifying the comparison of calculated and experimental electronic circular dichroism spectra. Chirality 25:243–49 [Google Scholar]
  49. Polavarapu PL, Covington CL. 49.  2014. Comparison of experimental and calculated chiroptical spectra for chiral molecular structure determination. Chirality 26:539–52 [Google Scholar]
  50. Vandenbussche J, Bultinck P, Przybył AK, Herrebout WA. 50.  2013. Statistical validation of absolute configuration assignment in vibrational optical activity. J. Chem. Theory Comput. 9:5504–12 [Google Scholar]
  51. Polavarapu PL. 51.  2008. Why is it important to simultaneously use more than one chiroptical spectroscopic method for determining the structures of chiral molecules?. Chirality 20:664–72 [Google Scholar]
  52. Pescitelli G, Bruhn T. 52.  2016. Good computational practice in the assignment of absolute configurations by TDDFT calculations of ECD spectra. Chirality 28:466–74 [Google Scholar]
  53. Barone V, Baiardi A, Biczysko M, Bloino J, Cappelli C, Lipparini F. 53.  2012. Implementation and validation of a multi-purpose virtual spectrometer for large systems in complex environments. Phys. Chem. Chem. Phys. 14:12404–22 [Google Scholar]
  54. Barone V, Baiardi A, Bloino J. 54.  2014. New developments of a multifrequency virtual spectrometer: stereo-electronic, dynamical, and environmental effects on chiroptical spectra. Chirality 26:588–600 [Google Scholar]
  55. Bloino J, Biczysko M, Barone V. 55.  2015. Anharmonic effects on vibrational spectra intensities: infrared, Raman, vibrational circular dichroism, and Raman optical activity. J. Phys. Chem. A 119:11862–74 [Google Scholar]
  56. Pescitelli G, Di Bari L, Berova N. 56.  2014. Application of electronic circular dichroism in the study of supramolecular systems. Chem. Soc. Rev. 43:5211–33 [Google Scholar]
  57. Covington CL, Nicu VP, Polavarapu PL. 57.  2015. Determination of the absolute configurations using exciton chirality method for vibrational circular dichroism: right answers for the wrong reasons. J. Phys. Chem. A 119:10589–601 [Google Scholar]
  58. Telfer SG, McLean TM, Waterland MR. 58.  2011. Exciton coupling in coordination compounds. Dalton Trans. 40:3097–108 [Google Scholar]
  59. Moore B II, Autschbach J. 59.  2012. Density functional study of tetraphenylporphyrin long-range exciton coupling. ChemistryOpen 1:184–94 [Google Scholar]
  60. Helgaker T, Coriani S, Jørgensen P, Kristensen K, Olsen J, Ruud K. 60.  2012. Recent advances in wave function-based methods of molecular-property calculations. Chem. Rev. 112:543–631 [Google Scholar]
  61. McAlexander HR, Crawford TD. 61.  2016. A comparison of three approaches to the reduced-scaling coupled cluster treatment of non-resonant molecular response properties. J. Chem. Theory Comput. 12:209–22 [Google Scholar]
  62. Autschbach J, Srebro M. 62.  2014. Delocalization error and “functional tuning” in Kohn–Sham calculations of molecular properties. Acc. Chem. Res. 47:2592–602 [Google Scholar]
  63. Friese DH, Hättig C. 63.  2014. Optical rotation calculations on large molecules using the approximate coupled cluster model CC2 and the resolution-of-the-identity approximation. Phys. Chem. Chem. Phys. 16:5942–51 [Google Scholar]
  64. Crawford TD, Stephens PJ. 64.  2008. Comparison of time-dependent density-functional theory and coupled cluster theory for the calculation of the optical rotations of chiral molecules. J. Phys. Chem. A 112:1339–45 [Google Scholar]
  65. Srebro M, Govind N, de Jong WA, Autschbach J. 65.  2011. Optical rotation calculated with time-dependent density functional theory: the OR45 benchmark. J. Phys. Chem. A 115:10930–49 [Google Scholar]
  66. Rudolph M, Ziegler T, Autschbach J. 66.  2011. Time-dependent density functional theory applied to ligand-field excitations and their circular dichroism in some transition metal complexes. Chem. Phys. 391:92–100 [Google Scholar]
  67. Rudolph M, Autschbach J. 67.  2011. Performance of conventional and range-separated hybrid density functionals in calculations of electronic circular dichroism spectra of transition metal complexes. J. Phys. Chem. A 115:14677–86 [Google Scholar]
  68. Haghdani S, Åstrand P-O, Koch H. 68.  2016. Optical rotation from coupled cluster and density functional theory: the role of basis set convergence. J. Chem. Theory Comput. 12:535–48 [Google Scholar]
  69. Jorge FE, de Oliveira AZ, Silva TP. 69.  2016. CAM-B3LYP optical rotations at different wavelengths: comparison with CCSD results. Int. J. Quantum Chem. 116:21–26 [Google Scholar]
  70. Srebro M, Autschbach J. 70.  2012. Tuned range-separated time-dependent density functional theory applied to optical rotation. J. Chem. Theory Comput. 8:245–56 [Google Scholar]
  71. Moore B II, Srebro M, Autschbach J. 71.  2012. Analysis of optical activity in terms of bonds and lone-pairs: the exceptionally large optical rotation of norbornenone. J. Chem. Theory Comput. 8:4336–46 [Google Scholar]
  72. Bates JE, Furche F. 72.  2012. Harnessing the meta-generalized gradient approximation for time-dependent density functional theory. J. Chem. Phys. 137:164105 [Google Scholar]
  73. Lahiri P, Wiberg KB, Vaccaro PH, Caricato M, Crawford TD. 73.  2014. Large solvation effect in the optical rotatory dispersion of norbornenone. Angew. Chem. Int. Ed. 53:1386–89 [Google Scholar]
  74. Lindh GD, Mach TJ, Crawford TD. 74.  2012. The optimized orbital coupled cluster doubles method and optical rotation. Chem. Phys. 401:125–29 [Google Scholar]
  75. Hedegård ED, Jensen F, Kongsted J. 75.  2012. Basis set recommendations for DFT calculations of gas-phase optical rotation at different wavelengths. J. Chem. Theory Comput. 8:4425–33 [Google Scholar]
  76. Wiberg KB, Caricato M, Wang Y-G, Vaccaro PH. 76.  2013. Towards the accurate and efficient calculation of optical rotatory dispersion using augmented minimal basis sets. Chirality 25:606–16 [Google Scholar]
  77. Grimme S. 77.  2013. A simplified Tamm–Dancoff density functional approach for the electronic excitation spectra of very large molecules. J. Chem. Phys. 138:244104 [Google Scholar]
  78. Bannwarth C, Grimme S. 78.  2014. A simplified time-dependent density functional theory approach for electronic ultraviolet and circular dichroism spectra of very large molecules. Comput. Theor. Chem. 1040–41:45–53 [Google Scholar]
  79. Bannwarth C, Grimme S. 79.  2015. Electronic circular dichroism of highly conjugated π-systems: breakdown of the Tamm–Dancoff/configuration interaction singles approximation. J. Phys. Chem. A 119:3653–62 [Google Scholar]
  80. Rüger R, van Lenthe E, Heine T, Visscher L. 80.  2016. Tight-binding approximations to time-dependent density functional theory—a fast approach for the calculation of electronically excited states. J. Chem. Phys. 144:184103 [Google Scholar]
  81. Lin N, Luo Y, Santoro F, Zhao X, Rizzo A. 81.  2008. Vibronically-induced change in the chiral response of molecules revealed by electronic circular dichroism spectroscopy. Chem. Phys. Lett. 464:144–49 [Google Scholar]
  82. Pecul M, Ruud K. 82.  2011. The optical activity of β,γ-enones in ground and excited states using circular dichroism and circularly polarized luminescence. Phys. Chem. Chem. Phys 13:643–50 [Google Scholar]
  83. McAlexander HR, Crawford TD. 83.  2015. Simulation of circularly polarized luminescence spectra using coupled cluster theory. J. Chem. Phys. 142:154101 [Google Scholar]
  84. Kamiński M, Cukras J, Pecul M, Rizzo A, Coriani S. 84.  2015. A computational protocol for the study of circularly polarized phosphorescence and circular dichroism in spin-forbidden absorption. Phys. Chem. Chem. Phys. 17:19079–86 [Google Scholar]
  85. Scherrer A, Vuilleumier R, Sebastiani D. 85.  2013. Nuclear velocity perturbation theory of vibrational circular dichroism. J. Chem. Theory Comput. 9:5305–12 [Google Scholar]
  86. Thomas M, Kirchner B. 86.  2016. Classical magnetic dipole moments for the simulation of vibrational circular dichroism by ab initio molecular dynamics. J. Phys. Chem. Lett. 7:509–13 [Google Scholar]
  87. Jose KVJ, Beckett D, Raghavachari K. 87.  2015. Vibrational circular dichroism spectra for large molecules through molecules-in-molecules fragment-based approach. J. Chem. Theory Comput. 11:4238–47 [Google Scholar]
  88. Jose KVJ, Raghavachari K. 88.  2016. Raman optical activity spectra for large molecules through molecules-in-molecules fragment-based approach. J. Chem. Theory Comput. 12:585–94 [Google Scholar]
  89. Andrushchenko V, Bouř P. 89.  2010. Applications of the Cartesian coordinate tensor transfer technique in the simulations of vibrational circular dichroism spectra of oligonucleotides. Chirality 22:E96–114 [Google Scholar]
  90. Bieler NS, Haag MP, Jacob CR, Reiher M. 90.  2011. Analysis of the Cartesian tensor transfer method for calculating vibrational spectra of polypeptides. J. Chem. Theory Comput. 7:1867–81 [Google Scholar]
  91. Jiang N, Tan RX, Ma J. 91.  2011. Simulations of solid-state vibrational circular dichroism spectroscopy of (S)-alternarlactam by using fragmentation quantum chemical calculations. J. Phys. Chem. B 115:2801–13 [Google Scholar]
  92. Kessler J, Kapitán J, Bouř P. 92.  2015. First-principles predictions of vibrational Raman optical activity of globular proteins. J. Phys. Chem. Lett. 6:3314–19 [Google Scholar]
  93. Nagy PR, Surján PR, Szabados Á. 93.  2014. Vibrational optical activity of chiral carbon nanoclusters treated by a generalized π-electron method. J. Chem. Phys. 140:044112 [Google Scholar]
  94. Nagy PR, Biró L, Koltai J, Surján PR, Szabados Á, Kürti J. 94.  2014. Theoretical vibrational optical activity of chiral carbon nanoparticles: fullerenes and carbon nanotubes. Phys. Status Solidi B 251:2451–56 [Google Scholar]
  95. Crawford TD, Ruud K. 95.  2011. Coupled-cluster calculations of vibrational Raman optical activity spectra. ChemPhysChem 12:3442–48 [Google Scholar]
  96. Cheeseman JR, Frisch MJ. 96.  2011. Basis set dependence of vibrational Raman and Raman optical activity intensities. J. Chem. Theory Comput. 7:3323–34 [Google Scholar]
  97. Vidal LN, Egidi F, Barone V, Cappelli C. 97.  2015. Origin invariance in vibrational resonance Raman optical activity. J. Chem. Phys. 142:174101 [Google Scholar]
  98. Lipparini F, Egidi F, Cappelli C, Barone V. 98.  2013. The optical rotation of methyloxirane in aqueous solution: a never ending story?. J. Chem. Theory Comput. 9:1880–84 [Google Scholar]
  99. Egidi F, Carnimeo I, Cappelli C. 99.  2015. Optical rotatory dispersion of methyloxirane in aqueous solution: assessing the performance of density functional theory in combination with a fully polarizable QM/MM/PCM approach. Opt. Mater. Express 5:196–209 [Google Scholar]
  100. Mennucci B, Cappelli C, Cammi R, Tomasi J. 100.  2011. Modeling solvent effects on chiroptical properties. Chirality 23:717–29 [Google Scholar]
  101. Caricato M. 101.  2013. Implementation of the CCSD-PCM linear response function for frequency dependent properties in solution: application to polarizability and specific rotation. J. Chem. Phys. 139:114103 [Google Scholar]
  102. Egidi F, Barone V, Bloino J, Cappelli C. 102.  2012. Toward an accurate modeling of optical rotation for solvated systems: anharmonic vibrational contributions coupled to the polarizable continuum model. J. Chem. Theory Comput. 8:585–97 [Google Scholar]
  103. Cappelli C, Bloino J, Lipparini F, Barone V. 103.  2012. Toward ab initio anharmonic vibrational circular dichroism spectra in the condensed phase. J. Phys. Chem. Lett. 3:1766–73 [Google Scholar]
  104. Crawford TD, Kumar A, Hannon KP, Höfener S, Visscher L. 104.  2015. Frozen-density embedding potentials and chiroptical properties. J. Chem. Theory Comput. 11:5305–15 [Google Scholar]
  105. Pikulska A, Hopmann KH, Bloino J, Pecul M. 105.  2013. Circular dichroism and optical rotation of lactamide and 2-aminopropanol in aqueous solution. J. Phys. Chem. B 117:5136–47 [Google Scholar]
  106. Štěpánek P, Bouř P. 106.  2014. Multi-scale modeling of electronic spectra of three aromatic amino acids: importance of conformational averaging and explicit solute-solvent interactions. Phys. Chem. Chem. Phys. 16:20639–49 [Google Scholar]
  107. Hopmann KH, Ruud K, Pecul M, Kudelski A, Dračinský M, Bouř P. 107.  2011. Explicit versus implicit solvent modeling of Raman optical activity spectra. J. Phys. Chem. B 115:4128–37 [Google Scholar]
  108. Poopari MR, Dezhahang Z, Xu Y. 108.  2013. A comparative VCD study of methyl mandelate in methanol, dimethyl sulfoxide, and chloroform: explicit and implicit solvation models. Phys. Chem. Chem. Phys. 15:1655–65 [Google Scholar]
  109. Mutter ST, Zielinski F, Popelier PLA, Blanch EW. 109.  2015. Calculation of Raman optical activity spectra for vibrational analysis. Analyst 140:2944–56 [Google Scholar]
  110. Perera AS, Thomas J, Poopari MR, Xu Y. 110.  2016. The clusters-in-a-liquid approach for solvation: new insights from the conformer specific gas phase spectroscopy and vibrational optical activity spectroscopy. Front. Chem. 4:9 [Google Scholar]
  111. Cheeseman JR, Shaik MS, Popelier PLA, Blanch EW. 111.  2011. Calculation of Raman optical activity spectra of methyl-β-d-glucose incorporating a full molecular dynamics simulation of hydration effects. J. Am. Chem. Soc. 133:4991–97 [Google Scholar]
  112. Urago H, Suga T, Hirata T, Kodama H, Unno M. 112.  2014. Raman optical activity of a cyclic dipeptide analyzed by quantum chemical calculations combined with molecular dynamics simulations. J. Phys. Chem. B 118:6767–74 [Google Scholar]
  113. Bannwarth C, Seibert J, Grimme S. 113.  2016. Electronic circular dichroism of [16]helicene with simplified TD-DFT: beyond the single structure approach. Chirality 28:365–69 [Google Scholar]
  114. Frelek J, Górecki M, Łaszcz M, Suszczyńska A, Vass E, Szczepek WJ. 114.  2012. Distinguishing between polymorphic forms of linezolid by solid-phase electronic and vibrational circular dichroism. Chem. Commun. 48:5295–97 [Google Scholar]
  115. Pescitelli G, Padula D, Santoro F. 115.  2013. Intermolecular exciton coupling and vibronic effects in solid-state circular dichroism: a case study. Phys. Chem. Chem. Phys. 15:795–802 [Google Scholar]
  116. Enamullah M, Uddin AKMR, Pescitelli G, Berardozzi R, Makhloufi G. 116.  et al. 2014. Induced chirality-at-metal and diastereoselectivity at Δ/Λ-configured distorted square-planar copper complexes by enantiopure Schiff base ligands: combined circular dichroism, DFT and X-ray structural studies. Dalton Trans. 43:3313–29 [Google Scholar]
  117. Longhi G, Castiglioni E, Abbate S, Lebon F, Lightner DA. 117.  2013. Experimental and calculated CPL spectra and related spectroscopic data of camphor and other simple chiral bicyclic ketones. Chirality 25:589–99 [Google Scholar]
  118. Tinoco I Jr., Woody RW. 118.  1964. Optical rotation of oriented helices. IV. A free electron on a helix. J. Chem. Phys. 40:160–65 [Google Scholar]
  119. Kuball HG. 119.  2002. CD and ACD spectroscopy on anisotropic samples: chirality of oriented molecules and anisotropic phases—a critical analysis. Enantiomer 7:197–205 [Google Scholar]
  120. Wakabayashi M, Yokojima S, Fukaminato T, Shiino K-i, Irie M, Nakamura S. 120.  2014. Anisotropic dissymmetry factor, g : theoretical investigation on single molecule chiroptical spectroscopy. J. Phys. Chem. A 118:5046–57 [Google Scholar]
  121. Gu Z-G, Bürck J, Bihlmeier A, Liu J, Shekhah O. 121.  et al. 2014. Oriented circular dichroism analysis of chiral surface-anchored metal-organic frameworks grown by liquid-phase epitaxy and upon loading with chiral guest compounds. Chem. Eur. J. 20:9879–82 [Google Scholar]
  122. Murphy VL, Kahr B. 122.  2015. Hückel theory and optical activity. J. Am. Chem. Soc. 137:5177–83 [Google Scholar]
  123. Murphy VL, Reyes A, Kahr B. 123.  2016. Aromaticity and optical activity. J. Am. Chem. Soc. 138:25–27 [Google Scholar]
  124. Caricato M, Vaccaro PH, Crawford TD, Wiberg KB, Lahiri P. 124.  2014. Insights on the origin of the unusually large specific rotation of (1S,4S)-norbornenone. J. Phys. Chem. A 118:4863–71 [Google Scholar]
  125. Caricato M. 125.  2015. Orbital analysis of molecular optical activity based on configuration rotatory strength. J. Chem. Theory Comput. 11:1349–53 [Google Scholar]
  126. Caricato M. 126.  2015. Conformational effects on specific rotation: a theoretical study based on the method. J. Phys. Chem. A 119:8303–10 [Google Scholar]
  127. Graule S, Rudolph M, Shen W, Williams JAG, Lescop C. 127.  et al. 2010. Assembly of π-conjugated phosphole azahelicene derivatives into chiral coordination complexes: an experimental and theoretical study. Chem. Eur. J. 16:5976–6005 [Google Scholar]
  128. Nitsch-Velasquez L, Autschbach J. 128.  2010. Toward a generalization of the Clough–Lutz–Jirgensons effect: chiral organic acids with alkyl, hydroxyl, and halogen substituents. Chirality 22:E81–95 [Google Scholar]
  129. Heshmat M, Nicu VP, Baerends EJ. 129.  2012. On the equivalence of conformational and enantiomeric changes of atomic configuration for vibrational circular dichroism signs. J. Phys. Chem. A 116:3454–64 [Google Scholar]
  130. Humbert-Droz M, Oulevey P, Daku LML, Luber S, Hagemann H, Bürgi T. 130.  2014. Where does the Raman optical activity of [Rh(en)3]3+ come from? Insight from a combined experimental and theoretical approach. Phys. Chem. Chem. Phys. 16:23260–73 [Google Scholar]
  131. Milton FP, Govan J, Mukhina MV, Gun'ko YK. 131.  2016. The chiral nano-world: chiroptically active quantum nanostructures. Nanoscale Horiz. 1:14–26 [Google Scholar]
  132. Nakai Y, Mori T, Inoue Y. 132.  2012. Theoretical and experimental studies on circular dichroism of carbo[n]helicenes. J. Phys. Chem. A 116:7372–85 [Google Scholar]
  133. Nakai Y, Mori T, Inoue Y. 133.  2013. Circular dichroism of (di)methyl- and diaza[6]helicenes. A combined theoretical and experimental study. J. Phys. Chem. A 117:83–93 [Google Scholar]
  134. Nakai Y, Mori T, Sato K, Inoue Y. 134.  2013. Theoretical and experimental studies of circular dichroism of mono- and diazonia[6]helicenes. J. Phys. Chem. A 117:5082–92 [Google Scholar]
  135. El Sayed Moussa M, Srebro M, Anger E, Vanthuyne N, Roussel C. 135.  et al. 2013. Chiroptical properties of carbo[6]helicene derivatives bearing extended π-conjugated cyano substituents. Chirality 25:455–65 [Google Scholar]
  136. Shen C, Anger E, Srebro M, Vanthuyne N, Deol KK. 136.  et al. 2014. Straightforward access to mono- and bis-cycloplatinated helicenes that display circularly polarized phosphorescence using crystallization resolution methods. Chem. Sci. 5:1915–27 [Google Scholar]
  137. Johannessen C, Blanch EW, Villani C, Abbate S, Longhi G. 137.  et al. 2013. Raman and ROA spectra of (−)- and (+)-2-Br-hexahelicene: experimental and DFT studies of a π-conjugated chiral system. J. Phys. Chem. B 117:2221–30 [Google Scholar]
  138. Abbate S, Longhi G, Lebon F, Castiglioni E, Superchi S. 138.  et al. 2014. Helical sense-responsive and substituent-sensitive features in vibrational and electronic circular dichroism, in circularly polarized luminescence, and in Raman spectra of some simple optically active hexahelicenes. J. Phys. Chem. C 118:1682–95 [Google Scholar]
  139. Liu Y, Cerezo J, Mazzeo G, Lin N, Zhao X. 139.  et al. 2016. Vibronic coupling explains the different shape of electronic circular dichroism and of circularly polarized luminescence spectra of hexahelicenes. J. Chem. Theory Comput. 12:2799–819 [Google Scholar]
  140. Kumar J, Nakashima T, Kawai T. 140.  2015. Circularly polarized luminescence in chiral molecules and supramolecular assemblies. J. Phys. Chem. Lett. 6:3445–52 [Google Scholar]
  141. Isla H, Crassous J. 141.  2016. Helicene-based chiroptical switches. C. R. Chim. 19:39–49 [Google Scholar]
  142. Pascal S, Besnard C, Zinna F, Di Bari L, Le Guennic B. 142.  et al. 2016. Zwitterionic [4]helicene: a water-soluble and reversible pH-triggered ECD/CPL chiroptical switch in the UV and red spectral regions. Org. Biomol. Chem. 14:4590–94 [Google Scholar]
  143. Noguez C, Hidalgo F. 143.  2014. Ab initio electronic circular dichroism of fullerenes, single-walled carbon nanotubes, and ligand-protected metal nanoparticles. Chirality 26:553–62 [Google Scholar]
  144. Nagy PR, Koltai J, Surján PR, Kürti J, Szabados Á. 144.  2016. Resonance Raman optical activity of single walled chiral carbon nanotubes. J. Phys. Chem. A 120:5527–38 [Google Scholar]
  145. Magg M, Kadria-Vili Y, Oulevey P, Weisman RB, Bürgi T. 145.  2016. Resonance Raman optical activity spectra of single-walled carbon nanotube enantiomers. J. Phys. Chem. Lett. 7:221–25 [Google Scholar]
  146. Tohgha U, Deol KK, Porter AG, Bartko SG, Choi JK. 146.  et al. 2013. Ligand induced circular dichroism and circularly polarized luminescence in CdSe quantum dots. ACS Nano 7:11094–102 [Google Scholar]
  147. Lopez-Acevedo O, Tsunoyama H, Tsukuda T, Häkkinen H, Aikens CM. 147.  2010. Chirality and electronic structure of the thiolate-protected Au38 nanocluster. J. Am. Chem. Soc. 132:8210–18 [Google Scholar]
  148. Dolamic I, Knoppe S, Dass A, Bürgi T. 148.  2012. First enantioseparation and circular dichroism spectra of Au38 clusters protected by achiral ligands. Nat. Commun. 3:798 [Google Scholar]
  149. Knoppe S, Lehtovaara L, Häkkinen H. 149.  2014. Electronic structure and optical properties of the intrinsically chiral 16-electron superatom complex [Au20(PP3)4]4+. J. Phys. Chem. A 118:4214–21 [Google Scholar]
  150. Tlahuice A, Garzón IL. 150.  2012. Structural, electronic, optical, and chiroptical properties of small thiolated gold clusters: the case of Au6 and Au8 cores protected with dimer [Au2(SR)3] and trimer [Au3(SR)4)] motifs. Phys. Chem. Chem. Phys. 14:7321–29 [Google Scholar]
  151. Molina B, Sánchez-Castillo A, Knoppe S, Garzón IL, Bürgi T, Tlahuice-Flores A. 151.  2013. Structures and chiroptical properties of the BINAS-monosubstituted Au38(SCH3)24 cluster. Nanoscale 5:10956–62 [Google Scholar]
  152. Zhang B, Kaziz S, Li H, Wodka D, Malola S. 152.  et al. 2015. Pd2Au36(SR)24 cluster: structure studies. Nanoscale 7:17012–19 [Google Scholar]
  153. He X, Wang Y, Jiang H, Zhao L. 153.  2016. Structurally well-defined sigmoidal gold clusters: probing the correlation between metal atom arrangement and chiroptical response. J. Am. Chem. Soc. 138:5634–43 [Google Scholar]
  154. Pelayo JJ, Whetten RL, Garzón IL. 154.  2015. Geometric quantification of chirality in ligand-protected metal clusters. J. Phys. Chem. C 119:28666–78 [Google Scholar]
  155. Rassat A, Fowler PW. 155.  2004. Is there a “most chiral tetrahedron”?. Chem. Eur. J. 10:6575–80 [Google Scholar]
/content/journals/10.1146/annurev-physchem-052516-044827
Loading
/content/journals/10.1146/annurev-physchem-052516-044827
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error