Skip to main content
Log in

Ultrathin AgPt alloy nanowires as a high-performance electrocatalyst for formic acid oxidation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

To address the insufficient electrocatalytic activity and stability of formic acid oxidation reaction (FAOR) electrocatalysts, as well as their high cost, we herein demonstrate the facile hydrothermal synthesis of ultrathin AgPt alloy nanowires using amine-terminated poly(N-isopropylacrylamide) (PNIPAM-NH2) as a structure-directing agent. The initial generation of AgCl precipitates, subsequent formation of AgPt nanoparticles, and their oriented attachment account for the formation of ultrathin AgPt alloy nanowires. Benefiting from their unique 1D anisotropy and alloyed composition, the prepared ultrathin AgPt nanowires exhibit a superior electrocatalytic activity and better CO tolerance for the FAOR, reaching a 1.6-fold and 3.7-fold higher specific current density than AgPt nanoparticles and a commercial Pt black catalyst, respectively. Additionally, the ultrathin AgPt alloy nanowires manifest a superior electrochemical stability and structural robustness during electrocatalysis, making them a promising FAOR electrocatalyst. This work not only provides a reliable strategy for the synthesis of noble metal-based ultrathin nanowires, but also opens an avenue towards the rational design of efficient electrocatalysts for fuel cell systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, C. L.; Jiang, B.; Miyamoto, N.; Kim, J. H.; Malgras, V.; Yamauchi, Y. Surfactant-directed synthesis of mesoporous Pd films with perpendicular mesochannels as efficient electrocatalysts. J. Am. Chem. Soc. 2015, 137, 11558–11561.

    Article  Google Scholar 

  2. Feng, L. G.; Chang, J. F.; Jiang, K.; Xue, H. G.; Liu, C. P.; Cai, W. B.; Xing, W.; Zhang, J. J. Nanostructured palladium catalyst poisoning depressed by cobalt phosphide in the electro-oxidation of formic acid for fuel cells. Nano Energy 2016, 30, 355–361.

    Article  Google Scholar 

  3. Gralec, B.; Lewera, A. Catalytic activity of unsupported Pd-Pt nanoalloys with low Pt content towards formic acid oxidation. Appl. Catal. B 2016, 192, 304–310.

    Article  Google Scholar 

  4. Wang, R. Y.; Liu, J. G.; Liu, P.; Bi, X. X.; Yan, X. L.; Wang, W. X.; Meng, Y. F.; Ge, X. B.; Chen, M. W.; Ding, Y. Ultra-thin layer structured anodes for highly durable low-Pt direct formic acid fuel cells. Nano Res. 2014, 7, 1569–1580.

    Article  Google Scholar 

  5. Kang, Y. J.; Murray, C. B. Synthesis and electrocatalytic properties of cubic Mn-Pt nanocrystals (nanocubes). J. Am. Chem. Soc. 2010, 132, 7568–7569.

    Article  Google Scholar 

  6. Yang, S.; Lee, H. Atomically dispersed platinum on gold nano-octahedra with high catalytic activity on formic acid oxidation. ACS Catal. 2013, 3, 437–443.

    Article  Google Scholar 

  7. Gong, M. X.; Li, F. M.; Yao, Z. G.; Zhang, S. Q.; Dong, J. W.; Chen, Y.; Tang, Y. W. Highly active and durable platinum-lead bimetallic alloy nanoflowers for formic acid electrooxidation. Nanoscale 2015, 7, 4894–4899.

    Article  Google Scholar 

  8. Choi, S. I.; Herron, J. A.; Scaranto, J.; Huang, H. W.; Wang, Y.; Xia, X. H.; Lv, T.; Park, J.; Peng, H. C.; Mavrikakis, M. et al. A comprehensive study of formic acid oxidation on palladium nanocrystals with different types of facets and twin defects. ChemCatChem 2015, 7, 2077–2084.

    Article  Google Scholar 

  9. Saleem, F.; Xu, B.; Ni, B.; Liu, H. L.; Nosheen, F.; Li, H. Y.; Wang, X. Atomically thick Pt-Cu nanosheets: Self-assembled sandwich and nanoring-like structures. Adv. Mater. 2015, 27, 2013–2018.

    Article  Google Scholar 

  10. Jiang, K.; Xu, K.; Zou, S. Z.; Cai, W. B. B-doped Pd catalyst: Boosting room-temperature hydrogen production from formic acid-formate solutions. J. Am. Chem. Soc. 2014, 136, 4861–4864.

    Article  Google Scholar 

  11. Liu, D.; Xie, M. L.; Wang, C. M.; Liao, L. W.; Qiu, L.; Ma, J.; Huang, H.; Long, R.; Jiang, J.; Xiong, Y. J. Pd-Ag alloy hollow nanostructures with interatomic charge polarization for enhanced electrocatalytic formic acid oxidation. Nano Res. 2016, 9, 1590–1599.

    Article  Google Scholar 

  12. Xu, L.; Luo, Z. M.; Fan, Z. X.; Zhang, X.; Tan, C. L.; Li, H.; Zhang, H.; Xue, C. Triangular Ag-Pd alloy nanoprisms: Rational synthesis with high-efficiency for electrocatalytic oxygen reduction. Nanoscale 2014, 6, 11738–11743.

    Article  Google Scholar 

  13. Kuang, Y.; Cai, Z.; Zhang, Y.; He, D. S.; Yan, X. L.; Bi, Y. M.; Li, Y. P.; Li, Z. Y.; Sun, X. M. Ultrathin dendritic Pt3Cu triangular pyramid caps with enhanced electrocatalytic activity. ACS Appl. Mater. Interfaces 2014, 6, 17748–17752.

    Article  Google Scholar 

  14. Ge, J. J.; He, D. S.; Bai, L.; You, R.; Lu, H. Y.; Lin, Y.; Tan, C. L.; Kang, Y. B.; Xiao, B.; Wu, Y. et al. Ordered porous Pd octahedra covered with monolayer Ru atoms. J. Am. Chem. Soc. 2015, 137, 14566–14569.

    Article  Google Scholar 

  15. Chen, S.; Su, H. Y.; Wang, Y. C.; Wu, W. L.; Zeng, J. Sizecontrolled synthesis of platinum-copper hierarchical trigonal bipyramid nanoframes. Angew. Chem., Int. Ed. 2015, 54, 108–113.

    Article  Google Scholar 

  16. Jia, Y. Y.; Jiang, Y. Q.; Zhang, J. W.; Zhang, L.; Chen, Q. L.; Xie, Z. X.; Zheng, L. S. Unique excavated rhombic dodecahedral PtCu3 alloy nanocrystals constructed with ultrathin nanosheets of high-energy {110} facets. J. Am. Chem. Soc. 2014, 136, 3748–3751.

    Article  Google Scholar 

  17. Park, J.; Liu, J. Y.; Peng, H. C.; Figueroa-Cosme, L.; Miao, S.; Choi, S. I.; Bao, S. X.; Yang, X.; Xia, Y. N. Coating Pt–Ni octahedra with ultrathin Pt shells to enhance the durability without compromising the activity toward oxygen reduction. ChemSusChem 2016, 9, 2209–2215.

    Article  Google Scholar 

  18. Ye, S. H.; Feng, J. X.; Wang, A. L.; Xu, H.; Li, G. R. Multi-layered Pt/Ni nanotube arrays with enhanced catalytic performance for methanol electrooxidation. J. Mater. Chem. A 2015, 3, 23201–23206.

    Article  Google Scholar 

  19. Qiu, P. T.; Lian, S. M.; Yang, G.; Yang, S. C. Halide ioninduced formation of single crystalline mesoporous PtPd bimetallic nanoparticles with hollow interiors for electrochemical methanol and ethanol oxidation reaction. Nano Res. 2017, 10, 1064–1077.

    Article  Google Scholar 

  20. Peng, Z. M.; You, H. J.; Yang, H. An Electrochemical approach to PtAg alloy nanostructures rich in Pt at the surface. Adv. Funct. Mater. 2010, 20, 3734–3741.

    Article  Google Scholar 

  21. Jiang, X.; Yan, X. X.; Ren, W. Y.; Jia, Y. F.; Chen, J. N.; Sun, D. M.; Xu, L.; Tang, Y. W. Porous AgPt@Pt nanooctahedra as an efficient catalyst toward formic acid oxidation with predominant dehydrogenation pathway. ACS Appl. Mater. Interfaces 2016, 8, 31076–31082.

    Article  Google Scholar 

  22. Fu, G. T.; Ma, R. G.; Gao, X. Q.; Chen, Y.; Tang, Y. W.; Lu, T. H.; Lee, J. M. Hydrothermal synthesis of Pt–Ag alloy nano-octahedra and their enhanced electrocatalytic activity for the methanol oxidation reaction. Nanoscale 2014, 6, 12310–12314.

    Article  Google Scholar 

  23. Mahmood, A.; Saleem, F.; Lin, H. F.; Ni, B.; Wang, X. Crystallinity-induced shape evolution of Pt-Ag nanosheets from branched nanocrystals. Chem. Commun. 2016, 52, 10547–10550.

    Article  Google Scholar 

  24. Cao, X.; Han, Y.; Gao, C. Z.; Huang, X. M.; Xu, Y.; Wang, N. PtAg nanowires: Facile synthesis and their applications as excellent oxygen reduction electrocatalysts for label-free electrochemical immunoassay. J. Mater. Chem. A 2013, 1, 14904–14909.

    Article  Google Scholar 

  25. Cao, X.; Wang, N.; Han, Y.; Gao, C. Z.; Xu, Y.; Li, M. X.; Shao, Y. H. PtAg bimetallic nanowires: Facile synthesis and their use as excellent electrocatalysts toward low-cost fuel cells. Nano Energy 2015, 12, 105–114.

    Article  Google Scholar 

  26. Koenigsmann, C.; Sutter, E.; Chiesa, T. A.; Adzic, R. R.; Wong, S. S. Highly enhanced electrocatalytic oxygen reduction performance observed in bimetallic palladium-based nanowires prepared under ambient, surfactantless conditions. Nano Lett. 2012, 12, 2013–2020.

    Article  Google Scholar 

  27. Xu, L.; Yang, Y.; Hu, Z. W.; Yu, S. H. Comparison study on the stability of copper nanowires and their oxidation kinetics in gas and liquid. ACS Nano 2016, 10, 3823–3834.

    Article  Google Scholar 

  28. Huang, X. Q.; Zhao, Z. P.; Chen, Y.; Chiu, C. Y.; Ruan, L. Y.; Liu, Y.; Li, M. F.; Duan, X. F.; Huang, Y. High density catalytic hot spots in ultrafine wavy nanowires. Nano Lett. 2014, 14, 3887–3894.

    Article  Google Scholar 

  29. Fan, Z. X.; Luo, Z. M.; Huang, X.; Li, B.; Chen, Y.; Wang, J.; Hu, Y. L.; Zhang, H. Synthesis of 4H/fcc noble multimetallic nanoribbons for electrocatalytic hydrogen evolution reaction. J. Am. Chem. Soc. 2016, 138, 1414–1419.

    Article  Google Scholar 

  30. Liu, Z. Q.; Cheng, H.; Li, N.; Ma, T. Y.; Su, Y. Z. ZnCo2O4 quantum dots anchored on nitrogen-doped carbon nanotubes as reversible oxygen reduction/evolution electrocatalysts. Adv. Mater. 2016, 28, 3777–3784.

    Article  Google Scholar 

  31. Zhao, W. Y.; Huang, D. B.; Yuan, Q.; Wang, X. Sub-2.0-nm Ru and composition-tunable RuPt nanowire networks. Nano Res. 2016, 9, 3066–3074.

    Article  Google Scholar 

  32. Hong, W.; Wang, J.; Wang, E. Dendritic Au/Pt and Au/PtCu nanowires with enhanced electrocatalytic activity for methanol electrooxidation. Small 2014, 10, 3262–3265.

    Article  Google Scholar 

  33. Feng, Y. G.; Bu, L. Z.; Guo, S. J.; Guo, J.; Huang, X. Q. 3D platinum–lead nanowire networks as highly efficient ethylene glycol oxidation electrocatalysts. Small 2016, 12, 4464–4470.

    Article  Google Scholar 

  34. Xia, B. Y.; Wu, H. B.; Yan, Y.; Lou, X. W.; Wang, X. Ultrathin and ultralong single-crystal platinum nanowire assemblies with highly stable electrocatalytic activity. J. Am. Chem. Soc. 2013, 135, 9480–9485.

    Article  Google Scholar 

  35. Ding, J. B.; Bu, L. Z.; Zhang, N.; Yao, J. L.; Huang, Y.; Huang, X. Q. Facile synthesis of ultrathin bimetallic PtSn wavy nanowires by nanoparticle attachment as enhanced hydrogenation catalysts. Chemistry 2015, 21, 3901–3905.

    Article  Google Scholar 

  36. Wu, L. P.; Liu, Z. Y.; Xu, M.; Zhang, J.; Yang, X. Y.; Huang, Y. D.; Lin, J.; Sun, D. M.; Xu, L.; Tang, Y. W. Facile synthesis of ultrathin Pd-Pt alloy nanowires as highly active and durable catalysts for oxygen reduction reaction. Int. J. Hydrogen Energy 2016, 41, 6805–6813.

    Article  Google Scholar 

  37. Dai, L.; Mo, S. G.; Qin, Q.; Zhao, X. J.; Zheng, N. F. Carbon monoxide-assisted synthesis of ultrathin PtCu3 alloy wavy nanowires and their enhanced electrocatalysis. Small 2016, 12, 1572–1577.

    Article  Google Scholar 

  38. Li, M. F.; Zhao, Z. P.; Cheng, T.; Fortunelli, A.; Chen, C.-Y.; Yu, R.; Zhang, Q. H.; Gu, L.; Merinov, B. V.; Lin, Z. Y. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016, 354, 1414–1419.

    Article  Google Scholar 

  39. Nam, I.; Kim, N. D.; Kim, G. P.; Park, J.; Yi, J. One step preparation of Mn3O4/graphene composites for use as an anode in Li ion batteries. J. Power Sources 2013, 244, 56–62.

    Article  Google Scholar 

  40. Liu, H.; Ye, F.; Yao, Q. F.; Cao, H. B.; Xie, J. P.; Lee, J. Y.; Yang, J. Stellated Ag-Pt bimetallic nanoparticles: An effective platform for catalytic activity tuning. Sci. Rep. 2014, 4, 3969.

    Article  Google Scholar 

  41. Yang, J.; Ying, J. Y. Nanocomposites of Ag2S and noble metals. Angew. Chem., Int. Ed. 2011, 50, 4637–4643.

    Article  Google Scholar 

  42. Ruan, L. Y.; Zhu, E. B.; Chen, Y.; Lin, Z. Y.; Huang, X. Q.; Duan, X. F.; Huang, Y. Biomimetic synthesis of an ultrathin platinum nanowire network with a high twin density for enhanced electrocatalytic activity and durability. Angew. Chem., Int. Ed. 2013, 52, 12577–12581.

    Article  Google Scholar 

  43. Peng, Z. M.; You, H. J.; Yang, H. Composition-dependent formation of platinum silver nanowires. ACS Nano 2010, 4, 1501–1510.

    Article  Google Scholar 

  44. Zhang, W. Q.; Yang, J. Z.; Lu, X. M. Tailoring galvanic replacement reaction for the preparation of Pt/Ag bimetallic hollow nanostructures with controlled number of voids. ACS Nano 2012, 6, 7397–7405.

    Article  Google Scholar 

  45. Herrero, E.; Buller, L. J.; Abruña, H. D. Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials. Chem. Rev. 2001, 101, 1897–1930.

    Article  Google Scholar 

  46. Teng, X. W.; Feygenson, M.; Wang, Q.; He, J. Q.; Du, W. X.; Frenkel, A. I.; Han, W. Q.; Aronson, M. Electronic and magnetic properties of ultrathin Au/Pt nanowires. Nano Lett. 2009, 9, 3177–3184.

    Article  Google Scholar 

  47. Wang, C.; Hu, Y. J.; Lieber, C. M.; Sun, S. H. Ultrathin Au nanowires and their transport properties. J. Am. Chem. Soc. 2008, 130, 8902–8903.

    Article  Google Scholar 

  48. Yu, X. F.; Wang, D. S.; Peng, Q.; Li, Y. D. Pt-M (M=Cu, Co, Ni, Fe) nanocrystals: From small nanoparticles to wormlike nanowires by oriented attachment. Chemistry 2013, 19, 233–239.

    Article  Google Scholar 

  49. Ataee-Esfahani, H.; Skrabalak, S. E. Attachment-based growth: Building architecturally defined metal nanocolloids particle by particle. RSC Adv. 2015, 5, 47718–47727.

    Article  Google Scholar 

  50. Liang, H. W.; Cao, X.; Zhou, F.; Cui, C. H.; Zhang, W. J.; Yu, S. H. A free-standing Pt-nanowire membrane as a highly stable electrocatalyst for the oxygen reduction reaction. Adv. Mater. 2011, 23, 1467–1471.

    Article  Google Scholar 

  51. Sun, S. H.; Zhang, G. X.; Geng, D. S.; Chen, Y. G.; Banis, M. N.; Li, R. Y.; Cai, M.; Sun, X. L. Direct growth of single-crystal pt nanowires on Sn@CNT nanocable: 3D electrodes for highly active electrocatalysts. Chemistry 2010, 16, 829–835.

    Article  Google Scholar 

  52. Fu, G. T.; Xia, B. Y.; Ma, R. G.; Chen, Y.; Tang, Y. W.; Lee, J. M. Trimetallic PtAgCu@PtCu core@shell concave nanooctahedrons with enhanced activity for formic acid oxidation reaction. Nano Energy 2015, 12, 824–832.

    Article  Google Scholar 

  53. Qiu, X. Y.; Zhang, H. Y.; Wu, P. S.; Zhang, F. Q.; Wei, S. H.; Sun, D. M.; Xu, L.; Tang, Y. W. One-pot synthesis of freestanding porous palladium nanosheets as highly efficient electrocatalysts for formic acid oxidation. Adv. Funct. Mater. 2017, 27, 1603852.

    Article  Google Scholar 

  54. Wang, Y.; Choi, S. I.; Zhao, X.; Xie, S. F.; Peng, H. C.; Chi, M. F.; Huang, C. Z.; Xia, Y. N. Polyol synthesis of ultrathin Pd nanowires via attachment-based growth and their enhanced activity towards formic acid oxidation. Adv. Funct. Mater. 2014, 24, 131–139.

    Article  Google Scholar 

  55. Iyyamperumal, R.; Zhang, L.; Henkelman, G.; Crooks, R. M. Efficient electrocatalytic oxidation of formic acid using Au@Pt dendrimer-encapsulated nanoparticles. J. Am. Chem. Soc. 2013, 135, 5521–5524.

    Article  Google Scholar 

  56. Nguyen, S. T.; Law, H. M.; Nguyen, H. T.; Kristian, N.; Wang, S. Y.; Chan, S. H.; Wang, X. Enhancement effect of Ag for Pd/C towards the ethanol electro-oxidation in alkaline media. Appl. Catal. B 2009, 91, 507–515.

    Article  Google Scholar 

  57. Hammer, B.; Nørskov, J. K. Theoretical surface science and catalysis-calculations and concepts. Adv. Catal. 2000, 45, 71–129.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (Nos. 21503111, 21576139 and 21376122) and Natural Science Foundation of Jiangsu Higher Education Institutions of China (No. 16KJB150020). The authors also thank National and Local Joint Engineering Research Center of Biomedical Functional Materials and a project sponsored by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin Xu or Yawen Tang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Fu, G., Wu, X. et al. Ultrathin AgPt alloy nanowires as a high-performance electrocatalyst for formic acid oxidation. Nano Res. 11, 499–510 (2018). https://doi.org/10.1007/s12274-017-1658-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1658-4

Keywords

Navigation