Skip to main content
Log in

Self-supporting multi-functional two-dimensional nanofilms for flexible perceptual devices: review

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The extraordinary mechanical capabilities of 2D self-supporting nanofilms render them highly desirable for fabricating flexible devices. These films possess unique structural properties at the nanoscale, translating into exceptional rigidity or flexibility at the macroscopic level. Their remarkable ability to maintain structural integrity and shape under stress situations empowers them to bend, fold, and twist without compromising performance. Furthermore, the excellent elasticity of film enables them to adapt to curved surfaces, facilitating their seamless integration into wearable electronics. 2D self-supporting films with outstanding superior properties surpass substrate-based films and hold tremendous promise for various applications in energy storage, sensing, membranes and biomedical devices. Achieving their full potential in multiple applications necessitates a comprehensive understanding of the mechanical flexibility of these 2D nanomaterials. Researchers can gain insights into the material's responses to applied force or deformation by analyzing its mechanical behavior, which is crucial for designing and developing. The primary objectives of this study are to provide in-depth elucidation of the mechanical characteristics of 2D nanomaterials, their formation into nanofilms, and the subsequent removal of these films from the substrate. Such a comprehensive investigation enables researchers to understand the intrinsic behavior of 2D nanomaterials and develop strategies to optimize their properties for a wide range of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper. Should any raw data files be needed in another format they are available from the corresponding author upon reasonable request.

References

  1. A.D. Franklin et al., DEVICE TECHNOLOGY. Nanomaterials in transistors: from high-performance to thin-film applications. Science 349(6249), 2750 (2015)

    Article  Google Scholar 

  2. S.W. Schmitt et al., Nanowire arrays in multicrystalline silicon thin films on glass: a promising material for research and applications in nanotechnology. Nano Lett. 12(8), 4050–4054 (2012)

    Article  CAS  PubMed  Google Scholar 

  3. H. Vahabi et al., Free-standing, flexible, superomniphobic films. ACS Appl. Mater. Interfaces 8(34), 21962–21967 (2016)

    Article  CAS  PubMed  Google Scholar 

  4. Q. Yu et al., Ultrathin free-standing close-packed gold nanoparticle films: conductivity and Raman scattering enhancement. Nanoscale 3(9), 3868–3875 (2011)

    Article  CAS  PubMed  Google Scholar 

  5. Y. Deng et al., Noncontact liquid–solid nanogenerators as self-powered droplet sensors. J. Mater. Sci. Mater. Electron. 34, 1033–1042 (2023)

    Article  CAS  PubMed  Google Scholar 

  6. Y. Miyamoto et al., Preparation of self-supporting Au thin films on perforated substrate by releasing from water-soluble sacrificial layer. Jpn. J. Appl. Phys. 55(7S2), 07LE05 (2016)

    Article  Google Scholar 

  7. H. Endo et al., Free-standing ultrathin films with universal thickness from nanometer to micrometer by polymer nanosheet assembly. J. Mater. Chem. 18(12), 1302 (2008)

    Article  CAS  Google Scholar 

  8. Y.S. Zhang et al., Stretchable freestanding films of 3d nanocrystalline blue phase elastomer and their tunable applications. Adv. Opt. Mater. 9(1), 2001427 (2020)

    Article  Google Scholar 

  9. K.-S. Cho et al., Transparent and flexible Sb-doped SnO2 films with a nanoscale AgTi alloyed interlayer for heat generation and shielding applications. RSC Adv. 8(5), 2599–2609 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Y. Tai et al., “Self-Peel-off” transfer produces ultrathin polyvinylidene-fluoride-based flexible nanodevices. Adv. Sci. 4(4), 1600370 (2017)

    Article  Google Scholar 

  11. J.H. Kim et al., Tensile testing of ultra-thin films on water surface. Nat. Commun. 4, 2520 (2013)

    Article  PubMed  Google Scholar 

  12. W. Bai et al., Ultrathin 2D metal–organic framework (nanosheets and nanofilms)-based xD–2D hybrid nanostructures as biomimetic enzymes and supercapacitors. J. Mater. Chemi. A 7(15), 9086–9098 (2019)

    Article  CAS  Google Scholar 

  13. X. Peng et al., General method for ultrathin free-standing films of nanofibrous composite materials. Am. Chem. Soc. 129, 8625–8633 (2007)

    Article  CAS  Google Scholar 

  14. S. Park et al., Flexible molecular-scale electronic devices. Nat. Nanotechnol. 7(7), 438–442 (2012)

    Article  CAS  PubMed  Google Scholar 

  15. L. Shen et al., Asymmetric free-standing film with multifunctional anti-bacterial and self-cleaning properties. ACS Appl. Mater. Interfaces 4(9), 4476–4483 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Z. Ling et al., Fast peel-off ultrathin, transparent, and free-standing films assembled from low-dimensional materials using MXene sacrificial layers and produced bubbles. Small Methods 6(3), e2101388 (2022)

    Article  PubMed  Google Scholar 

  17. L. Song et al., Macroscopic two-dimensional monolayer films of gold nanoparticles: fabrication strategies, surface engineering and functional applications. Nanoscale 12(14), 7433–7460 (2020)

    Article  CAS  PubMed  Google Scholar 

  18. Ghaemi, F., et al., Synthesis of carbon nanomaterials using catalytic chemical vapor deposition technique. 2019: p. 1–27.

  19. A.R. Markelonis et al., Nanoparticle film deposition using a simple and fast centrifuge sedimentation method. Appl. Nanosci. 5(4), 457–468 (2014)

    Article  Google Scholar 

  20. J. Zhang et al., mcalable Manufacturing of free-standing, strong Ti3 C2 Tx MXene films with outstanding conductivity. Adv. Mater. 32(23), e2001093 (2020)

    Article  PubMed  Google Scholar 

  21. J.A. Rogers et al., Materials and mechanics for stretchable electronics. Science 327(5973), 1603–1607 (2010)

    Article  CAS  PubMed  Google Scholar 

  22. O. Bubnova et al., Stretching the limits. Nat. Nanotechnol. 12(2), 101–101 (2017)

    Article  CAS  PubMed  Google Scholar 

  23. H. Jiang et al., Two-dimensional materials: from mechanical properties to flexible mechanical sensors. InfoMat 2(6), 1077–1094 (2019)

    Article  Google Scholar 

  24. R.I. Babicheva et al., Mechanical properties of two-dimensional sp2-carbon nanomaterials. J. Exp. Theor. Phys. 129(1), 66–71 (2019)

    Article  CAS  Google Scholar 

  25. N. Hameed et al., Graphene based room temperature flexible nanocomposites from permanently cross-linked networks. Sci. Rep. 8, 1 (2018)

    Article  Google Scholar 

  26. D.G. Papageorgiou et al., Mechanical properties of graphene and graphene-based nanocomposites. Prog. Mater. Sci. 90, 75–127 (2017)

    Article  CAS  Google Scholar 

  27. S.K. Wee et al., Nano-graphene and its derivatives for fabrication of flexible electronic devices: a quick review. Adv. Mater. Lett. 10, 676–681 (2019)

    Article  Google Scholar 

  28. Y. Wang et al., MXenes: focus on optical and electronic properties and corresponding applications. Nanophotonics 9(7), 1601–1620 (2020)

    Article  CAS  Google Scholar 

  29. S.-M. Lee et al., Graphene as a flexible electronic material: mechanical limitations by defect formation and efforts to overcome. Mater. Today 18(6), 336–344 (2015)

    Article  CAS  Google Scholar 

  30. Huang X., et al., Physical properties and device applications of graphene oxide.

  31. R. Lv et al., Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets. Acc. Chem. Res. 48(1), 56–64 (2014)

    Article  PubMed  Google Scholar 

  32. J. Yao et al., 2D group 6 transition metal dichalcogenides toward wearable electronics and optoelectronics. J. Appl. Phys. 127(3), 030902 (2020)

    Article  CAS  Google Scholar 

  33. H. Wang et al., Physical and chemical tuning of two-dimensional transition metal dichalcogenides. Chem. Soc. Rev. 44(9), 2664–2680 (2015)

    Article  CAS  PubMed  Google Scholar 

  34. A. Sheraz et al., High elasticity and strength of ultra-thin metallic transition metal dichalcogenides. Nanoscale Adv. 3(13), 3894–3899 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Q. Peng et al., Outstanding mechanical properties of monolayer MoS2 and its application in elastic energy storage. Phys. Chem. Chem. Phys. 15(44), 19427 (2013)

    Article  CAS  PubMed  Google Scholar 

  36. Alexey F., et al., Mechanical Properties of Atomically Thin Tungsten Dichalcogenides: WS2, WSe2 and WTe2. ACS Nano, 2021.

  37. Y. Li et al., In situ tensile testing of nanometer-thick two-dimensional transition-metal carbide films: implications for mxenes acting as nanoscale reinforcement agents. ACS Appl. Nano Mater. 4(5), 5058–5067 (2021)

    Article  CAS  Google Scholar 

  38. J.-C. Lei et al., Recent advances in MXene: pre paration, properties, and applications. Front. Phys. 10(3), 276–286 (2015)

    Article  Google Scholar 

  39. H.L. Alexey Lipatov et al., Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers. Sci. Adv. 2018, 1 (2018)

    Google Scholar 

  40. Y. Ibrahim et al., The recent advances in the mechanical properties of self-standing two-dimensional MXene-based nanostructures: deep insights into the supercapacitor. Nanomaterials 10(10), 1916 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Y. Liu et al., Chemical functionalization of 2D black phosphorus. InfoMat 3(3), 231–251 (2021)

    Article  CAS  Google Scholar 

  42. Y. Xu et al., Recent progress in black phosphorus and black-phosphorus-analogue materials: properties, synthesis and applications. Nanoscale 11(31), 14491–14527 (2019)

    Article  CAS  PubMed  Google Scholar 

  43. A. Castellanos-Gomez et al., Black phosphorus: narrow gap, wide applications. J. Phys. Chem. Lett. 1, 1 (2015)

    Google Scholar 

  44. W. Qun et al., Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Appl. Phys. Lett. 104, 25 (2014)

    Google Scholar 

  45. J. Mittal et al., Recent progress in the synthesis of Layered Double Hydroxides and their application for the adsorptive removal of dyes: a review. J. Environ. Manag. 295, 113017 (2021)

    Article  CAS  Google Scholar 

  46. Q.W. O’Hare et al., Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 112, 4124–4155 (2012)

    Article  PubMed  Google Scholar 

  47. B. Li, J. He, D.G. Evans, Experimental investigation of sheet flexibility of layered double hydroxides: one-pot morphosynthesis of inorganic intercalates. Chem. Eng. J. 1(1), 124–137 (2008)

    Article  Google Scholar 

  48. Y. Tai et al., Human finger electronics based on opposing humidity-resistance responses in carbon nanofilms. Small 13(11), 1603486 (2017)

    Article  Google Scholar 

  49. P. Ares et al., Recent progress on antimonene: a new bidimensional material. Adv. Mater. 30(2), 1703771 (2018)

    Article  Google Scholar 

  50. T.S. Akash et al., Nanomechanics of antimonene allotropes under tensile loading. Phys. Chem. Chem. Phys. 23(10), 6241–6251 (2021)

    Article  CAS  PubMed  Google Scholar 

  51. Y. Deng et al., Noncontact liquid–solid nanogenerators as self-powered droplet sensors. J. Mater. Sci. Mater. Electron. 34(12), 1033 (2023)

    Article  CAS  PubMed  Google Scholar 

  52. S.M. Mozvashi et al., Antimonene/bismuthene vertical Van-der Waals heterostructure: a computational study. Physica E 118, 113914 (2020)

    Article  CAS  Google Scholar 

  53. U.S. Ghayas et al., A two-dimensional hexagonal boron nitride/polymer nanocomposite for flexible resistive switching devices. J. Mater. Chem. 1, 1 (2016)

    Google Scholar 

  54. X. Peng et al., Two dimensional nanomaterials for flexible supercapacitors. Chem. Soc. Rev. 43(10), 3303–3323 (2014)

    Article  CAS  PubMed  Google Scholar 

  55. L. Wu et al., InSe/hBN/graphite heterostructure for high-performance 2D electronics and flexible electronics. Nano Res. 13(4), 1127–1132 (2020)

    Article  CAS  Google Scholar 

  56. Y. Zhang et al., Non-covalent doping of graphitic carbon nitride polymer with graphene: controlled electronic structure and enhanced optoelectronic conversion. Energy Environ. Sci. 4(11), 4517 (2011)

    Article  CAS  Google Scholar 

  57. Y. Zhang et al., Tailoring electronic properties of two-dimensional antimonene with isoelectronic counterparts. Chin. Phys. B 29(3), 037305 (2020)

    Article  CAS  Google Scholar 

  58. S. Shi et al., Self-assembly of MXene-surfactants at liquid-liquid interfaces: from structured liquids to 3D aerogels. Angew. Chem. Int. Ed. Engl. 58(50), 18171–18176 (2019)

    Article  CAS  PubMed  Google Scholar 

  59. K. Ghatak et al., Controlled edge dependent stacking of WS(2)-WS(2) homo- and WS(2)-WSe(2) hetero-structures: a computational study. Sci. Rep. 10(1), 1648 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. S.M. Sharker, Hexagonal boron nitrides (white graphene): a promising method for cancer drug delivery. Int. J. Nanomedicine 14, 9983–9993 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  61. X. Ling et al., The renaissance of black phosphorus. Proc. Natl. Acad. Sci. 112(15), 4523–4530 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. H. Bardania et al., Facile preparation of a novel biogenic silver-loaded Nanofilm with intrinsic anti-bacterial and oxidant scavenging activities for wound healing. Scientific Report 10(1), 6129 (2020)

    Article  CAS  Google Scholar 

  63. Iqbal, P., J.A. Preece, and P.M. Mendes, Nanotechnology: The “Top-Down” and “Bottom-Up” Approaches. 2012.

  64. J. Li et al., Bottom-up approach for carbon nanotube interconnects. Appl. Phys. Lett. 82(15), 2491–2493 (2003)

    Article  CAS  Google Scholar 

  65. Nanomaterials definition matters. Nat. Nanotechnol. 14(3), 193–193 (2019)

  66. N. Baig et al., Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Mater. Adv. 2(6), 1821–1871 (2021)

    Article  Google Scholar 

  67. Jilani, A., et al., Advance deposition techniques for thin film and coating (2017)

  68. G. Magda, J. Pető, G. Dobrik et al., Exfoliation of large-area transition metal chalcogenide single layers. Sci. Rep. 2015, 1 (2015)

    Google Scholar 

  69. E. Gao et al., Mechanical exfoliation of two-dimensional materials. J. Mech. Phys. Solids 115, 248–262 (2018)

    Article  Google Scholar 

  70. Y. Huang et al., Reliable exfoliation of large-area high-quality flakes of graphene and other two-dimensional materials. ACS Nano 9(11), 10612–10620 (2015)

    Article  CAS  PubMed  Google Scholar 

  71. H. Li et al., Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc. Chem. Res. 47(4), 1067–1075 (2014)

    Article  CAS  PubMed  Google Scholar 

  72. S.-Z. Gao et al., Free-standing two-dimensional Au films. Rare Met. 41(12), 4235–4240 (2017)

    Article  Google Scholar 

  73. D. Ma et al., A universal etching-free transfer of MoS2 films for applications in photodetectors. Nano Res. 8(11), 3662–3672 (2015)

    Article  CAS  Google Scholar 

  74. A.A. Malygin et al., From V.B. Aleskovskii’s “Framework” hypothesis to the method of molecular layering/atomic layer deposition. Chem. Vapor Deposition 21(10–12), 216–240 (2015)

    Article  CAS  Google Scholar 

  75. H. Sopha et al., ALD growth of MoS2 nanosheets on TiO2 nanotube supports. FlatChem 17, 100130 (2019)

    Article  CAS  Google Scholar 

  76. Z. Cai et al., Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. 118(13), 6091–6133 (2018)

    Article  CAS  PubMed  Google Scholar 

  77. X. Feng et al., Free-standing dried foam films of graphene oxide for humidity sensing. Sens. Actuators B Chem. 215, 316–322 (2015)

    Article  CAS  Google Scholar 

  78. B. Joshua, D.H. Smith, Growth of 2D black phosphorus film from chemical vapor deposition. Nanotechnology 27, 215602 (2016)

    Article  Google Scholar 

  79. S.-J. Chang et al., Graphene growth from reduced graphene oxide by chemical vapour deposition: seeded growth accompanied by restoration. Sci. Rep. 6, 22653 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. R.M. Yadav et al., Facile synthesis of highly fluorescent free-standing films comprising graphitic carbon nitride (g-C3N4) nanolayers. New J. Chem. 44(6), 2644 (2020)

    Article  CAS  Google Scholar 

  81. J. Yoon et al., Flexible electrochemical glucose biosensor based on GOx/gold/MoS2/gold nanofilm on the polymer electrode. Biosens. Bioelectron. 140, 111343 (2019)

    Article  CAS  PubMed  Google Scholar 

  82. S.A. Kamaruddin et al., Zinc oxide films prepared by sol–gel spin coating technique. Appl. Phys. A 104(1), 263–268 (2010)

    Article  Google Scholar 

  83. J. Safaei et al., Facile fabrication of graphitic carbon nitride, (g-C3N4) thin film. J. Alloy. Compd. 769, 130–135 (2018)

    Article  CAS  Google Scholar 

  84. H. Bai et al., One-step synthesis of high pure CdS nanofilms via hydrothermal method. J. Mater. Sci. Mater. Electron. 29(11), 9193–9199 (2018)

    Article  CAS  Google Scholar 

  85. X. Zhang et al., Hydrothermal synthesis of two-dimensional MoS2 and its applications. Tungsten 1(1), 59–79 (2019)

    Article  Google Scholar 

  86. N. Chaudhary et al., Hydrothermal synthesis of MoS2 nanosheets for multiple wavelength optical sensing applications. Sens. Actuators A 277, 190–198 (2018)

    Article  CAS  Google Scholar 

  87. R.B. Prabhu et al., A general route to free-standing films of nanocrystalline molybdenum chalcogenides at a liquid/liquid interface under hydrothermal conditions. Appl. Surf. Sci. 511, 145579 (2020)

    Article  CAS  Google Scholar 

  88. S. Khodaparast et al., Water-based peeling of thin hydrophobic films. Phys. Rev. Lett. 119, 154502 (2017)

    Article  PubMed  Google Scholar 

  89. Y. Zhang et al., Capillary transfer of soft films. Proc. Natl. Acad. Sci. 117(10), 5210–5216 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Z. Liu et al., Wafer-scale growth of two-dimensional graphitic carbon nitride films. Matter 4(5), 1625 (2021)

    Article  CAS  Google Scholar 

  91. J. Ma et al., Role of thin film adhesion on capillary peeling. Nano Lett. 21(23), 9983–9989 (2021)

    Article  CAS  PubMed  Google Scholar 

  92. B. McVerry et al., Next-generation asymmetric membranes using thin-film liftoff. Nano Lett. 19(8), 5036–5043 (2019)

    Article  CAS  PubMed  Google Scholar 

  93. Y. Liu et al., Freestanding photoresist film: a versatile template for three-dimensional micro- and nanofabrication. Adv. Func. Mater. 30(42), 2004129 (2020)

    Article  CAS  Google Scholar 

  94. X. Chen et al., Facile peeling method as a post-remedy strategy for producing an ultrasmooth self-assembled monolayer for high-performance organic transistors. Langmuir 32(37), 9492–9500 (2016)

    Article  CAS  PubMed  Google Scholar 

  95. L. Guo, S.P. DeWeerth, An effective lift-off method for patterning high-density gold interconnects on an elastomeric substrate. Small 6(24), 2847–2852 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. X. Che et al., Mildly peeling off and encapsulating large mxene nanosheets with rigid biologic fibrils for synchronization of solar evaporation and energy harvest. ACS Nano 16(6), 8881–8890 (2022)

    Article  CAS  PubMed  Google Scholar 

  97. A.A. Leonardi, M.J.L. Faro, A. Irrera, Silicon nanowires synthesis by metal-assisted chemical etching: a review. Nanomaterials 11(2), 383 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. J. Shen et al., 2D MXene nanofilms with tunable gas transport channels. Adv. Func. Mater. 28(31), 1801511 (2018)

    Article  Google Scholar 

  99. H. Wang et al., A simple method for fabricating free-standing large area fluorinated single-layer graphene with size-tunable nanopores. Carbon 99, 564–570 (2016)

    Article  CAS  Google Scholar 

  100. Y. Xiang et al., A new approach for preparation of free-standing nano-porous SiO2 films with a large area. J. Sol-Gel Sci. Technol. 80(2), 267–276 (2016)

    Article  CAS  Google Scholar 

  101. W. Fan et al., Centrifugation-assisted assembly of colloidal silica into crack-free and transferrable films with tunable crystalline structures. Sci. Rep. Rep. 5, 1 (2015)

    CAS  Google Scholar 

  102. F. Liu et al., Controllable self-assembly method for large-scale synthesis of graphene sponges and free-standing graphene films. Adv. Func. Mater. 20(12), 1930 (2010)

    Article  CAS  Google Scholar 

  103. L. Ottaviano et al., Mechanical exfoliation and layer number identification of MoS2 revisited. 2D Materials 4(4), 045013 (2017)

    Article  Google Scholar 

  104. Y. Sozen et al., High-throughput mechanical exfoliation for low-cost production of van der Waals nanosheets. Small Methods 7(10), 2300326 (2023)

    Article  CAS  Google Scholar 

  105. Y. Zhang et al., Mechanical exfoliation assisted with carbon nanospheres to prepare a few-layer graphene for flexible strain sensor. Appl. Surf. Sci. 611, 155649 (2023)

    Article  CAS  Google Scholar 

  106. Y.-L. Tai et al., A promising approach to conductive patterns with high efficiency for flexible electronics. Appl. Surf. Sci. 257(16), 7096 (2011)

    Article  CAS  Google Scholar 

  107. A. Tiwari, A topical review on hybrid quasi-ceramic coatings for corrosion protection. Corros. Rev. 36(2), 117–125 (2018)

    Article  CAS  Google Scholar 

  108. A. Rockett (ed.), Chemical vapor deposition. The Materials Science of Semiconductors (Springer, Boston, 2008), pp.573-609.

    Google Scholar 

  109. V. Paolucci et al., Sustainable liquid-phase exfoliation of layered materials with nontoxic polarclean solvent. ACS Sustain. Chemi. Eng. 8(51), 18830–18840 (2020)

    Article  CAS  Google Scholar 

  110. F.I. Alzakia, S.C. Tan, Liquid-exfoliated 2D materials for optoelectronic applications. Adv. Sci. 8(11), 2003864 (2021)

    Article  CAS  Google Scholar 

  111. M. Li et al., Hydrothermal synthesis of VO2 polymorphs: advantages, challenges and prospects for the application of energy efficient smart windows. Small 13(36), 1701147 (2017)

    Article  Google Scholar 

  112. A. Adeleye et al., One-dimensional titanate nanotube materials: heterogeneous solid catalysts for sustainable synthesis of biofuel precursors/value-added chemicals—a review. J. Mater. Sci. 56, 1 (2021)

    Article  Google Scholar 

  113. J. Zhang et al., Advances in atomic layer deposition. Nanomanuf. Metrol. 5(3), 191–208 (2022)

    Article  Google Scholar 

  114. F. Fang et al., Atomic layer deposition assisted encapsulation of quantum dot luminescent microspheres toward display applications. Adv. Opt. Mater. 8(12), 1902118 (2020)

    Article  CAS  Google Scholar 

  115. J. Wang, B. Liu, Electronic and optoelectronic applications of solution-processed two-dimensional materials. Sci. Technol. Adv. Mater. 20(1), 992–1009 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  116. M. Banik, R. Mukherjee, Fabrication of ordered 2D colloidal crystals on flat and patterned substrates by spin coating. ACS Omega 3(10), 13422–13432 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. P. Li, X. Huang, Y.-P. Zhao, Electro-capillary peeling of thin films. Nat. Commun. 14(1), 6150 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Q. Yuan, Y.-P. Zhao, Precursor film in dynamic wetting, electrowetting, and electro-elasto-capillarity. Phys. Rev. Lett. 104(24), 246101 (2010)

    Article  PubMed  Google Scholar 

  119. Y. Liu et al., Influence of surface treatment on detachment of anodic films from Al–Mg alloys. Corros. Sci. 43(12), 2349–2357 (2001)

    Article  CAS  Google Scholar 

  120. L. Shui et al., Peeling mechanics of film-substrate system with mutually embedded nanostructures in the interface. Int. J. Solids Struct. 251, 111737 (2022)

    Article  CAS  Google Scholar 

  121. M. Zheng et al., Fabrication of gold nanostructures using wet lift-off without adhesion promotion. Microelectron. Eng. 233, 111420 (2020)

    Article  CAS  Google Scholar 

  122. H. Ohlin, T. Frisk, U. Vogt, Single layer lift-off of CSAR62 for dense nanostructured patterns. Micromachines 14(4), 766 (2023)

    Article  PubMed  PubMed Central  Google Scholar 

  123. Y. Xiong et al., Free-standing high surface area titania films grown at the air-water interface. J. Phys. Chem. C 118(46), 26641–26648 (2014)

    Article  CAS  Google Scholar 

  124. K.J. Edler, Formation of ordered mesoporous thin films through templating, in Handbook of sol-gel science and technology. ed. by L. Klein, M. Aparicio, A. Jitianu (Springer, Cham, 2017), pp.1–67

    Google Scholar 

  125. A. Khodai-Joopary et al., Chemical etching of polyvinylidene fluoride films. Int. J. Radiat. Appl. Instrum. Part D 15(1), 167–170 (1988)

    Google Scholar 

  126. J.-K. Kim, J.-M. Lee, Wet chemical etching of ZnO films using NHx-based (NH4)2CO3 and NH4OH alkaline solution. J. Mater. Sci. 52(22), 13054–13063 (2017)

    Article  CAS  Google Scholar 

  127. S. Liu et al., Green fabrication of freestanding piezoceramic films for energy harvesting and virus detection. Nano-Micro Letters 15(1), 131 (2023)

    Article  PubMed  PubMed Central  Google Scholar 

  128. R.L. de Miranda, C. Zamponi, E. Quandt, Micropatterned freestanding superelastic TiNi films. Adv. Eng. Mater. 15(1–2), 66–69 (2013)

    Article  Google Scholar 

  129. X. Li et al., Evaporation-induced sintering of liquid metal droplets with biological nanofibrils for flexible conductivity and responsive actuation. Nat. Commun. 10(1), 3514 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. A. Sheelam et al., Flexible and free-standing polyvinyl alcohol-reduced graphene oxide-Cu2O/CuO thin films for electrochemical reduction of carbon dioxide. J. Appl. Electrochem. 50(9), 979–991 (2020)

    Article  CAS  Google Scholar 

  131. C. Lu, X. Chen, Latest advances in flexible symmetric supercapacitors: from material engineering to wearable applications. Acc. Chem. Res. 53(8), 1468–1477 (2020)

    Article  CAS  PubMed  Google Scholar 

  132. Y. Shao et al., Graphene-based materials for flexible supercapacitors. Chem. Soc. Rev. 44(11), 3639–3665 (2015)

    Article  CAS  PubMed  Google Scholar 

  133. N. Li et al., Transparent and self-supporting graphene films with wrinkled- graphene-wall-assembled opening polyhedron building blocks for high performance flexible/transparent supercapacitors. ACS Appl. Mater. Interfaces 9(11), 9763–9771 (2017)

    Article  CAS  PubMed  Google Scholar 

  134. J. Chen et al., Controllable fabrication of ultrathin free-standing graphene films. Philos. Trans. R. Soc. A 372, 20130017 (2013)

    Article  Google Scholar 

  135. S. Kumar et al., Supercapacitors based on Ti3C2Tx MXene extracted from supernatant and current collectors passivated by CVD-graphene. Sci. Rep. 11, 1 (2021)

    Google Scholar 

  136. K. Rana et al., Highly conductive freestanding graphene films as anode current collectors for flexible lithium-ion batteries. ACS Appl. Mater. Interfaces 6(14), 11158–11166 (2014)

    Article  CAS  PubMed  Google Scholar 

  137. L. David, R. Bhandavat, G. Singh, MoS2/graphene composite paper for sodium-ion battery electrodes. ACS Nano 8(2), 1759–1770 (2014)

    Article  CAS  PubMed  Google Scholar 

  138. R. Wang et al., Heat-induced formation of porous and free-standing MoS2/GS hybrid electrodes for binder-free and ultralong-life lithium ion batteries. Nano Energy 8, 183–195 (2014)

    Article  CAS  Google Scholar 

  139. Y. Wu, Y. Yu, 2D material as anode for sodium ion batteries: recent progress and perspectives. Energy Storage Mater. 16, 323–343 (2019)

    Article  Google Scholar 

  140. D. Selvakumar et al., Freestanding flexible nitrogen doped-reduced graphene oxide film as an efficient electrode material for solid-state supercapacitors. J. Alloy. Compd. 723, 995–1000 (2017)

    Article  CAS  Google Scholar 

  141. D. Selvakumar et al., Facile synthesize of free standing highly conducting flexible reduced graphene oxide paper. J. Mater. Sci. Mater. Electron. 27(6), 6232–6241 (2016)

    Article  CAS  Google Scholar 

  142. G. Anagnostopoulos et al., Mechanical stability of flexible graphene-based displays. ACS Appl. Mater. Interfaces 8(34), 22605–22614 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. S. Kizhepat et al., Development of two-dimensional functional nanomaterials for biosensor applications: opportunities, challenges, and future prospects. Nanomaterials 13(9), 1520 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. P. Zhao et al., Perspectives and challenges for lead-free energy-storage multilayer ceramic capacitors. J. Adv. Ceram. 10(6), 1153–1193 (2021)

    Article  CAS  Google Scholar 

  145. S. Rana, V. Singh, B. Singh, Recent trends in 2D materials and their polymer composites for effectively harnessing mechanical energy. iScience 25(2), 103748 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. J. Wang et al., Electrochemical energy storage performance of 2D nanoarchitectured hybrid materials. Nat. Commun. 12(1), 3563 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. J. Jiang et al., Defect engineering in 2D materials: precise manipulation and improved functionalities. Research 2019, 1 (2019)

    Article  Google Scholar 

  148. X. Song et al., Enhancing the mechanical stability of composite electrodes by regulating the volume of active material using a prelithiation strategy. J. Energy Storage 51, 104390 (2022)

    Article  Google Scholar 

  149. Su, Y., et al., Delamination-assisted ultrafast wrinkle formation in a freestanding film. arXiv preprint arXiv:2212.12082, 2022.

  150. K.G. Latham et al., Challenges and opportunities in free-standing supercapacitors research. APL Mater. 10, 11 (2022)

    Article  Google Scholar 

  151. Y. Sun et al., Surface chemistry and structure manipulation of graphene-related materials to address the challenges of electrochemical energy storage. Chem. Commun. 59, 1 (2023)

    CAS  Google Scholar 

  152. Y. Zhou et al., Unleashing the potential of MXene-based flexible materials for high-performance energy storage devices. Adv. Sci. 1, 2304874 (2024)

    Article  Google Scholar 

  153. M.A.M. Hasan et al., 2D nanomaterials for effective energy scavenging. Nano-Micro Lett. 13(1), 82 (2021)

    Article  Google Scholar 

  154. R.D. McKerracher et al., Advances in prevention of thermal runaway in lithium-ion batteries. Adv. Energy Sustain. Res. 2(5), 2000059 (2021)

    Article  CAS  Google Scholar 

  155. W. Zhang et al., Data-driven early warning strategy for thermal runaway propagation in lithium-ion battery modules with variable state of charge. Appl. Energy 323, 119614 (2022)

    Article  Google Scholar 

  156. S. Liu et al., Ti3C2T x MXenes-based flexible materials for electrochemical energy storage and solar energy conversion. Nanophotonics 11(14), 3215–3245 (2022)

    Article  CAS  Google Scholar 

  157. X. Zheng et al., Organic-inorganic hybrid hole transport layers with SnS doping boost the performance of perovskite solar cells. J. Energy Chem. 68, 637–645 (2021)

    Article  Google Scholar 

  158. Z.L. Lirong Cai, S. Zhang, K. Prenger, M. Naguib, W.J. Pol, Safer lithium-ion battery anode based on Ti3C2Tz MXene with thermal safety mechanistic elucidation. Chem. Eng. J. 419, 1 (2021)

    Google Scholar 

  159. A. Bhat et al., Prospects challenges and stability of 2D MXenes for clean energy conversion and storage applications. Npj 2D Mater. Appl. 5(1), 61 (2021)

    Article  CAS  Google Scholar 

  160. Y. Yang et al., The role of geometric sites in 2D materials for energy storage. Joule 2(6), 1075–1094 (2018)

    Article  CAS  Google Scholar 

  161. C. Meng et al., In situ and operando characterizations of 2D materials in electrochemical energy storage devices. Small Scie. 1(4), 2000076 (2021)

    Article  CAS  Google Scholar 

  162. X.-X. Xue et al., Black phosphorus-based materials for energy storage and electrocatalytic applications. J. Phys. Energy 3(4), 042002 (2021)

    Article  CAS  Google Scholar 

  163. P. Wang et al., How does nickel (Ni) modify two-dimensional black phosphorus to enhance its electrochemical lithium storage performance? J. Alloys Compd. 968, 172103 (2023)

    Article  CAS  Google Scholar 

  164. E. Pomerantseva, Y. Gogotsi, Two-dimensional heterostructures for energy storage. Nat. Energy 2(7), 17089 (2017)

    Article  CAS  Google Scholar 

  165. V. Kedambaimoole et al., Laser-induced direct patterning of free-standing Ti3C2–MXene films for skin conformal tattoo sensors. ACS Sens. 5(7), 2086–2095 (2020)

    Article  CAS  PubMed  Google Scholar 

  166. Q. Wang et al., A flexible piezoelectric energy harvester-based single-layer WS2 nanometer 2D material for self-powered sensors. Energies 14(8), 2097 (2021)

    Article  CAS  Google Scholar 

  167. L. Liu et al., Ultrathin free-standing graphene oxide film based flexible touchless sensor. J. Semicond. 39(1), 013002 (2018)

    Article  Google Scholar 

  168. P. Ranjan et al., Graphene oxide based free-standing films for humidity and hydrogen peroxide sensing. J. Mater. Sci. Mater. Electron. 29(18), 15946–15956 (2018)

    Article  CAS  Google Scholar 

  169. Z. Jia et al., Constructing conductive titanium carbide nanosheet (MXene) network on polyurethane/polyacrylonitrile fibre framework for flexible strain sensor. J. Colloid Interface Sci. 584, 1–10 (2021)

    Article  CAS  PubMed  Google Scholar 

  170. S. Zhu et al., Anomalous thermally expanded polymer networks for flexible perceptual devices. Matter 4(6), 1832–1862 (2021)

    Article  CAS  Google Scholar 

  171. Q. Yancong et al., Substrate-free multilayer graphene electronic skin for intelligent diagnosis. ACS Appl. Mater. Interfaces 1, 1 (2020)

    Google Scholar 

  172. Y. Lei et al., A MXene-based wearable biosensor system for high-performance in vitro perspiration analysis. Small 15(19), 1901190 (2019)

    Article  Google Scholar 

  173. Z. Minwei et al., Graphene-paper based electrochemical sensors, in Electrochemical sensors technology. ed. by R. Mohammed Muzibur, A. Abdullah Mohamed (IntechOpen, Rijeka, 2017)

    Google Scholar 

  174. Y. Wang et al., 2D-materials-based wearable biosensor systems. Biosensors (Basel) 12, 11 (2022)

    Google Scholar 

  175. C.J. Bullock, C. Bussy, Biocompatibility considerations in the design of graphene biomedical materials. Adv. Mater. Interfaces 6(11), 1900229 (2019)

    Article  Google Scholar 

  176. G.A. Naikoo et al., 2D materials, synthesis, characterization and toxicity: a critical review. Chem. Biol. Interact. 365, 110081 (2022)

    Article  CAS  PubMed  Google Scholar 

  177. H. Kim et al., Shape morphing smart 3D actuator materials for micro soft robot. Mater. Today 41, 243–269 (2020)

    Article  CAS  Google Scholar 

  178. M. Mojtabavi et al., Ionically active mxene nanopore Actuators. Small 18(11), 2105857 (2022)

    Article  CAS  Google Scholar 

  179. L.Q. Xuejun Xie et al., An asymmetrically surface-modified graphene film electrochemical actuator. ACS Nano 4, 6050–6054 (2010)

    Article  PubMed  Google Scholar 

  180. X. Wang et al., A humidity-driven flexible carbon nitride film with multiple deformations. Smart Mater. Struct. 28(10), 105007 (2019)

    Article  CAS  Google Scholar 

  181. J.-N. Ma et al., Heterogeneous self-healing assembly of MXene and graphene oxide enables producing free-standing and self-reparable soft electronics and robots. Sci. Bull. 67(5), 501–511 (2022)

    Article  CAS  Google Scholar 

  182. Z. Othman, K.A. Mahmoud, Advancements of 2D materials-based membranes. Membranes (Basel) 12, 1 (2021)

    Google Scholar 

  183. T. Mizoguchi et al., Free standing graphene oxide membrane with epoxy groups for water purification. Chem. Lett. 49(4), 376–378 (2020)

    Article  CAS  Google Scholar 

  184. F. Yan et al., Preparation of freestanding graphene-based laminar membrane for clean-water intake via forward osmosis process. RSC Adv. 7(3), 1326–1335 (2017)

    Article  CAS  Google Scholar 

  185. Y.P. Tang, D.R. Paul, T.S. Chung, Free-standing graphene oxide thin films assembled by a pressurized ultrafiltration method for dehydration of ethanol. J. Membr. Sci. 458, 199–208 (2014)

    Article  CAS  Google Scholar 

  186. M.A. Zafar, M.V. Jacob, Synthesis of free-standing graphene in atmospheric pressure microwave plasma for the oil-water separation application. Appl. Surf. Sci. Adv. 11, 100312 (2022)

    Article  Google Scholar 

  187. X. Ou et al., Free-standing graphene oxide-chitin nanocrystal composite membrane for dye adsorption and oil/water separation. ACS Sustain. Chem. Eng. 7(15), 13379–13390 (2019)

    Article  CAS  Google Scholar 

  188. N. Zhang et al., A review on oil/water mixture separation material. Ind. Eng. Chem. Res. 59(33), 14546–14568 (2020)

    Article  CAS  Google Scholar 

  189. L. Zhang et al., Two-dimensional Na-Bentonite@MXene composite membrane with switchable wettability for selective oil/water separation. Sep. Purif. Technol. 306, 122677 (2023)

    Article  CAS  Google Scholar 

  190. S. Iqbal et al., Electrochemical performance of 2D polyaniline anchored CuS/graphene nano-active composite as anode material for lithium-ion battery. J. Colloid Interface Sci. 502, 16–23 (2017)

    Article  CAS  PubMed  Google Scholar 

  191. S. Zhao, Y. Tao, P. Maryum et al., Facile synthesis of ternary TiO2/polyaniline/graphene composites with enhanced photocatalytic performance towards organic dyes removal. Russ. J. Phys. Chem. 95, 1745–1755 (2021)

    Article  CAS  Google Scholar 

  192. J. Liang et al., Low-potential solid-solid interfacial charging on layered polyaniline anode for high voltage pseudocapacitive intercalation Li-ion supercapacitors. Nano Energy 105, 108010 (2023)

    Article  CAS  Google Scholar 

  193. C. Eldona et al., A free-standing polyaniline/silicon nanowire forest as the anode for lithium-ion batteries. Chemistry 17(24), e202200946 (2022)

    CAS  Google Scholar 

  194. D. Barpuzary, K. Kim, M.J. Park, Two-dimensional conducting polymers: synthesis and charge transport. J. Polym. Sci., Part B: Polym. Phys. 57(18), 1169–1176 (2019)

    Article  CAS  Google Scholar 

  195. H. Du et al., Flexible free-standing polyaniline/poly(vinyl alcohol) composite electrode with good capacitance performance and shape memory behavior. Progr. Nat. Sci. 31(4), 557–566 (2021)

    Article  CAS  Google Scholar 

  196. H. Tian et al., Growth of 2D mesoporous polyaniline with controlled pore structures on ultrathin MoS2 nanosheets by block copolymer self-assembly in solution. ACS Appl. Mater. Interfaces 9(50), 43975–43982 (2017)

    Article  CAS  PubMed  Google Scholar 

  197. T. Zhang et al., Engineering crystalline quasi-two-dimensional polyaniline thin film with enhanced electrical and chemiresistive sensing performances. Nat. Commun. 10(1), 4225 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  198. Y. Sood et al., Polypyrrole-tungsten disulphide 2D nanocomposites for ammonia sensing. Sens. Actuators B Chem. 394, 134298 (2023)

    Article  CAS  Google Scholar 

  199. R.A. Lehane et al., Electrosynthesis of biocompatible free-standing PEDOT thin films at a polarized liquid|liquid interface. J. Am. Chem. Soc. 144(11), 4853–4862 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. J. Gao et al., NH3 sensor based on 2D wormlike polypyrrole/graphene heterostructures for a self-powered integrated system. ACS Appl. Mater. Interfaces 12(34), 38674–38681 (2020)

    Article  CAS  PubMed  Google Scholar 

  201. Y. Tai et al., Toward flexible wireless pressure-sensing device via ionic hydrogel microsphere for continuously mapping human-skin signals. Adv. Mater. Interfacies 4(20), 1700496 (2017)

    Article  Google Scholar 

  202. H. Wang et al., 2D MoS2/polyaniline heterostructures with enlarged interlayer spacing for superior lithium and sodium storage. J. Mater. Chemi. A 5(11), 5383–5389 (2017)

    Article  CAS  Google Scholar 

  203. K.S. Choi et al., Fabrication of free-standing multilayered graphene and poly(3,4-ethylenedioxythiophene) composite films with enhanced conductive and mechanical properties. Langmuir 26(15), 12902–12908 (2010)

    Article  CAS  PubMed  Google Scholar 

  204. M. Abutalip et al., Strategic synthesis of 2D and 3D conducting polymers and derived nanocomposites. Adv. Mater. 35(5), 2208864 (2023)

    Article  CAS  Google Scholar 

  205. S. Liu et al., Two-dimensional mesoscale-ordered conducting polymers. Angew. Chem. Int. Ed. Engl. 55(40), 12516–12521 (2016)

    Article  CAS  PubMed  Google Scholar 

  206. Y. Tai, G. Lubineau, Z. Yang, Light-activated rapid-response polyvinylidene-fluoride-based flexible films. Adv. Mater. 28(23), 4665–4670 (2016)

    Article  CAS  PubMed  Google Scholar 

  207. S. Liu et al., Patterning two-dimensional free-standing surfaces with mesoporous conducting polymers. Nat. Commun. 6(1), 8817 (2015)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by funding from the National Natural Science Foundation of China (62071459), the National Key Research and Development Program of China (2022YFF1202500, 2022YFF1202502), International Science and Technology Cooperation of Guangdong Province (2022A0505050058), the Science and Technology program of Guangdong province (2022A0505090007) and Foundation of Shenzhen (KQTD20210811090217009, JCYJ20220818101205011).

Author information

Authors and Affiliations

Authors

Contributions

Abduweli Mijit and Muhammad Nouman Siddique Awan wrote this manuscript, Yanlong Tai and Shanshan Zhu helps writing, proof reading of the manuscript. Remaining authors contributed in the reference investigation, etc.

Corresponding authors

Correspondence to Shanshan Zhu or Yanlong Tai.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mijit, A., Awan, M.N.S., Li, S. et al. Self-supporting multi-functional two-dimensional nanofilms for flexible perceptual devices: review. J Mater Sci: Mater Electron 35, 813 (2024). https://doi.org/10.1007/s10854-024-12532-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12532-5

Navigation