Skip to main content
Log in

High-field dielectric properties and high-power performance of Fe-modified PZN–PMS–PZT piezoelectric ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, the 0.04Pb(Zn1/3Nb2/3)O3-0.05Pb(Mn1/3Sb2/3)O3xPbZrO3–(0.91−x)PbTiO3 + ymol%Fe2O3 (xPZ-PZNMST + y%Fe; x = 0.440–0.460, y = 0.00–0.15) piezoelectric ceramics were synthesized by solid-state reaction method. The 0.45PZ-PZNMST + 0.10%Fe ceramic with morphotropic phase boundary shows optimum comprehensive electromechanical properties with d33 = 401 pC/N, kp=0.6, tan δ = 0.39%, Qm=921, and Tc = 314 °C. In addition, a low high-field tan δ of 0.78% at 200 V/mm is achieved in the 0.45PZ-PZNMST + 0.10%Fe ceramic. Therefore, a high vibration velocity of 0.80 m/s is obtained in 0.45PZ-PZNMST + 0.10%Fe ceramic. The maximum mechanical energy density of 0.45PZ-PZNMST + 0.10%Fe ceramic reaches 2500 J/m3, which is about four times that of commercial PZT4 ceramics (620 J/m3). The 0.45PZ-PZNMST + 0.10%Fe ceramic with good high-power performance shows a potential application in high-power ultrasonic transducers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data that support the findings of this study are included within the article and supplementary information.

References

  1. F. Guo, S. Zhang, W. Long, P. Fang, X. Li, Z. Xi, Ceram. Int. 48, 23241–23248 (2022)

    CAS  Google Scholar 

  2. L. Shi, P. Wu, L. Yu, Y. Zhao, Z. Li, W. Zhao, Z. Wang, Y. Peng, W. Hua, J. Wang, R. Song, W. Fei, Ceram. Int. 48, 10024–10030 (2022)

    CAS  Google Scholar 

  3. F. Li, D. Lin, Z. Chen, Z. Cheng, J. Wang, C. Li, Z. Xu, Q. Huang, X. Liao, L.Q. Chen, T.R. Shrout, S. Zhang, Nat. Mater. 17, 349–354 (2018)

    CAS  PubMed  Google Scholar 

  4. Y. Yan, L.D. Geng, H. Liu, H. Leng, X. Li, Y.U. Wang, S. Priya, Nat. Commun. 13, 3565 (2022)

    CAS  PubMed  PubMed Central  Google Scholar 

  5. H.J. Lee, S.O. Ural, L. Chen, K. Uchino, S. Zhang, J.L. Jones, J. Am. Ceram. Soc. 95, 3383–3386 (2012)

    CAS  Google Scholar 

  6. L. Chen, H. Fan, S. Zhang, J. Am. Ceram. Soc. 100, 3568–3576 (2017)

    CAS  Google Scholar 

  7. M. Slabki, J. Wu, M. Weber, P. Breckner, D. Isaia, K. Nakamura, J. Koruza, J. Am. Ceram. Soc. 102, 6008–6017 (2019)

    CAS  Google Scholar 

  8. F. Gao, L. Cheng, R. Hong, J. Liu, C. Wang, C. Tian, Ceram. Int. 35, 1719–1723 (2009)

    CAS  Google Scholar 

  9. L. Bian, X. Qi, K. Li, J. Fan, Z. Li, E. Sun, B. Yang, S. Dong, W. Cao, J. Eur. Ceram. Soc. 41, 6983–6990 (2021)

    CAS  Google Scholar 

  10. A. Kumar, S. Saha, H. Prakash, B. Mahale, R.P. Singh, A. Adukkadan, R. Ranjan, N. Kumar, J. Mater. Sci. Mater. Electron. 34, 723 (2023)

    CAS  Google Scholar 

  11. L. Chen, H. Liu, H. Qi, J. Chen, Prog Mater. Sci. 127, 100944 (2022)

    CAS  Google Scholar 

  12. Y. Yan, Y. Xu, Y. Feng, Ceram. Int. 40, 5897–5903 (2014)

    CAS  Google Scholar 

  13. L. Li, J. Liu, J. Xu, S. Cao, Q. Chen, E. Pawlikowska, M. Szafran, F. Gao, M. Reece, H. Yan, Ceram. Int. 46, 180–185 (2020)

    CAS  Google Scholar 

  14. Y. Wang, G. Xiang, L. Gao, W. Tang, G. Yuan, J. Electron. Mater. 52, 2986–2994 (2023)

    CAS  Google Scholar 

  15. Q. Wu, M. Hao, Z. Zeng, X. Wang, W. Lv, G. Fan, Ceram. Int. 43, 10866–10872 (2017)

    CAS  Google Scholar 

  16. G. Fan, Z. Zeng, S. Jin, Q. Wu, W. Lv, X. Wang, Ferroelectrics. 520, 126–134 (2017)

    CAS  Google Scholar 

  17. W. Wang, R. Liang, Z. Zhou, Y. Zhang, X. Dong, J. Am. Ceram. Soc. 105, 279–291 (2021)

    Google Scholar 

  18. T. Li, Y.H. Chen, J. Ma, Sens. Actuator Phys. 138, 404–410 (2007)

    CAS  Google Scholar 

  19. H. Du, Z. Pei, W. Zhou, F. Luo, S. Qu, Mat. Sci. Eng. A 421, 286–289 (2006)

    Google Scholar 

  20. I.S. Board, Ferroelect Freq. Contr. 43, 719–772 (1996)

    Google Scholar 

  21. S.Y. Zhao, J.J. Bian, J. Mater. Sci. Mater. Electron. 34, 1202 (2023)

    CAS  Google Scholar 

  22. W. Tang, Y. Wang, G. Xiang, X. Zhao, Z. Pan, Y. Wang, Y. Yang, Y. Wang, G. Yuan, J. Am. Ceram. Soc. 106, 6868–6878 (2023)

    CAS  Google Scholar 

  23. Y. Wang, P. Fang, F. Guo, W. Long, X. Li, A. He, Z. Xi, J. Mater. Sci. Mater. Electron. 34, 981 (2023)

    CAS  Google Scholar 

  24. M.K. Zhu, P.X. Lu, Y.D. Hou, H. Wang, H. Yan, J. Mater. Res. 20, 2670–2675 (2011)

    Google Scholar 

  25. T. Li, H. Fan, C. Long, G. Dong, S. Sun, J. Alloys Compd. 609, 60–67 (2014)

    CAS  Google Scholar 

  26. X. Tan, H. Fan, S. Ke, L. Zhou, Y.W. Mai, H. Huang, Mater. Res. Bull. 47, 4472–4477 (2012)

    CAS  Google Scholar 

  27. X.B. Ren, Nat. Mater. 3, 91–94 (2004)

    CAS  PubMed  Google Scholar 

  28. A. Pramanick, D. Damjanovic, J.E. Daniels, J.C. Nino, J.L. Jones, J. Am. Ceram. Soc. 94, 293–309 (2011)

    CAS  Google Scholar 

  29. Q. Guo, F. Li, F. Xia, X. Gao, P. Wang, H. Hao, H. Sun, H. Liu, S. Zhang, ACS Appl. Mater. Inter. 11, 43359–43367 (2019)

    CAS  Google Scholar 

  30. K. Uchino, Adv. Piezoelectric Mater. 17, 647–754 (2017)

    Google Scholar 

  31. D.G. Lee, S. Go, I.R. Yoo, S.H. Choi, Y.Y. Kim, H.S. Kim, S. Hur, H. Kang, J.M. Baik, Y.S. Park, S. Nahm, C.Y. Kang, K.H. Cho, H.C. Song, Ceram. Int. 49, 33480–33488 (2023)

    CAS  Google Scholar 

  32. M. Hejazi, E. Taghaddos, E. Gurdal, K. Uchino, A. Safari, S. Trolier-McKins, J. Am. Ceram. Soc. 97, 3192–3196 (2014)

    CAS  Google Scholar 

  33. Y. Gao, K. Uchino, D. Viehland, J. Appl. Phys. 101, 114110 (2007)

    Google Scholar 

  34. E.A. Gurdal, S.O. Ural, H.Y. Park, S. Nahm, K. Uchino, Jpn. J. Appl. Phys. 50, 027101 (2011)

    Google Scholar 

  35. Y.H. Huang, C.C. Ma, Z.Z. Li, Int. J. Solids Struct. 51, 227–251 (2014)

    Google Scholar 

  36. C.P. Chen, C.H. Huang, Y.Y. Chen, J. Sound Vib. 326, 251–262 (2009)

    Google Scholar 

  37. C.H. Huang, J. Sound Vib. 283, 665–683 (2005)

    Google Scholar 

  38. C.H. Huang, Y.C. Lin, C. Ma, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 51, 12–24 (2004)

    PubMed  Google Scholar 

  39. T. Pu, H. Chen, J. Xing, Y.X. Luo, S.B. Fan, H. Liu, Q. Chen, J.G. Zhu, J. Am. Ceram. Soc. 105, 4152–4160 (2022)

    CAS  Google Scholar 

  40. C. Chen, Y. Wang, Z.Y. Li, C. Liu, W. Gong, Q. Tan, B. Han, F.Z. Yao, K. Wang, J. Adv. Ceram. 10, 587–595 (2021)

    CAS  Google Scholar 

  41. X. Luo, J. Zeng, X. Shi, L. Zheng, K. Zhao, Z. Man, G. Li, Ceram. Int. 44, 8456–8460 (2018)

    CAS  Google Scholar 

  42. Y. Cheng, Y. Yang, Y. Wang, H. Meng, J. Alloys Compd. 508, 364–369 (2010)

    CAS  Google Scholar 

  43. Y. Doshida, K. Hayakawa, H. Tamura, S. Tanaka, Jpn J. Appl. Phys. 61, Sg1058 (2022)

    CAS  Google Scholar 

  44. Y. Yu, J. Yang, J. Wu, L. Bian, X. Li, W. Chen, S. Dong, Ceram. Int. 46, 19103–19110 (2020)

    CAS  Google Scholar 

Download references

Funding

The work was supported by the National Natural Science Foundation of China (Grant No. 92263105, U2037603 and 62374090) and the Fundamental Research Funds for the Central Universities (Grant No. 30921013108).

Author information

Authors and Affiliations

Authors

Contributions

GX: conceptualization, investigation, data curation, formal analysis, writing—original draft, YW: investigation, data curation, formal analysis, XG: investigation, formal analysis, conceptualization, WT: conceptualization, supervision, writing—review & editing, YW: investigation, formal analysis, conceptualization, GY: conceptualization, supervision, writing—review & editing.

Corresponding author

Correspondence to Wenbin Tang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, G., Wang, Y., Gai, X. et al. High-field dielectric properties and high-power performance of Fe-modified PZN–PMS–PZT piezoelectric ceramics. J Mater Sci: Mater Electron 35, 809 (2024). https://doi.org/10.1007/s10854-024-12603-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12603-7

Navigation