Skip to main content
Log in

Simulation study on penetration depth of light in the source–detector distance using a nine-layered skin tissue model in the visible wavelength range

  • Special Section: Regular Paper
  • The Fourteenth Japan-Finland Joint Symposium on Optics in Engineering (OIE’23), Hamamatsu, Japan
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

We simulated the relationship between the diffuse reflectance and penetration depth of light in skin with respect to the source (S)–detector (D) distance using the nine-layered skin tissue model for three wavelengths in the visible range. The photon propagation trajectory is visualized for intuitive understanding. The average penetration depth and the diffuse reflectance component are graphically related with the S-D distance. The results of the penetration depth versus diffuse reflectance and comparison with multiple regression analysis indicate that changes of absorption and/or scattering in the upper dermis region are expected to be perceived selectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Dawson, J.B., Barker, D.J., Ellis, D.J., Grassam, E., Cotterill, J.A., Fisher, G.W., Feather, J.W.: A theoretical and experimental study of light absorption and scattering by in vivo skin. Phys. Med. Biol. 25(4), 695–709 (1980)

    Article  Google Scholar 

  2. Feather, J.W., Hajizadeh-Saffar, M., Leslie, G., Dawson, J.B.: A portable scanning reflectance spectrophotometer using visible wavelengths for the rapid measurement of skin pigments. Phys. Med. Biol. 34, 807–820 (1989)

    Article  Google Scholar 

  3. Harrison, D.K., Evans, S.D., Abbot, N.C., Beck, J.S., McCollum, P.T.: Spectrophotometric measurements of haemoglobin saturation and concentration in skin during the tuberculin reaction in normal human subjects. Clin. Phys. Physiol. Meas. 13, 349–363 (1992)

    Article  Google Scholar 

  4. Newton, D.J., Harrison, D.K., Delaney, C.J., Beck, J.S., McCollum, P.T.: Comparison of macro- and micro-lightguide spectrophotometric measurements of microvascular haemoglobin oxygenation in the tuberculin reaction in normal human skin. Physiol. Meas. 15, 115–128 (1994)

    Article  Google Scholar 

  5. Wallace, V.P., Crawford, D.C., Mortimer, P.S., Ott, R.J., Bamber, J.C.: Spectrophotometric assessment of pigmented skin lesion: methods and feature selection for evaluation of diagnostic performance. Phys. Med. Biol. 45, 735–751 (2000)

    Article  Google Scholar 

  6. Stratonnikov, A.A., Loschenov, V.B.: Evaluation of blood oxygen saturation in vivo from diffuse reflectance spectra. J. Biomed. Opt. 6, 457–467 (2001)

    Article  ADS  Google Scholar 

  7. Salomatina, E., Jiang, B., Novak, J., Yaroslavsky, A.N.: Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range. J. Biomed. Opt. 11(6), 064026 (2006)

    Article  ADS  Google Scholar 

  8. Stamatas, G.N., Kollias, N.: In vivo documentation of cutaneous inflammation using spectral imaging. J. Biomed. Opt. 12(5), 051603 (2007)

    Article  ADS  Google Scholar 

  9. Zonios, G., Dimou, A., Bassukas, I., Galaris, D., Tsolakidis, A., Kaxiras, E.: Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection. J. Biomed. Opt. 13(1), 014017 (2008)

    Article  ADS  Google Scholar 

  10. Hirose, M., Toyota, S., Ojima, N., Ogawa-Ochiai, K., Tsumura, N.: Principal component analysis for surface reflection components and structure in facial images and synthesis of facial images for various ages. Opt. Rev. 24, 517–528 (2017)

    Article  Google Scholar 

  11. Imai, F.H., Tsumura, N., Haneishi, H., Miyake, Y.: Principal component analysis of skin color and its application to colorimetric color reproduction on CRT display and hard copy. J. Imaging Sci. Technol. 40, 422–430 (1996)

    Article  Google Scholar 

  12. Shimada, M., Masuda, Y., Yamada, Y., Itoh, M., Takahashi, M., Yatagai, T.: Explanation of human skin color by multiple linear regression analysis based on the modified Lambert-Beer law. Opt. Rev. 7(4), 348–352 (2000)

    Article  Google Scholar 

  13. Shimada, M., Yamada, Y., Itoh, M., Yatagai, T.: Melanin and blood concentration in human skin studied by multiple regression analysis: experiments. Phys. Med. Biol. 46, 2385–2395 (2001)

    Article  Google Scholar 

  14. Shimada, M., Yamada, Y., Itoh, M., Yatagai, T.: Melanin and blood concentration in a human skin model studied by multiple regression analysis: assessment by Monte Carlo simulation. Phys. Med. Biol. 46, 2397–2406 (2001)

    Article  Google Scholar 

  15. Tsumura, N., Haneishi, H., Miyake, Y.: Independent-component analysis of skin color image. J. Opt. Soc. Am. A 16, 2169–2176 (1999)

    Article  ADS  Google Scholar 

  16. Nishidate, I., Aizu, Y., Mishina, H.: Estimation of melanin and hemoglobin in skin tissue using multiple regression analysis aided by Monte Carlo simulation. J. Biomed. Opt. 9(4), 700–710 (2004)

    Article  ADS  Google Scholar 

  17. Wang, L., Jacques, S.L., Zheng, L.Q.: MCML-Monte Carlo modeling of photon transport in multi-layered tissue. Computer. Methods Programs Biomed. 47, 131–146 (1995)

    Article  Google Scholar 

  18. Maeda, T., Arakawa, N., Takahashi, M., Aizu, Y.: Monte Carlo simulation of spectral reflectance using a multilayered skin tissue model. Opt. Rev. 17, 223–229 (2010)

    Article  Google Scholar 

  19. Aizu, Y., Maeda, T., Kuwahara, T., Hirao, T.: Spectral reflectance fitting based on Monte Carlo simulation using a multi-layered skin tissue model. SPIE Diffuse Optical Imaging III Proc. SPIE, 80880P (2011)

  20. Das, K., Yuasa, T., Nishidate, I., Funamizu, H., Aizu, Y.: Simulated reflectance spectra and point spread functions in database constructed by moderate grouping of nine layers in skin model. Opt. Rev. 27(2), 233–245 (2020)

    Article  Google Scholar 

  21. Das, K., Yuasa, T., Maeda, T., Nishidate, I., Funamizu, H., Aizu, Y.: Simple detection of absorption change in skin tissue using simulated spectral reflectance database. Measurement 182, 109684 (2021)

    Article  Google Scholar 

  22. Okada, E., Firbank, M., Schweiger, M., Arridge, S.R., Cope, M., Delpy, D.T.: Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head. Appl. Opt. 36(1), 21–31 (1997)

    Article  ADS  Google Scholar 

  23. Fukui, Y., Ajichi, Y., Okada, E.: Monte Carlo prediction of near-infrared light propagation in realistic adult and neonatal head models. Appl. Opt. 42(16), 2881–2887 (2003)

    Article  ADS  Google Scholar 

  24. Leung, T.S., Elwell, C.E., Delpy, D.T.: Estimation of cerebral oxy- and deoxy-haemoglobin concentration changes in a layered adult head model using near-infrared spectroscopy and multivariate statistical analysis. Phys. Med. Biol. 50(24), 5783–5798 (2005)

    Article  Google Scholar 

  25. Mansouri, C., L’Huillier, J.P., Kashou, N.H., Humeau, A.: Depth sensitivity analysis of functional near-infrared spectroscopy measurement using three-dimensional Monte Carlo modelling-based magnetic resonance imaging. Lasers Med. Sci. 25(3), 431–438 (2010)

    Article  Google Scholar 

  26. Myllylä, T., Popov, A., Korhonen, V., Bykov, A., Kinnunen, M.: Optical sensing of a pulsating liquid in a brain-mimicking phantom. Conference on Diffuse Optical Imaging IV, 87990X (2013)

  27. Iino, K., Maruo, K., Arimoto, H., Hyodo, K., Nakatani, T., Yamada, Y.: Monte Carlo simulation of near infrared reflectance spectroscopy in the wavelength range from 1000 nm to 1900 nm. Opt. Rev. 10(6), 600–606 (2003)

    Article  Google Scholar 

  28. Zakharov, P., Talary, M.S., Caduff, A.: A wearable diffuse reflectance sensor for continuous monitoring of cutaneous blood content. Phys. Med. Biol. 54(17), 5301–5320 (2009)

    Article  Google Scholar 

  29. Zamora-Rojas, E., Garrido-Varo, A., Aernouts, B., Pérez-Marín, D., Saeys, W., Yamada, Y., Guerrero-Ginel, J.E.: Understanding near infrared radiation propagation in pig skin reflectance measurements. Innov. Food Sci. Emerg. Technol. 22, 137–146 (2014)

    Article  Google Scholar 

  30. Vaudelle, F., L’Huillier, J.P., Askoura, M.L.: Light source distribution and scattering phase function influence light transport in diffuse multi-layered media. Optics Communications 392, 268–281 (2017)

    Article  ADS  Google Scholar 

  31. Meglinski, I.V., Matcher, S.D.: Analysis of the spatial distribution of detector sensitivity in a multilayer randomly inhomogeneous medium with strong light scattering and absorption by the Monte Carlo method. Opt. Spectros. 91(4), 654–659 (2001)

    Article  ADS  Google Scholar 

  32. Asplund, K.M., Schenkman, K.A., Ciesielski, W.A., Arakaki, L.S.L.: Photon path depth in tissue phantoms: A comparison of visible and Near-Infrared (NIR) wavelengths. Conference on Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurement of Tissue VI, 89450D (2014)

  33. Finlayson, L., Barnard, I.R.M., McMillan, L., Ibbotson, S.H., Brown, C.T.A., Eadie, E., Wood, K.: Depth penetration of light into skin as a function of wavelength from 200 to 1000 nm. Photochem. Photobiol. 98(4), 974–981 (2022)

    Article  Google Scholar 

  34. Agache, P., Humbert, P.: Measuring the Skin. Springer (2004)

  35. Baranski, G.V.G., Krishnaswamy, A.: Light & Skin interactions. Morgan Kaufmann (2010)

  36. Nayar, S.K., Krishnan, G., Grossberg, M.D., Raskar, R.: Fast separation of direct and global components of a scene using high frequency illumination. ACM Transactions on Graphics. 25(3), 935–944 (2006)

    Article  Google Scholar 

  37. Nishino, K., Subpa-asa, A., Asano, Y., Shimano, M., Sato, I.: Variable ring light imaging: Capturing transient subsurface scattering with an ordinary camera. Proc. ECCV, 598–613 (2018)

  38. Kono, T., Yamada, J.: In Vivo Measuring of optical properties of human skin for 450–800 nm and 950–1600 nm wavelengths. Int. J. Thermophysics. 40(51), 1–14 (2019)

    ADS  Google Scholar 

  39. Kikuchi, K., Tominaga, S., Hardeberg, J.Y.: Development of a system to measure the optical properties of facial skin using a 3D camera and projector. J. Imaging Sci. Technol. 65(5), 50403-1–504031-5 (2021)

    Article  Google Scholar 

  40. Wilson, B.C., Adam, G.: A Monte Carlo model for the absorption and flux distributions of light in tissue. Med. Phys. 10, 824–830 (1983)

    Article  Google Scholar 

  41. Bonner, R.F., Nossal, R., Havlin, S., Weiss, G.H.: Model for photon migration in turbid biological media. J. Opt. Soc. Am. A 4, 423–432 (1987)

    Article  ADS  Google Scholar 

  42. Keijzer, M., Jacques, S.L., Prahl, S.A., Welch, A.J.: Light distributions in artery tissue: Monte Carlo simulations for finite-diameter laser beams. Laser Surg. Med. 9, 148–154 (1989)

    Article  Google Scholar 

  43. Flock, S.T., Patterson, M.S., Wilson, B.C., Wyman, D.R.: Monte Carlo modeling of light propagation in highly scattering tissue: I. Model predictions and comparison with diffusion theory. IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989)

  44. Prahl, S.A., Keijzer, M., Jacques, S.L., Welch, A.J.: A Monte Carlo model of light propagation in tissue. SPIE Inst. Ser. 5, 102–111 (1989)

    Google Scholar 

  45. Yaroslavsky, I.V., Tuchin, V.V.: Light transport in multilayered scattering media Monte Carlo modeling. Opt. Spectroscopy. 72, 934–939 (1992)

    Google Scholar 

  46. Meglinski, I.V., Matcher, S.J.: Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions. Physiol. Meas. 23, 741–753 (2002)

    Article  Google Scholar 

  47. Meglinski, I.V., Matcher, S.J.: Computer simulation of the skin reflectance spectra. Comput. Methods Prog. Biomed. 70, 179–186 (2003)

    Article  Google Scholar 

  48. Graaff, R., Dassel, A.C.M., Koelink, M.H., De Mul, F.F.M., Aarnoudse, J.G., Zijlstra, W.G.: Optical properties of human dermis in vitro and in vivo. Appl. Opt. 32(4), 435–447 (1993)

    Article  ADS  Google Scholar 

  49. Tuchin, V.V.: Laser light scattering in biomedical diagnostics and therapy. J. Laser Appl. 5(2,3), 43–60 (1993)

  50. Tuchin, V.V., Utz, S.R., Yaroslavsky, I.V.: Tissue optics, light distribution, and Spectroscopy. Opt. Eng. 33(10), 3178–3188 (1994)

    Article  ADS  Google Scholar 

  51. Churmakov, D.Y., Meglinski, I.V., Greenhalgh, D.A.: Amending of fluorescence sensor signal localization in human skin by matching of the refractive index. J. Biomed. Opt. 9(2), 339–346 (2004)

    Article  ADS  Google Scholar 

  52. Marchesini, R., Bertoni, A., Andreola, S., Melloni, E., Sichirollo, A.E.: Extinction and absorption coefficients and scattering phase functions of human tissue in vitro. Appl. Opt. 28(12), 2318–2324 (1989)

    Article  ADS  Google Scholar 

  53. Cheong, W., Prahl, S.A., Welch, A.J.: A review of the optical properties of biological tissues. J. Quantum Electron. 26(12), 2166–2185 (1990)

    Article  ADS  Google Scholar 

  54. Lister, T., Wright, P.A., Chappell, P.H.: Optical properties of human skin. J. Biomed. Opt. 17(9), Article 090901 (2012)

  55. Jacques, S.L.: Optical properties of biological tissues: a review. Phys. Med. Biol. 58, R37–R61 (2013)

    Article  ADS  Google Scholar 

  56. Patterson, M.S., Andersson-Engels, S., Wilson, B.C., Osei, E.: Absorption spectroscopy in tissue-simulating materials: a theoretical and experimental study of photon paths. Appl. Opt. 34(1), 22–30 (1995)

    Article  ADS  Google Scholar 

  57. Maruo, K., Tsurugi, M., Tamura, M., Ozaki, Y.: In vivo noninvasive measurement of blood glucose by near-infrared diffuse-reflectance spectroscopy. Appl. Spectrosc. 57(10), 1236–1244 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr. Yu Yaginuma, a past master’s student of Muroran Institute of Technology for his valuable efforts for programming and computation.

Funding

This work was supported by JSPS KAKENHI Grant Number JP23K03879.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomonori Yuasa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuasa, T., Kojima, I., Yokoi, N. et al. Simulation study on penetration depth of light in the source–detector distance using a nine-layered skin tissue model in the visible wavelength range. Opt Rev 31, 266–279 (2024). https://doi.org/10.1007/s10043-024-00877-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-024-00877-5

Keywords

Navigation