Pinobanksin ameliorated DSS-induced acute colitis mainly through modulation of SLC7A11/glutathione-mediated intestinal epithelial ferroptosis

Abstract

Inhibition of ferroptosis in intestinal epithelial cells serves as an attractive target for the development of therapeutic strategies for colitis. Pinobanksin, one of the main flavonoids derived from propolis, possesses significant anti-inflammatory effects and inhibits the cell death of several cell lines. Here, we evaluated whether pinobanksin influenced colitis by modulation of epithelial ferroptosis. Mice treated with 2.5% DSS dissolved in sterile distilled water were established for an acute colitis model. The mitochondrial morphology, colonic iron level, lipid peroxidation products MDA/4-HNE, and lipid reactive oxygen species levels were measured to assess ferroptosis in epithelial cells. RNA-seq and functional analyses were performed to reveal key genes mediating pinobanksin-exerted modulation of ferroptosis. We found that pinobanksin, at different doses, induced significant anti-colitis effects and inhibited the elevated ferroptosis in colonic epithelial cells isolated from DSS-treated mice largely by activating GPX4 (negative regulator of ferroptosis). Furthermore, RNA-seq assays indicated that pinobanksin significantly increased the cystine transporter SLC7A11 in colonic tissues from mice with colitis. Depletion of SLC7A11 largely blocked pinobanksin-induced promotion of cystine uptake/glutathione biosynthesis and suppression of ferroptosis in epithelial cells from mice with colitis or IEC-6 cells pretreated with RSL3. Altogether, pinobanksin alleviated DSS-induced colitis largely by inhibition of ferroptosis in epithelial cells. Activation of SLC7A11 by pinobanksin resulted in the promotion of cystine uptake and enhancement of glutathione biosynthesis. This work will provide novel guidance for the clinical use of pinobanksin to treat colitis through inhibition of epithelial ferroptosis.

Graphical abstract: Pinobanksin ameliorated DSS-induced acute colitis mainly through modulation of SLC7A11/glutathione-mediated intestinal epithelial ferroptosis

Supplementary files

Article information

Article type
Paper
Submitted
31 Oct 2023
Accepted
25 Mar 2024
First published
26 Mar 2024

Food Funct., 2024, Advance Article

Pinobanksin ameliorated DSS-induced acute colitis mainly through modulation of SLC7A11/glutathione-mediated intestinal epithelial ferroptosis

H. Bi, S. Guo, Y. Wang, Z. Liu, G. Wu, X. Huo, L. Guo, H. Guo and Y. Xiong, Food Funct., 2024, Advance Article , DOI: 10.1039/D3FO04500E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements