Skip to main content
Log in

Source of metals in the De’erni ultramafic-hosted volcanic massive sulfide deposit, Eastern Kunlun, China

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The De’erni Cu–Zn-Co deposit is a typical altered ultramafic-hosted volcanogenic massive sulfide deposit comprising four lenticular main orebodies (0.57 Mt Cu, 1.27% Cu average ore grade; 0.03 Mt Co, 0.09% Co average ore grade; 0.16 Mt Zn, 1.04% Zn average ore grade) hosted in serpentinite and a 200-m-thick basalt was found below the No. I orebody. Serpentinite spinel Al2O3, TiO2, Cr#, and Mg# indicate a mantle-source. Serpentinite magmatic-hydrothermal genesis is indicated by the following: (i) high Rb/Y and Th/Zr ratios, low Nb/Zr ratios, and low δ65Cu values; (ii) altered magnetite rims on spinel being characterized by high Cr, Ni, and Ti, and low Ga contents; (iii) pyrite appears along the boundary of spinel grains and has a higher Co and Ni content than pyrite in ores. Therefore, the ultramafic host rocks are formed by strong fluid alteration of primary mantle rocks. The compositional zoning of Co, Cu, and Zn in euhedral coarse-grained pyrite from massive sulfide ore suggests that metal enrichment was associated with three fluid phases, with a clear temporal interval between the fluid activity that introduced Co/Cu enrichment and Zn enrichment (Zn-rich veins in magnetite cross-cut early spinel). Serpentinite exhibits a higher Zn content and decoupling of Ni and Co contents compared to Dur’ngoi ophiolite serpentinite distal from the orebody, implying primary ultramafic rocks may have provided Co to the ores. The apparently high Cu content of the Dur’ngoi ophiolite basalt in comparison with ophiolite basalts worldwide indicates basalt may have supplied the Cu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abzalov MZ (1998) Chrome spinels in gabbro-wehrlite intrusions of the Pechenga area, Kola Peninsula, Russia: emphasis on alteration features. Lithos 43:109–134

    Article  CAS  Google Scholar 

  • Auclair M, Gauthier M, Trottier J, Jebrak M, Chartrand F (1993) Mineralogy, geochemistry, and paragenesis of the Eastern metal serpentinite-associated Ni- mineralogy, geochemistry, and paragenesis of the Eastern metal serpentinite-associated Cu-Zn deposit, Quebec Appalachians. Econ Geol 88:123–138

    Article  CAS  Google Scholar 

  • Baconnais I, Rouxel O, Dulaquais G, Boye M (2019) Determination of the copper isotope composition of seawater revisited: a case study from the Mediterranean Sea. Chem Geol 511:465–480

    Article  CAS  Google Scholar 

  • Bajwah ZU, Seccombe PK, Offler R (1987) Trace-element distribution, Co-Ni ratios and genesis of the Big Cadia iron-copper deposit, New South Wales, Australia. Miner Deposita 22:292–300

    Article  CAS  Google Scholar 

  • Barrie CT, Hannington MD (1999) Classification of volcanic-associated massive sulfide deposits based on host-rock composition. In: Barrie, C.T., and Hannington, M.D. (Eds.), Volcanic Associated Massive Sulfide Deposits: Processes and Examples in Modern and Ancient Settings Society of Economic Geologists (Canada). p: 1–10

  • Berkenbosch HA, de Ronde CEJ, Paul BT, Gemmell JB (2015) Characteristics of Cu isotopes from chalcopyrite-rich black smoker chimneys at Brothers volcano, Kermadec arc, and Niuatahi volcano, Lau basin. Miner Deposita 50:811–824

    Article  CAS  Google Scholar 

  • Bermin J, Vance D, Archer C, Statham PJ (2006) The determination of the isotopic composition of Cu and Zn in seawater. Chem Geol 226:280–297

    Article  CAS  Google Scholar 

  • Bliss NW, MacLean WH (1975) The paragenesis of zoned chromite from central Manitoba. Geochim Cosmochim Acta 39:973–990

    Article  CAS  Google Scholar 

  • Brill BA (1989) Trace-element contents and partitioning of elements in ore minerals from the CSA Cu-Pb-Zn Deposit, Australia, and implications for ore genesis. Can Mineral 27:263–274

    CAS  Google Scholar 

  • Burkhard DJM (1993) Accessory chromian spinels: their coexistence and alteration in serpentinites. Geochim Cosmochim Acta 57:1297–1306

    Article  CAS  Google Scholar 

  • Candela PA, Wylie AG, Burke TM (1989) Genesis of the ultramafic rock-associated Fe-Cu-Co-Zn-Ni deposits of the Sykessille district, Maryland Piedmont. Econ Geol 84:663–675

    Article  CAS  Google Scholar 

  • Candela PA (1989) Magmatic ore-forming fluids: thermodynamic and mass transfer calculations of metal concentrations. In: Whitney JA, Robertson JM (eds) Ore deposition associated with magmas. Society of Economic Geologists INC, pp 60–66

    Google Scholar 

  • Chaussidon M, Albarede F, Sheppard SMF (1989) Sulphur isotope variations in the mantle from ion microprobe analyses of micro-sulphide inclusions. Earth Planet Sci Lett 92:144–156

    Article  CAS  Google Scholar 

  • Chen L, Sun Y, Lu XM, Pei XZ (2000) Geochemistry of Derni ophiolite and its tectonic significance. Acta Petrol Sinica 16:106–110

    CAS  Google Scholar 

  • Chen L, Sun Y, Pei XZ, Gao M, Feng T, Zhang ZQ, Chen W (2001) Northernmost paleo-tethyan oceanic basin in Tibet: geochronological evidence from 40Ar/39Ar age dating of Dur’ngoi ophiolite. Chinese Sci Bul 46:1203–1205

    Article  CAS  Google Scholar 

  • Craddock PRN, Dauphas N (2011) Iron isotopic compositions of geological reference materials and chondrites. Geostand Geoanal Res 35:101–123

    Article  CAS  Google Scholar 

  • Dare SAS, Barnes SJ, Beaudoin G (2012) Variation in trace element content of magnetite crystallized from a fractionating sulfide liquid, Sudbury, Canada: implications for provenance discrimination. Geochim Cosmochim Acta 88:27–50

    Article  CAS  Google Scholar 

  • Dare SAS, Barnes SJ, Beaudoin G, Meric J, Boutroy E, Potvin-Doucet C (2014) Trace elements in magnetites as petrogenetic indicators. Miner Deposita 49:785–796

    Article  CAS  Google Scholar 

  • Dauphas N, Craddock PR, Asimow PD, Bennett VC, Nutman AP, Ohnenstetter D (2009) Iron isotopes may reveal the redox conditions of mantle melting from Archean to present. Earth Planet Sci Lett 288:255–267

    Article  CAS  Google Scholar 

  • Deng XH, Mathur R, Li Y, Mao QG, Wu YS, Yang LY, Chen X, Xu J (2019) Copper and zinc isotope variation of the VMS mineralization in the Kalatag district, eastern Tianshan, NW China. J Geochem Expl 196:8–19

    Article  CAS  Google Scholar 

  • Dick HJB, Bullen T (1984) Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib Min Petrol 86:54–76

    Article  CAS  Google Scholar 

  • Dong FQ, Qian ZZ, Wang JZ, Zhong JX, Sun T, Xu G, Duan J (2012) New progress on the ore-genesis of the De’erni copper deposit. Northwestern Geol 45(3):93–102 ((in Chinese with English abstrct))

    Google Scholar 

  • Droop GTR (1987) A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineral Mag 51:431–436

    Article  CAS  Google Scholar 

  • Dupuis C, Beaudoin G (2011) Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Miner Deposita 46:319–335

    Article  CAS  Google Scholar 

  • Ehlers K, Grove TL, Sisson TW (1992) The effect of oxygen fugacity on the partitioning of nickel and cobalt between olivine, silicate melt, and metal. Geochim Cosmochim Acta 56:3733–3743

    Article  CAS  Google Scholar 

  • Evans BW, Frost BR (1975) Chrome-spinel in progressive metamorphism-a preliminary analysis. Geochim Cosmochim Acta 39:959–972

    Article  CAS  Google Scholar 

  • Fabre S, Nedelec A, Poitrasson F, Strauss H, Thomazo C, Nogueira A (2011) Iron and sulphur isotopes from the Carajas mining province (Para, Brazil): implications for the oxidation of the ocean and the atmosphere across the Archaean-Proterozoic transition. Che Geol 289:124–139

    Article  CAS  Google Scholar 

  • Faisal M, Yang XY, Zhang HS, Amuda AK, Sun C, Mustafa S, Gul MA (2021) Mineralization styles, alteration mineralogy, and sulfur isotope geochemistry of volcanogenic massive sulfide deposits in the Shadli Metavolcanics Belt, South Eastern Desert, Egypt: metallogenic implications. Ore Geol Rev 140:104402

    Article  Google Scholar 

  • Feng ZJ, Yang T, Yao XZ, Brzozowski MJ, Lei RX (2022) Ore forming and reworking processes in the Xitieshan Pb-Zn deposit, Qinghai Province, China: constraints from in situ trace-element and S isotope compositions of sulfides. Ore Geol Rev 149:105103

    Article  Google Scholar 

  • Fernández AA, Borrok DM (2009) Fractionation of Cu, Fe, and Zn isotopes during the oxidative weathering of sulfide-rich rocks. Chem Geol 264:1–12

    Article  Google Scholar 

  • Fleet ME (1981) The structure of magnetite. Acta Cryst B37:917–920

    Article  CAS  Google Scholar 

  • Fouquet Y, Cambon P, Etoubleau J, Charlou JL, Ondr′eAs H, Barriga F, Cherkashov G, Semkova T, Poroshina I, Bohn M (2010) Geodiversity of hydrothermal processes along the Mid-Atlantic Ridge and ultramafic-hosted mineralization: a new type of oceanic Cu-Zn-Co-Au volcanogenic massive sulfide deposit. Diversity Hydrothermal Syst Slow Spread Ocean Ridges 188:321–367

    Article  CAS  Google Scholar 

  • Francis RD (1990) Sulfide globules in mid-ocean ridge basalts (MORB) and the effect of oxygen abundance in Fe-S-O liquids on the ability of those liquids to partition metals from MORB and komatiitic magmas. Chem Geol 85:199–213

    Article  CAS  Google Scholar 

  • Franklin JM, Gibson HL, Jonasson G, Galley AG (2005) Volcanogenic massive sulfide deposit. In: Econ Geol 100th Anniversary Volume, Society of Economic Geologists, pp 523–560

  • Fu J, Hu Z, Zhang W, Yang L, Liu Y, Li M, Zong K, Gao S, Hu S (2016) In situ sulfur isotopes (d34S and d33S) analyses in sulfides and elemental sulfur using high sensitivity cones combined with the addition of nitrogen by laser ablation MCICPMS. Anal Chim Acta 911:14–26

    Article  CAS  Google Scholar 

  • Gaetani GA, Grove TL (1997) Partitioning of moderately siderophile elements among olivine, silicate melt, and sulfide melt: constraints on core formation in the Earth and Mars. Geochim Cosmochim Acta 61:1829–1846

    Article  CAS  Google Scholar 

  • Genna D, Gaboury D (2015) Deciphering the hydrothermal evolution of a VMS system by LA-ICP-MS using trace elements in pyrite: an example from the Bracemac-McLeod deposits, Abitibi, Canada, and Implications for Exploration. Econ Geol 110:2087–2108

    Article  Google Scholar 

  • Gill SB, Piercey SJ, Layne GD, Piercey G (2019) Sulphur and lead isotope geochemistry of sulphide minerals from the Zn-Pb-Cu-Ag-Au Lemarchant volcanogenic massive sulphide (VMS) deposit, Newfoundland, Canada. Ore Geol Rev 104:422–435

    Article  Google Scholar 

  • Hall SR, Stewart JM (1973) The crystal structure refinement of chalcopyrite, CuFeS2. Acta Cryst 29:579

    Article  CAS  Google Scholar 

  • Hamlyn PR, Keays RR (1979) Origin of chromite compositional variation in the Panton Sill, Western Australia. Contrib Mineral Petrol 69:75–82

    Article  CAS  Google Scholar 

  • Hazen RM (1977) Effects of temperature and pressure on the crystal structure of ferromagnesian olivine. Am Mineral 62:286–295

    CAS  Google Scholar 

  • He YS, Ke S, Teng FZ, Wang TT, Wu HJ, Lu YH, Li SG (2015) High-precision iron isotope analysis of geological reference materials by high-resolution MC-ICP-MS. Geostand Geoanal Res 39:341–356

    Article  CAS  Google Scholar 

  • Heinrich CA (2005) The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition: a thermodynamic study. Miner Deposita 39:864–889

    Article  CAS  Google Scholar 

  • Herrington R, Maslennikov V, Zaykov V, Seravkin I, Kosarev A, Buschmann B, Orgeval JJ, Holland N, Tesalina S, Nimis P, Armstrong R (2005) Classification of VMS deposits: lessons from the South Uralides. Ore Geol Rev 27:203–237

    Article  Google Scholar 

  • Housh TB, Çiftçi E (2008) Cu isotope geochemistry of volcanogenic massive sulphide deposits of the eastern Pontides. Turkey Iop Conf Ser: Earth Environ Sci 2:012025

    Article  Google Scholar 

  • Ikehata K, Notsu K, Hirata T (2011) Copper isotope characteristics of copper-rich minerals from Besshi-type volcanogenic massive sulfide deposits Japan, Determined Using a Femtosecond LA-MC-ICP-MS. Econ Geol 106:307–316

    Article  CAS  Google Scholar 

  • Jiao JG, Lu H, Sun YL, Huang XF, Duan J (2013) Re-Os age and geological significance of the De’erni Cu (Zn-Co) deposit in Qinghai. Geosci 27:577–584

    Google Scholar 

  • Jiao HL (2016) A study of ore-genesis and prospecting direction of the De’erni copper deposit. Master dissertation, China University of Geosciences, Qinghai province, p 65

    Google Scholar 

  • Kamenetsky VS, Crawford AJ, Meffre S (2001) Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. J Petrol 42:655–671

    Article  CAS  Google Scholar 

  • Kepezhinskas P, McDermott F, Defant MJ, Hochstaedter A, Drummond MS, Hawkesworth CJ, Koloskov A, Maury RC, Bellon H (1997) Trace element and Sr-Nd-Pb isotopic constraints on a three-component model of Kamchatka Arc petrogenesis. Geochim Cosmochim Acta 61:577–600

    Article  CAS  Google Scholar 

  • Klemme S, Gunther D, Hametner K (2006) The partitioning of trace elements between ilmenite, ulvospinel, armalcolite and silicate melts with implications for the early differentiation of the moon. Chem Geol 234:251–263

    Article  CAS  Google Scholar 

  • Knight KS, Marshall WG, Zochowski SW (2011) The low-temperature and high-pressure thermodelastic and structural properties of chalcopyrite, CuFeS2. Can Mineral 49:1015–1034

    Article  CAS  Google Scholar 

  • Knight RD, Roberts S, Webber AP (2018) The influence of spreading rate, basement composition, fluid chemistry and chimney morphology on the formation of gold-rich SMS deposits at slow and ultraslow mid-ocean ridges. Mineral Deposita 53:143–152

    Article  CAS  Google Scholar 

  • Labidi J, Cartigny P, Jackson MG (2015) Multiple sulfur isotope composition of oxidized Samoan melts and the implications of a sulfur isotope ‘‘mantle array” in chemical geodynamics. Earth Planet Sci Lett 417:28–39

    Article  CAS  Google Scholar 

  • Li Y, Audétat A (2012) Partitioning of V, Mn Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and hydrous basanite melt at upper mantle conditions. Earth Planet Sci Lett 355–356:327–340

    Article  Google Scholar 

  • Li CS, Ripley EM (2010) The relative effects of composition and temperature on olivine-liquid Ni partitioning: statistical deconvolution and implications for petrologic modeling. Chem Geol 275:99–104

    Article  CAS  Google Scholar 

  • Li CS, Barnes SJ, Makovicky E, Hansen-Rose J, Makovicky M (1996) Partitioning of nickel, copper, iridium, rhenium, platinum, and palladium between monosulfide solid solution and sulfide liquid: Effects of composition and temperature. Geochim Cosmochim Acta 60:1231–1238

    Article  CAS  Google Scholar 

  • Li RS, Ji WH, Zhao ZM, Chen SJ, Meng Y, Yu PS, Pan XP (2007) Progress in the study of the Early Paleozoic Kunlun orogenic belt. Geol Bull China 26:373–382 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Li XH, Chu FY, Lei JJ, Yu X, Zhang PP (2014) The copper isotopic composition of sulfide ores and deposit genesis of the Dur’ngoi Cu (Zn-Co) deposit in Qinghai Province, China. Earth Sci Fron 21:196–204

    CAS  Google Scholar 

  • Liu YS, Hu ZC, Gao S, Günther D, Xu J, Gao CG, Chen HH (2008) In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem Geol 257:34–43

    Article  CAS  Google Scholar 

  • Liu YS, Gao S, Hu Z, Gao C, Zong K, Wang D (2010) Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. J Petrol 51:537–571

    Article  CAS  Google Scholar 

  • Liu W, Borg SJ, Testemal D (2011) Speciation and thermodynamic properties for cobalt chloride complexes in hydrothermal fluids at 35–440°C and 600 bar: an in-situ XAS study. Geochim Cosmochim Acta 75:1227–1248

    Article  CAS  Google Scholar 

  • Liu SA, Huang J, Liu JG, Worner G, Yang W, Tang YJ, Chen Y, Tang LM, Zheng JP, Li SG (2015) Copper isotopic composition of the silicate Earth. Earth Planet Sci Lett 427:95–103

    Article  CAS  Google Scholar 

  • Loferski PJ, Lipin BR (1983) Exsolution in metamorphosed chromite from the Red Lodge district, Montana. Am Mineral 68:777–789

    CAS  Google Scholar 

  • Maghfouri S, Rastad E, Mousivand F, Lin Y, Zaw K (2016) Geology, ore facies and sulphur isotopes geochemistry of the Nudeh Besshitype volcanogenic massive sulphide deposit, Southwest Sabzevar basin Iran. J Asian Earth Sci 125:1–21

    Article  Google Scholar 

  • Mallmann G, O’Neill H (2009) The crystal/melt partitioning of V during mantle melting as a function of oxygen fugacity compared with some other elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb). J Petrol 50:1765–1794

    Article  CAS  Google Scholar 

  • Markl G, Lahaye Y, Schwinn G (2006) Copper isotopes as monitors of redox processes in hydrothermal mineralization. Geochim Cosmochim Acta 70: 4215–4228Maslennikov VV, Maslennikova SP, Large RR, Danyushevsky LV, Herrington RJ, Ayupova NR, Zaykov VV, Lein AY, Tseluyko AS, Melekestseva IY, Tessalina SG (2017) Chimneys in Paleozoic massive sulfide mounds of the Urals VMS deposits: mineral and trace element comparison with modern black, grey, white and clear smokers. Ore Geol Rev 85:64–106

    Google Scholar 

  • Mason TFD, Weiss DJ, Chapman JB, Wilkinson JJ, Tessalina SG, Spiro B, Horstwood MSA, Spratt J, Coles BJ (2005) Zn and Cu isotopic variability in the Alexandrinka volcanic-hosted massive sulphide (VHMS) ore deposit, Urals, Russia. Chem Geol 221:170–187

    Article  CAS  Google Scholar 

  • McDonald MJ, Piercey SJ, Layne GD, Pigage LC, Piercey G (2018) Mineral assemblages, textures and in situ sulphur isotope geochemistry of sulphide mineralization from the cyprus-type ice volcanogenic massive sulphide (VMS) deposit, Yukon Canda. Minerals 8:501

    Article  CAS  Google Scholar 

  • McFall KA, McDonald I, Kennedy B (2019) Hydrothermal modification of magmatic sulphide Cu-Ni-PGE deposits in the Northern Bushveld Complex, South Africa, 15th SGA Biennial Meeting 2:474–477

  • Melekestseva IY, Tret’yakov GA, Nimis P, Yuminov AM, Maslennikov VV, Maslennikova SP, Kotlyarov VA, Beltenev VE, Danyushevsky LV, Large R (2014) Barite-rich massive sulfides from the Semenov-1 hydrothermal field (Mid-Atlantic Ridge, 13 30.87′ N): evidence for phase separation and magmatic input. Mar Geol 349:37–54

    Article  CAS  Google Scholar 

  • Melekestseva IY, Maslennikov VV, Tret’yakov GA, Nimis P, Beltenev VE, Rozhdestvenskaya II, Maslennikova SP, Belogub EV, Danyushevsky L, Large R (2017) Gold-and silver-rich massive sulfides from the Semenov-2 hydrothermal field, 13°31.13’N, mid-atlantic ridge: a case of magmatic contribution? Econ Geol 112:741–773

    Article  Google Scholar 

  • Mondal SK, Ripley EM, Li C, Frei R (2006) The genesis of Archean chromitites from the Nuasahi and Sukinda Massifs in the Singhbhum craton, India. Precambrian Res 148:45–66

    Article  CAS  Google Scholar 

  • Mukherjee R, Mondal SK, Gonzalez-Jimenez JM, Griffin WL, Pearson NJ, O’Reilly SY (2015) Trace-element fingerprints of chromite, magnetite and sulfides from the 3.1 Ga ultramafic–mafic rocks of the Nuggihalli greenstone belt, Western Dharwar craton (India). Contrib Mineral Petrolo 169:59

    Article  Google Scholar 

  • Nadoll P, Angerer T, Mauk JL, French D, Walshe J (2014) The chemistry of hydrothermal magnetite: a review. Ore Geol Rev 61:1–32

    Article  Google Scholar 

  • Nimis P, Zaykov VV, Omenetto P, Melekestseva IY, Tesalina SG, Orgeval JJ (2008) Peculiarities of some mafic–ultramafic- and ultramafic-hosted massive sulfide deposits from the Main Uralian Fault Zone, southern Urals. Ore Geol Rev 33:49–69

    Article  Google Scholar 

  • Ohtani E, Yurimoto H, Seto SJ (1997) Element partitioning between metallic liquid, silicate liquid, and lower-mantle minerals: implications for core formation of the Earth. Physics Earth Planet Interi 100:97–114

    Article  CAS  Google Scholar 

  • Pan P, Susak NJ (1989) Co (II)-chloride and -bromide complexes in aqueous solutions up to 5m NaX and 90°C, spectrophotometric study and geological implications. Geochim Cosmochim Acta 53:327–341

    Article  CAS  Google Scholar 

  • Patten CGC, Coltat R, Junge M, Peillod A, Ulrich M, Manatschal G, Kolb J (2022) Ultramafic-hosted volcanogenic massive sulfide deposits: an overlooked sub-class of VMS deposit forming in complex tectonic environments. Earth Sci Rev 224:103891

    Article  CAS  Google Scholar 

  • Peach CL, Mathez EA, Keays RR (1990) Sulfide melt-silicate melt distribution coefficients for noble metals and other chalcophile elements as deduced from MORB: implications for partial melting. Geochim Cosmochim Acta 54:3379–3389

    Article  CAS  Google Scholar 

  • Peltonen P, Kontinen A, Huhma H, Kuronen U (2008) Outokumpu revisited: new mineral deposit model for the mantle perdotite-assoicated Cu-Co-Zn-Ni-Ag-Au sulphide deposits. Ore Geol Rev 33:559–617

    Article  Google Scholar 

  • Pitcairn IK (2011) Background concentrations of gold in different rock types. Appl Earth Sci 120:31–38

    Article  CAS  Google Scholar 

  • Powell AV, Vaqueiro P, Knight KS, Chapon LC, Sanchez RD (2004) Structure and magnetism in synthetic pyrrhotite Fe7S8: a powder neutron-diffraction study. Phys Rev B 70:014415

    Article  Google Scholar 

  • Qinghai Bureau of Geology and Mineral Resources (QBGMR) (1986) The 1/200,000 scale regional geological survey. Unpublished report for internal communications of the Qinghai Bureau of Geology and Mineral Resources (in Chinese)

  • Qinghai Bureau of Geology and Mineral Resources (QBGMR) (2006) Reserves table for mineral resources in Qinghai Province. Unpublished report for internal communications of the Qinghai Bureau of Geology and Mineral Resources (in Chinese)

  • Rollinson H (1995) The relationship between chromite chemistry and the tectonic setting of Archean ultramafic rocks. In: Tromps P (ed) Blenkinsop TG. Balkema, Sub-Saharan Econ Geol Amsterdam, pp 7–23

    Google Scholar 

  • Rouxel O, Fouquet Y, Ludden JN (2004) Subsurface processes at the Lucky Strike hydrothermal field, Mid-Atlantic ridge: evidence from sulfur, selenium, and iron isotopes. Geochim Cosmochim Acta 68:2295–2311

    Article  CAS  Google Scholar 

  • Scowen PAH, Roeder PL, Helz RT (1991) Reequilibration of chromite within Kilauea Iki lava lake Hawaii. Contrib Mineral Petrol 107:8–20

    Article  CAS  Google Scholar 

  • Song ZB, Li YZ, Chen XY, Chen B, Ren YX, Zhang YL, Zhang XF (2012) Discovery of exhalative rock-ferro-siliceous rock in the De’erni copper deposit of East Kunlun Mountains and its metallogenic significance. Geol Bull China 31:1170–1177

    CAS  Google Scholar 

  • Sun WD, Hu YH, Kamenetsky VS, Eggins SM, Chen M, Arculus RJ (2008) Constancy of Nb/U in the mantle revisited. Geochim Cosmochim Acta 72:3542–3549

    Article  CAS  Google Scholar 

  • Tan Y (1994) Geology and geochemistry of the mineralization series hosted in volcanic peridotite-volcanic carbonatite- volcanic sedimentary dolomite. In: Ouyang ZY (ed) In New Progress on Mineralogical, Petrologic and Geochemical Research in China. Lanzhou University Press, pp 149–150 (in Chinese)

    Google Scholar 

  • Teng FZ, Dauphas N, Huang S, Marty B (2013) Iron isotopic systematics of oceanic basalts. Geochim Cosmochim Acta 107:12–26

    Article  CAS  Google Scholar 

  • Tokonami M, Nishiguchi K, Morimoto N (1972) Crystal structure of a monoclinic pyrrhotite (Fe7S8). Am Mineral 57:1066–1080

    CAS  Google Scholar 

  • Wang YW, Qin KZ, Tan YG, Hou ZQ (2000) The Derni Cu-Co massive sulfide deposit, Qinghai province, China: ultramafic volcanic-hosted submarine-exhalative mineralization. Explor Mining Geol 9:253–264

    Article  CAS  Google Scholar 

  • Wang ZC, Park JW, Wang X, Zou ZQ, Kim J, Zhang PY, Li M (2019) Evolution of copper isotopes in arc systems: insights from lavas and molten sulfur in Niuatahi volcano, Tonga rear arc. Geochim Cosmochim Acta 250:18–33

    Article  CAS  Google Scholar 

  • Wang J, Su BX, Tang DM, Yuan QH, Li WJ, Gao BY, Bao ZA, Zhao Y (2022a) High-precision copper isotopic analysis using a sapphire MC-ICP-MS. J Anal at Spectrom. https://doi.org/10.1039/d2ja00197g

    Article  Google Scholar 

  • Wang J, Tang DM, Su BX, Yuan QH, Li WJ, Gao BY, Chen KY, Bao ZA, Zhao Y (2022b) High-precision iron isotopic measurements in low resolution using collision cell (CC)-MC-ICP-MS. J Anal at Spectrom 37:1869

    Article  CAS  Google Scholar 

  • Wawryk CM, Foden JD (2017) Iron-isotope systematics from the Batu Hijau Cu-Au deposit, Sumbawa, Indonesia. Chem Geol 466:159–172

    Article  CAS  Google Scholar 

  • Weinstein C, Moynier F, Wang K, Paniello R, Foriel J, Catalano J, Pichat S (2011) Isotopic fractionation of Cu in plants. Chem Geol 286:266–271

    CAS  Google Scholar 

  • Wood SA, Williams-Jones AE (2007) Speciation and solubility of Co (II) in the system Co-O-H-Cl-S at saturated water vapor pressure up to 300°C. In: Bullen TD, Wang Y (eds) Water-rock interaction, vols. 1 and 2. Taylor and Francis Ltd, London, pp 395–398

    Google Scholar 

  • Yang JS, Wang XB, Shi RD, Xu ZQ, Wu CL (2004) The Dur’ngoi ophiolite in East Kunlun, northern Qinghai-Tibet plateau: a fragment of paleo-Tethyan oceanic crust. Geol China 31:225–239

    CAS  Google Scholar 

  • Yang JS, Shi RD, Wu CL, Wang XB (2009) Dur’ngoi ophiolite in East Kunlun, Northeast Tibetan plateau: evidence for Paleo-Tethyan suture in northwest China. J Earth Sci 20:303–331

    Article  CAS  Google Scholar 

  • Yang FQ, Li Q, Yang CD, Zhang ZX (2018) A combined fluid inclusion and S-H-O-He-Ar isotope study of the Devonian Ashele VMS-type copper-zinc deposit in the Altay orogenic belt, northwest China. J Asian Earth Sci 161:139–163

    Article  Google Scholar 

  • Yang Z, Song WR, Wen HJ, Zhang YX, Fan HF, Wang F, Li QK, Yang T, Zhou ZB, Liao SL, Zhu CW (2021) Zinc, cadmium and sulphur isotopic compositions reveal biological activity during formation of a volcanic-hosted massive sulphide deposit. Gondwana Res 101:103–113

    Article  Google Scholar 

  • Zajacz Z, Halter WE, Pettke T, Guillong M (2008) Determination of fluid/melt partition coefficients by LA-ICPMS analysis of co-existing fluid and silicate melt inclusions: controls on element partitioning. Geochim Cosmochim Acta 72: 2169–2197

  • Zhang W, Chen J (1996) A new understanding of the genesis of Derni Cu deposit- Ultramafic rock hosted massive sulfide Cu-Co deposit. Qinghai Geol 5:37–53 (in Chinese)

  • Zhang ZC, Mao JW, Chai FM, Yan SH, Chen BL, Pirajno F (2009) Geochemistry of the Permian Kalatongke mafic intrusions, northern Xinjiang, northwest China: implications for the genesis of magmatic Ni-Cu sulfide deposits. Econ Geol 104:185–203

    Article  CAS  Google Scholar 

  • Zhang HT, Li JH, Li HL, Wang HH (2014) A comparative study of the geology of Dur’ngoi copper massive sulfide deposit northern Qinghai-Tibet Plateau - a typical example of hydrothermal meallogenesis in a slow spreading mid-ocean ridge. Acta Oceanol Sinica 36:40–51

    CAS  Google Scholar 

  • Zhu XK, O’Nions RK, Guo Y, Belshaw NS, Rickard D (2000) Determination of natural Cu-isotope variation by plasma-source mass spectrometry: implications for use as geochemical tracers. Chem Geol 163:139–149

    Article  CAS  Google Scholar 

  • Zhu ZY, Cook NJ, Yang T, Ciobanu CL, Zhao KD, Jiang SY (2016) Mapping of sulfur isotopes and trace elements in sulfides by LA-(MC)-ICP-MS: potential analytical problems, improvements and implications. Fortschr Mineral 6:110

    Google Scholar 

  • Zhu YS (2007) Geological characteristics of mineralization and their spectrum of deposits in major mineralized area (zones) in China. Geological press, Beijing, p 132

    Google Scholar 

Download references

Acknowledgements

We are grateful to Jun Duan and Gang Xu for their support for field work. We thank Dr. Jing Wang, Qinghan Yuan, and Yang Bai from Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences (IGGCAS), Beijing, China, for their assistance in copper and iron isotope analysis. We thank one anonymous reviewer for constructive reviews, which greatly improved the manuscript. Editors David Holwell and Bernd Lehmann are thanked for their comments and editorial handling.

Funding

This study was financially supported by the second Tibetan Scientific Expedition and Research (No. STEP2019QZKK0801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongmei Tang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Editorial handling: D. A. Holwell

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, D., Qin, K., Mao, Y. et al. Source of metals in the De’erni ultramafic-hosted volcanic massive sulfide deposit, Eastern Kunlun, China. Miner Deposita (2024). https://doi.org/10.1007/s00126-024-01260-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00126-024-01260-9

Keywords

Navigation