Skip to main content
Log in

Effect of Superficially Applied MnO2 and Al2O3 Oxide Inhibitors in Enhancing High-Temperature Corrosion of T22 Boiler Steel

  • Original Paper
  • Published:
High Temperature Corrosion of Materials Aims and scope Submit manuscript

Abstract

Hot corrosion is a severe form of industrial corrosion which occurs at high temperatures under the influence of oxidizing gases and can be prominently linked to the formation of a molten salt/ash layer over any metallic substrate. Throughout the years, several types of inhibitors and coatings have successfully been employed to reduce its devastating effects to a certain extent. In this study, two synthesized metal oxides namely Al2O3 and MnO2 were used as corrosion inhibitors and XRD, FTIR analysis were carried out to assess their structural properties. Further, TGA analysis for Al2O3 and MnO2 was carried out to determine thermal stability characteristics. The as-synthesized materials were further deposited as inhibitor coatings (Al2O3 with MnO2 bond coating, MnO2 coating and Al2O3 + 50% MnO2 coating) on T22 boiler steel specimens. All the specimens (bare T22 and coated T22 steel) were investigated for hot corrosion studies in Na2SO4-60%V2O5 environment at the temperature of 900 °C for 50 consecutive cycles. Every cycle involved a 1-h heating step in furnace followed by 20-min cooling at room temperature. Weight gain data were collected using a digital balance. XRD and (SEM–EDS) analysis were carried out to characterize the samples after exposure to hot corrosion environment. A better resistance to hot corrosion was observed for all the different types of coatings, with Al2O3 + 50% MnO2 coating representing maximum resistance. A high concentration of protective oxides such as Al2O3 and Cr2O3 present on the surface and their interaction to form dense layers on the coated samples explains the enhanced hot corrosion inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Hallward-Driemeier, M., & Nayyar, G., Why manufacturing has been important for development. In "trouble in the making? the future of manufacturing-led development" (2017) pp. 7. https://doi.org/10.1596/978-1-4648-1174-6_ch1.

  2. R. A. Rapp and Y. S. Zhang, JOM (TMS) 46, 1994 (47). https://doi.org/10.1007/BF03222665.

    Article  CAS  Google Scholar 

  3. A. S. Khanna, ASM International 204, 2002 (1).

    Google Scholar 

  4. R. A. Rapp and Y. S. Zhang, JOM 46, 1994 (47). https://doi.org/10.1007/BF03222665.

    Article  CAS  Google Scholar 

  5. Yepez, O., On the mechanism of high temperature corrosion, Voxel innovations. https://www.researchgate.net/publication/329488067_On_the_Mechanism_of_High_Temperature_Corrosion (accessed 3 March 2023).

  6. Bakan, E., Mack, D. E., Mauer, G., Vaben, R., Lamon, J., & Padture, N. P., High-temperature materials for power generation in gas turbines, In O. Guillon (Ed.), "Advanced Ceramics for Energy Conversion and Storage," Elsevier 2020, pp. 3–62. https://doi.org/10.1016/B978-0-08-102726-4.00001-6.

  7. B. S. Sidhu and S. Prakash, Metallurgical and Materials Transactions A 37, 2006 (1927). https://doi.org/10.1007/s11661-006-0135-6.

    Article  Google Scholar 

  8. V. Chawla, A. Chawla, D. Puri, S. Prakash, P. G. Gurbuxani, and B. Singh Sidhu, JMMCE 10, 2011 (104027). https://doi.org/10.4236/jmmce.2011.104027.

    Article  Google Scholar 

  9. J. M. Meadowcroft and J. Stringer, Materials science and technology 3, 1987 (562).

    Article  CAS  Google Scholar 

  10. K. Natesan, Corrosion 32, 1976 (364–370). https://doi.org/10.5006/0010-9312-32.9.364.

    Article  CAS  Google Scholar 

  11. Y.-S. Hwang and R. A. Rapp, Corrosion 45, 1989 (933–937). https://doi.org/10.5006/1.3585003.

    Article  CAS  Google Scholar 

  12. A. S. Khanna and S. K. Jha, Transaction Indian Institute Metal T 51, 1998 (279–290).

    CAS  Google Scholar 

  13. F. Pettit, Oxidation of Metals 76, 2011 (1). https://doi.org/10.1007/s11085-011-9254-6.

    Article  CAS  Google Scholar 

  14. Jinyang, H., Jintao, L., Zhen, Y., Yongli, Z., Yingying, D., & Yong, Y., Corrosion behavior of austenitic stainless steels utilized for coal-fired boilers in simulated coal-ash/high sulfur environments, In: International Conference on Power System Technology (POWERCON). (2018) 4525–4532.

  15. O. H. LeBlanc, K. L. Luthra, and R. W. Haskell, Oxidation of Metals 31, 1989 (393). https://doi.org/10.1007/BF00666464.

    Article  CAS  Google Scholar 

  16. S. Hu, H. Finklea, and X. Liu, Chinese Society of Metals 90, 2021 (243). https://doi.org/10.1016/j.jmst.2021.03.013.

    Article  CAS  Google Scholar 

  17. S. Srikanth, B. Ravikumar, S. K. Das, K. Gopalakrishna, K. Nandakumar, and P. Vijayan, Engineering Failure Analysis 10, 2003 (59). https://doi.org/10.1016/S1350-6307%2802%2900030-4.

    Article  CAS  Google Scholar 

  18. S. S. Sahil, K. Goyal, D. Bhandari, and B. Krishan, Journal of Bio-and Tribo-Corrosion 7, 2021 (100). https://doi.org/10.1007/s40735-021-00536-1.

    Article  Google Scholar 

  19. C. Sundaresan, B. Rajasekaran, S. Varalakshmi, K. Santhy, D. S. Rao, and G. Sivakumar, Corrosion Science 15, 2021 (109556). https://doi.org/10.1016/j.corsci.2021.109556.

    Article  CAS  Google Scholar 

  20. H. Singh, S. Singh, and S. Prakash, Applied Surface Science 255, 2009 (7062). https://doi.org/10.1016/j.apsusc.2009.03.040.

    Article  CAS  Google Scholar 

  21. G. Goyal, H. Singh, and S. Prakash, Applied Surface Science 254, 2008 (6653). https://doi.org/10.1016/j.apsusc.2008.04.042.

    Article  CAS  Google Scholar 

  22. B. N. Gitanjaly, H. Singh, and S. Prakash, Surface Engineering and Applied Electrochemistry 51, 2015 (174–187). https://doi.org/10.3103/S1068375515020040.

    Article  Google Scholar 

  23. B. N. Gitanjaly, H. Singh, and S. Prakash, Materials and Corrosion 66, 2015 (579). https://doi.org/10.1002/maco.201307534.

    Article  CAS  Google Scholar 

  24. G. Goyal, N. Bala, H. Singh, and S. Prakash, Oxidation of Metals 82, 2014 (49). https://doi.org/10.1007/s11085-014-9476-5.

    Article  CAS  Google Scholar 

  25. G. M. Ecert, R. B. Singh, and G. H. Meierw, Oxidation of Metals 18, 1982 (55). https://doi.org/10.1007/BF00656095.

    Article  Google Scholar 

  26. D. Gond, D. Puri, and S. Prakash, Journal of Minerals and Materials Characterization and Engineering 10, 2011 (463). https://doi.org/10.4236/jmmce.2011.105035.

    Article  Google Scholar 

  27. V. P. Sidhu, K. Goyal, and R. Goyal, Journal of the Australian Ceramic Society 53, 2017 (6). https://doi.org/10.1007/s41779-017-0107-x.

    Article  CAS  Google Scholar 

  28. Austenitic stainless steel seamless tube and ferritic round pipes supplier in India. https://www.steeltubesindia.net/stainless-steel-pipe-tube.html (accessed 1 May 2023).

  29. H. Singh, D. Puri, and S. Prakash, Surface and Coatings Technology 192, 2005 (27). https://doi.org/10.1016/j.surfcoat.2004.03.030.

    Article  CAS  Google Scholar 

  30. ASM, Metals Park, Ohio, Failure Analysis and Prevention, Metals Handbook, 8(10) (1975).

  31. National Materials Advisory Board Report, Coatings for high temperature structural materials: trends and opportunities, (National Academy Press, Washington, DC, 1996).

    Google Scholar 

  32. R. Y. Chein and C. C. Wang, Catalysts 10, 2020 (1). https://doi.org/10.3390/catal10101112.

    Article  CAS  Google Scholar 

  33. A. N. Cao, H. H. Nguyen, T. P. Pham, D. H. Le Phuong, N. A. Nguyen, D. V. Vo, and P. T. Pham, Journal of the Energy Institute 1, 2023 (101252). https://doi.org/10.1016/j.joei.2023.101252.

    Article  CAS  Google Scholar 

  34. A. Fahdil, A. N. Dawood, and A. Olaiwy, Journal of Biochemical Technology 9, 2018 (31). https://doi.org/10.47277/JETT/9(1)327.

    Article  CAS  Google Scholar 

  35. S. K. Chondath, A. P. K. Sreekala, C. Farzeena, S. N. Varanakkottu, and M. M. Menamparambath, Nanoscale 14, 2022 (11197). https://doi.org/10.1039/D2NR02130G.

    Article  CAS  PubMed  Google Scholar 

  36. C. Liu, K. Shih, Y. Gao, F. Li, and L. Wei, JSS 12, 2012 (724). https://doi.org/10.1007/s11368-012-0506-0.

    Article  CAS  Google Scholar 

  37. P. A. Prashanth, R. S. Raveendra, R. Hari Krishna, S. Ananda, N. P. Bhagya, B. M. Nagabhushana, K. Lingaraju, and H. Raja Naika, Journal of Asian Ceramic Socities 3, (3), 2015 (345–351). https://doi.org/10.1016/j.jascer.2015.07.001.

    Article  Google Scholar 

  38. S. Benykhlef, A. Bekhoukh, R. Berenguer, A. Benyoucef, and E. Morallon, Colloid and Polymer Science 294, 2016 (1877). https://doi.org/10.1007/s00396-016-3955-y.

    Article  CAS  Google Scholar 

  39. Q. Li, F. Yang, J. Zhang, and C. Zhou, SN Applied Science 2, 2020 (1375). https://doi.org/10.1007/s42452-020-3182-5.

    Article  CAS  Google Scholar 

  40. Y. Yang, X. Su, L. Zhang, P. Kerns, L. Achola, V. Hayes, R. Quardokus, S. L. Suib, and J. He, ChemCatChem 11, 2019 (1689). https://doi.org/10.1002/cctc.201802019.

    Article  CAS  Google Scholar 

  41. M. Mylarappa, V. V. Lakshmi, K. R. V. Mahesh, H. P. Nagaswarupa, and N. Raghavendra, IOP Conference Series: Materials Science and Engineering 149, 2016 (012178). https://doi.org/10.1088/1757-899X/149/1/012178.

    Article  Google Scholar 

  42. D. Jaganyi, M. Altaf, and I. Wekesa, Applied Nanoscience 3, (4), 2013 (329–333). https://doi.org/10.1007/s13204-012-0135-3.

    Article  CAS  Google Scholar 

  43. A. S. Ali, A. J. Mohammed, and H. R. Saud, International Journal of Engineering Technolology 7, 2018 (22). https://doi.org/10.14419/ijet.v7i4.37.23607.

    Article  CAS  Google Scholar 

  44. J. Zia, E. S. Aazam, and U. Riaz, Environmental Science Pollution Research 27, 2020 (24173). https://doi.org/10.1007/s11356-020-08149-w.

    Article  CAS  PubMed  Google Scholar 

  45. C. M. Julien and A. Mauger, Nanomaterials 7, 2017 (396). https://doi.org/10.3390/nano7110396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. R. Kumar, Materials Letters 316, 2022 (132064). https://doi.org/10.1016/j.matlet.2022.132064.

    Article  CAS  Google Scholar 

  47. S. Kamal, K. V. Sharma, and A. M. Abdul-Rani, JMCCE 3, 2015 (26). https://doi.org/10.4236/jmmce.2015.31004.

    Article  Google Scholar 

  48. D. Wang, Surface Coating Technolology 36, 1988 (49). https://doi.org/10.1016/0257-8972(88)90135-1.

    Article  CAS  Google Scholar 

  49. N. Bala, H. Singh, and S. Prakash, Applied Surface Science 255, 2009 (6862). https://doi.org/10.1016/j.apsusc.2009.03.006.

    Article  CAS  Google Scholar 

  50. H. Singh, D. Puri, and S. Prakash, Surface Coating Technolology 192, 2005 (27). https://doi.org/10.1016/j.surfcoat.2004.03.030.

    Article  CAS  Google Scholar 

  51. H. Singh, D. Puri, and S. Prakash, Revised Advance Materials Science 16, 2007 (27).

    CAS  Google Scholar 

  52. X. Cai, Y. Xu, M. Liu, and J. Yang, Surface Coating Technology 2020. https://doi.org/10.1016/j.surfcoat.2019.125148.

    Article  Google Scholar 

  53. S. Meng, X. Xue, Y. Weng, S. Jiang, G. Li, Q. Sun, and Y. Zhang, Catalysts Today 402, 2022 (266). https://doi.org/10.1016/j.cattod.2022.04.020.

    Article  CAS  Google Scholar 

  54. L. D. Paul and R. R. Seeley, Corrosion 47, 1991 (152). https://doi.org/10.5006/1.3585231.

    Article  CAS  Google Scholar 

  55. H.-L. Le-Tran, E. Sarigiannidou, I. Gélard, and D. Chaussende, Journal of European Ceramics 37, 2017 (4475). https://doi.org/10.1016/j.jeurceramsoc.2017.05.038.

    Article  CAS  Google Scholar 

  56. T. Yano, S. Kato, H. Suematsu, and T. Iseki, OPL 221, 1991 (105). https://doi.org/10.1557/PROC-221-105.

    Article  CAS  Google Scholar 

  57. H. R. Thilakan, A. K. Lahiri, and T. Banerjee, NML Technical Journal 11, 1969 (12).

    CAS  Google Scholar 

  58. S. Roure, F. Czerwinski, and A. Petric, Oxidation of Metals 42, 1994 (75). https://doi.org/10.1007/BF01061925.

    Article  CAS  Google Scholar 

  59. M. Schütze, M. Malessa, V. Rohr, and T. Weber, Surface of Coating Technology 201, 2006 (3872–3879).

    Article  Google Scholar 

  60. Z. Chen, T. Dong, W. Qu, Y. Ru, H. Zhang, Y. Pei, S. Gong, and S. Li, Corrosion Science 156, 2019 (161). https://doi.org/10.1016/j.corsci.2019.05.001.

    Article  CAS  Google Scholar 

  61. P. Y. Hou and J. Stringer, Materials Science Engineering 87, 1987 (295). https://doi.org/10.1016/0025-5416(87)90392-2.

    Article  CAS  Google Scholar 

  62. M. Nath, A. Ghosh, and H. S. Tripathi, Corrosion Science 102, 2016 (153). https://doi.org/10.1016/j.corsci.2015.10.004.

    Article  CAS  Google Scholar 

Download references

Funding

This research received no external financial or non-financial support.

Author information

Authors and Affiliations

Authors

Contributions

RC: Conceptualization, Methodology, Data Curation writing - original draft AK: Conceptualization, Resources, writing- original draft NB: Conceptualization, Resources, writing- original draft SKK: Conceptualization, Resources, writing- original draft

Corresponding authors

Correspondence to Niraj Bala or Sushil Kumar Kansal.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Relationships

There is no additional relationship to disclose.

Patents and Intellectual Property

There are no patents to disclose.

Other activities

There are no additional activities to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, R., Kaur, A., Bala, N. et al. Effect of Superficially Applied MnO2 and Al2O3 Oxide Inhibitors in Enhancing High-Temperature Corrosion of T22 Boiler Steel. High Temperature Corrosion of mater. (2024). https://doi.org/10.1007/s11085-024-10240-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11085-024-10240-3

Keywords

Navigation