Skip to main content

Advertisement

Log in

Immunomodulatory and Anti-Inflammatory Effects of Vitamin A and Tryptophan on Monocyte-Derived Dendritic Cells Stimulated with Gliadin in Celiac Disease Patients

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Celiac Disease (CeD) is an autoimmune disorder with various symptoms upon gluten exposure. Dendritic cells (DCs) play a crucial role in gliadin-induced inflammation. Vitamin A (retinol; Ret) and its metabolite, retinoic acid (RA), along with tryptophan (Trp) and its metabolite, kynurenic acid (KYNA), are known to influence the immune function of DCs and enhance their tolerogenicity. This research aims to assess the impact of gliadin on DC maturation and the potential of vitamin A and tryptophan to induce immune tolerance in DCs. The monocyte cells obtained from peripheral blood mononuclear cells (PBMCs) of celiac disease patients were differentiated into DCs in the absence or presence of Ret, RA, Trp, KYNA, and then stimulated with peptic and tryptic (PT) digested of gliadin. We used flow cytometry to analyze CD11c, CD14, HLA-DR, CD83, CD86, and CD103 expression. ELISA was carried out to measure TGF-β, IL-10, IL-12, and TNF-α levels. qRT-PCR was used to assess the mRNA expression of retinaldehyde dehydrogenase 2 (RALDH2) and integrin αE (CD103). The mRNA and protein levels of Indoleamine 2, 3-dioxygenase (IDO) was analyzed by qRT-PCR and Western blot assays, respectively. Our findings demonstrate that PT-gliadin enhances the expression of maturation markers, i.e. CD83, CD86 and HLA-DR and promote the secretion of TNF-α and IL-12 in DCs. Interestingly, vitamin A, tryptophan, and their metabolites increase the expression of CD103, while limiting the expression of HLA-DR, CD83, and CD86. They also enhance RALDH2 and IDO expression and promote the secretion of TGF-β and IL-10, while limiting IL-12 and TNF-α secretion. These findings suggest that vitamin A and tryptophan have beneficial effects on PT-gliadin-stimulated DCs, highlighting their potential as therapeutic agents for celiac disease. However, further research is needed to fully understand their underlying mechanisms of action in these cells.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Molaaghaee-Rouzbahani, S., N. Asri, A. Sapone, K. Baghaei, A. Yadegar, D. Amani, et al. 2023. Akkermansia muciniphila exerts immunomodulatory and anti-inflammatory effects on gliadin-stimulated THP-1 derived macrophages. Science and Reports 13 (1): 3237.

    Article  ADS  CAS  Google Scholar 

  2. Makharia, G.K., A. Chauhan, P. Singh, and V. Ahuja. 2022. Review article: Epidemiology of coeliac disease. Alimentary Pharmacology & Therapeutics 56 (S1): S3-17.

    Article  Google Scholar 

  3. Balakireva, A.V., and A.A. Zamyatnin. 2016. Properties of Gluten Intolerance: Gluten Structure, Evolution, Pathogenicity and Detoxification Capabilities. Nutrients 8 (10).

  4. Yoosuf, S., and G.K. Makharia. 2019. Evolving therapy for celiac disease. Frontiers in Pediatrics 7.

  5. Rostami-Nejad, M., M. Faghih, Z. Barartabar, and Z. Nasiri. 2018. The role of Th1 and Th17 in the pathogenesis of celiac disease. Gastroenterol Hepatol Open Access 9 (2).

  6. Fucikova, J., L. Palova-Jelinkova, J. Bartunkova, and R. Spisek. 2019. Induction of tolerance and immunity by dendritic cells: Mechanisms and clinical applications. Frontiers in Immunology 10.

  7. Audiger, C., M.J. Rahman, T.J. Yun, K.V. Tarbell, and S. Lesage. 2017. The Importance of Dendritic Cells in Maintaining Immune Tolerance. The Journal of Immunology 198 (6): 2223–2231.

    Article  CAS  PubMed  Google Scholar 

  8. Kheiri, F., M. Rostami-Nejad, D. Amani, and M.J. Ehsani-Ardakani. 2019. Tolerogenic Dendritic Cell, an Unknown Cell in Celiac Disease. EC Gastroenterol Dig Syst. 7 (1): 1–7.

    Google Scholar 

  9. Takenaka, M.C., and F.J. Quintana. 2017. Tolerogenic dendritic cells. Semin Immunopathol. 39 (2): 113–120.

    Article  CAS  PubMed  Google Scholar 

  10. Gianfrani, C., S. Vitale, and R. Troncone. 2022. New Therapeutic Strategies in Celiac Disease. In: Advances in Celiac Disease. Cham: Springer International Publishing; 171–91.

  11. Al-sunaid, F.F., M.M. Al-homidi, R.M. Al-qahtani, R.A. Al-ashwal, G.A. Mudhish, M.A. Hanbazaza, et al. 2021. The influence of a gluten-free diet on health-related quality of life in individuals with celiac disease. BMC Gastroenterology 21 (1).

  12. Cassani, B., E.J. Villablanca, J. De Calisto, S. Wang, and J.R. Mora. 2012. Vitamin A and immune regulation: Role of retinoic acid in gut-associated dendritic cell education, immune protection and tolerance. Molecular Aspects of Medicine 33 (1): 63–76.

    Article  CAS  PubMed  Google Scholar 

  13. Saurer, L., K.C. McCullough, and A. Summerfield. 2007. In Vitro Induction of Mucosa-Type Dendritic Cells by All- Trans Retinoic Acid. The Journal of Immunology 179 (6): 3504–3514.

    Article  CAS  PubMed  Google Scholar 

  14. Liu, Y., X. Wang, and C.A. Hu. 2017. Therapeutic Potential of Amino Acids in Inflammatory Bowel Disease. Nutrients 9 (9): 920.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Dolin, H.H., J.H. Franco, X. Chen, and Z.K. Pan. 2023. Retinoic Acid-Induced Regulation of Inflammatory Pathways Is a Potential Sepsis Treatment. Infection and Immunity 91 (4).

  16. Carazo, A., K. Macáková, K. Matoušová, L.K. Krčmová, M. Protti, and P. Mladěnka. 2021. Vitamin A update: Forms, sources, kinetics, detection, function, deficiency, therapeutic use and toxicity. Nutrients 13 (5): 1703.

  17. Cervenka, I., L.Z. Agudelo, and J.L. Ruas. 2017. Kynurenines: Tryptophan’s metabolites in exercise, inflammation, and mental health. Science 357 (6349).

  18. Badawy, A.A.B. 2017. Kynurenine Pathway of Tryptophan Metabolism: Regulatory and Functional Aspects. Int J Tryptophan Res. 10 (1): 117864691769193.

    Article  Google Scholar 

  19. Wirthgen, E., A. Hoeflich, A. Rebl, and J. Günther. 2018. Kynurenic Acid: The Janus-Faced Role of an Immunomodulatory Tryptophan Metabolite and Its Link to Pathological Conditions. Frontiers in Immunology 8.

  20. Riedhammer, C., D. Halbritter, and R. Weissert. 2015. Peripheral blood mononuclear cells: Isolation, freezing, thawing, and culture. Methods in Molecular Biology 1304: 53–61.

    Article  Google Scholar 

  21. Sim, W.J., F. Malinarich, A.M. Fairhurst, and J.E. Connolly. 2016. Generation of Immature, Mature and Tolerogenic Dendritic Cells with Differing Metabolic Phenotypes. Journal of Visualized Experiments (112).

  22. Feng, T., Y. Cong, H. Qin, E.N. Benveniste, and C.O. Elson. 2010. Generation of Mucosal Dendritic Cells from Bone Marrow Reveals a Critical Role of Retinoic Acid. The Journal of Immunology 185 (10): 5915–5925.

    Article  CAS  PubMed  Google Scholar 

  23. Brenk, M., M. Scheler, S. Koch, J. Neumann, O. Takikawa, G. Häcker, et al. 2009. Tryptophan Deprivation Induces Inhibitory Receptors ILT3 and ILT4 on Dendritic Cells Favoring the Induction of Human CD4 + CD25 + Foxp3 + T Regulatory Cells. The Journal of Immunology 183 (1): 145–154.

    Article  CAS  PubMed  Google Scholar 

  24. Salimi Elizei, S., M.S. Poormasjedi-Meibod, X. Wang, M. Kheirandish, and A. Ghahary. 2017. Kynurenic acid downregulates IL-17/1L-23 axis in vitro. Molecular and Cellular Biochemistry 431 (1–2): 55–65.

    Article  CAS  PubMed  Google Scholar 

  25. Rakhimova, M., B. Esslinger, A. Schulze-Krebs, E.G. Hahn, D. Schuppan, and W. Dieterich. 2009. In vitro differentiation of human monocytes into dendritic cells by peptic-tryptic digest of gliadin is independent of genetic predisposition and the presence of celiac disease. Journal of Clinical Immunology 29 (1): 29–37.

    Article  CAS  PubMed  Google Scholar 

  26. Den Hartog, G., C. Van Altena, H.F.J. Savelkoul, and R.J.J. Van Neerven. 2013. The mucosal factors retinoic acid and TGF-β1 induce phenotypically and functionally distinct dendritic cell types. International Archives of Allergy and Immunology 162 (3): 225–236.

    Article  Google Scholar 

  27. Gujral, N., J.W. Suh, and H.H. Sunwoo. 2015. Effect of anti-gliadin IgY antibody on epithelial intestinal integrity and inflammatory response induced by gliadin. BMC Immunology 16 (1).

  28. Lopez, A., E. Alegre, J. Lemaoult, E. Carosella, and A. Gonzalez. 2006. Regulatory role of tryptophan degradation pathway in HLA-G expression by human monocyte-derived dendritic cells. Molecular Immunology 43 (14): 2151–2160.

    Article  CAS  PubMed  Google Scholar 

  29. Hudec, M., K. Riegerová, J. Pala, V. Kútna, M. Černá, V.B. O’Leary. 2021. Celiac disease defined by over-sensitivity to gliadin activation and superior antigen presentation of dendritic cells. International Journal of Molecular Sciences 22 (18).

  30. Benoit, L., J. Masiri, I.A. Del Blanco, M. Meshgi, S.M. Gendel, and M. Samadpour. 2017. Assessment of Avenins from Different Oat Varieties Using R5-Based Sandwich ELISA. Journal of Agriculture and Food Chemistry 65 (8): 1467–1472.

    Article  CAS  Google Scholar 

  31. Lindfors, K., C. Ciacci, K. Kurppa, K.E.A. Lundin, G.K. Makharia, M.L. Mearin, et al. 2019. Coeliac disease. Nat Rev Dis Prim. 5 (1): 3.

    Article  PubMed  Google Scholar 

  32. Caio, G., U. Volta, A. Sapone, D.A. Leffler, R. De Giorgio, and C. Catassi, et al. 2019. Celiac disease: a comprehensive current review. BMC Medicine 17 (1).

  33. Escudero-Hernández, C., Á. Martín, R. de Pedro Andrés, L. Fernández-Salazar, J.A. Garrote, and D. Bernardo, et al. 2020. Circulating Dendritic Cells from Celiac Disease Patients Display a Gut-Homing Profile and are Differentially Modulated by Different Gliadin-Derived Peptides. Molecular Nutrition & Food Research 64 (6).

  34. He, Z., X. Zhu, Z. Shi, T. Wu, and L. Wu. 2019. Metabolic regulation of dendritic cell differentiation. Frontiers in Immunology. 10: 425127.

  35. Depaolo, R.W., V. Abadie, F. Tang, H. Fehlner-Peach, J.A. Hall, W. Wang, et al. 2011. Co-adjuvant effects of retinoic acid and IL-15 induce inflammatory immunity to dietary antigens. Nature 471 (7337): 220.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sigmundsdottir, H., and E.C. Butcher. 2008. Environmental cues, dendritic cells and the programming of tissue-selective lymphocyte trafficking. Nature Immunology 9 (9): 981–987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Passeri, L., G. Andolfi, V. Bassi, F. Russo, G. Giacomini, C. Laudisa, et al. 2023. Tolerogenic IL-10-engineered dendritic cell-based therapy to restore antigen-specific tolerance in T cell mediated diseases. Journal of Autoimmunity 1: 138.

    Google Scholar 

  38. Mahnke, K., T.S. Johnson, S. Ring, and A.H. Enk. 2007. Tolerogenic dendritic cells and regulatory T cells: A two-way relationship. Journal of Dermatological Science 46 (3): 159–167.

    Article  CAS  PubMed  Google Scholar 

  39. Jelínková, L., L. Tučková, J. Cinová, Z. Flegelová, and H. Tlaskalová-Hogenová. 2004. Gliadin stimulates human monocytes to production of IL-8 and TNF-α through a mechanism involving NF-κB. FEBS Letters 571 (1–3): 81–85.

    Article  PubMed  Google Scholar 

  40. Thomas, K.E., A. Sapone, A. Fasano, and S.N. Vogel. 2006. Gliadin Stimulation of Murine Macrophage Inflammatory Gene Expression and Intestinal Permeability Are MyD88-Dependent: Role of the Innate Immune Response in Celiac Disease. The Journal of Immunology 176 (4): 2512–2521.

    Article  CAS  PubMed  Google Scholar 

  41. Harris, K.M., A. Fasano, and D.L. Mann. 2010. Monocytes differentiated with IL-15 support Th17 and Th1 responses to wheat gliadin: Implications for celiac disease. Clinical Immunology 135 (3): 430–439.

    Article  CAS  PubMed  Google Scholar 

  42. Farina, F., L. Pisapia, M. Laezza, G. Serena, A. Rispo, and S. Ricciolino, et al. 2021. Effect of Gliadin Stimulation on HLA-DQ2.5 Gene Expression in Macrophages from Adult Celiac Disease Patients. Biomedicines 10 (1).

  43. Hudec, M., Riegerová K, Pala J, Kútna V, Černá M, and V.B. O´Leary. 2021. Celiac Disease Defined by Over-Sensitivity to Gliadin Activation and Superior Antigen Presentation of Dendritic Cells. International Journal of Molecular Sciences 22 (18): 9982.

  44. Palová-Jelínková, L., K. Dáňová, H. Drašarová, M. Dvořák, D.P. Funda, and P. Fundová, et al. 2013. Pepsin Digest of Wheat Gliadin Fraction Increases Production of IL-1β via TLR4/MyD88/TRIF/MAPK/NF-κB Signaling Pathway and an NLRP3 Inflammasome Activation. PLoS One 8 (4).

  45. Palová-Jelínková, L., D. Rožková, B. Pecharová, J. Bártová, A. Šedivá, H. Tlaskalová-Hogenová, et al. 2005. Gliadin Fragments Induce Phenotypic and Functional Maturation of Human Dendritic Cells. The Journal of Immunology 175 (10): 7038–7045.

    Article  PubMed  Google Scholar 

  46. Cinova, J., L. Palová-Jelínková, L.E. Smythies, M. Černá, B. Pecharová, M. Dvořák, et al. 2007. Gliadin peptides activate blood monocytes from patients with celiac disease. Journal of Clinical Immunology 27 (2): 201–209.

    Article  CAS  PubMed  Google Scholar 

  47. Palová-Jelínková, L., K. Dáňová, H. Drašarová, M. Dvořák, D.P. Funda, and P. Fundová, et al. 2013. Pepsin Digest of Wheat Gliadin Fraction Increases Production of IL-1β via TLR4/MyD88/TRIF/MAPK/NF-κB Signaling Pathway and an NLRP3 Inflammasome Activation. Sanz Y, editor. PLoS One 8 (4): e62426.

  48. Discepolo, V., G. Lania, Eikelder MLG. Ten, M. Nanayakkara, L. Sepe, R. Tufano, et al. 2021. Pediatric celiac disease patients show alterations of dendritic cell shape and actin rearrangement. International Journal of Molecular Sciences 22 (5): 1–16.

    Article  Google Scholar 

  49. Mohty, M., S. Morbelli, D. Isnardon, D. Sainty, C. Arnoulet, B. Gaugler, et al. 2003. All-trans retinoic acid skews monocyte differentiation into interleukin-12-secreting dendritic-like cells. British Journal of Haematology 122 (5): 829–836.

    Article  CAS  PubMed  Google Scholar 

  50. Fallah, S., N. Asri, A. Nikzamir, S. Ahmadipour, A. Sadeghi, K. Rostami, et al. 2024. Investigating the Impact of Vitamin A and Amino Acids on Immune Responses in Celiac Disease Patients. Diseases. 12 (1): 13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fallarino, F., U. Grohmann, S. You, B.C. McGrath, D.R. Cavener, C. Vacca, et al. 2006. Tryptophan catabolism generates autoimmune-preventive regulatory T cells. Transplant Immunology 17 (1): 58–60.

    Article  CAS  PubMed  Google Scholar 

  52. Kheiri, F., M. Rostami-Nejad, D. Amani, A. Sadeghi, A. Moradi, E. Aghamohammadi, et al. 2022. Expression of tolerogenic dendritic cells in the small intestinal tissue of patients with celiac disease. Heliyon. 8 (12): e12273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Roe, M.M., S. Swain, T.A. Sebrell, M.A. Sewell, M.M. Collins, B.A. Perrino, et al. 2017. Differential regulation of CD103 (αE integrin) expression in human dendritic cells by retinoic acid and Toll-like receptor ligands. Journal of Leukocyte Biology 101 (5): 1169–1180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hall, J.A., J.R. Grainger, S.P. Spencer, and Y. Belkaid. 2011. The role of retinoic acid in tolerance and immunity. Immunity 35 (1): 13–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Molenaar, R., M. Knippenberg, G. Goverse, B.J. Olivier, A.F. de Vos, T. O’Toole, et al. 2011. Expression of Retinaldehyde Dehydrogenase Enzymes in Mucosal Dendritic Cells and Gut-Draining Lymph Node Stromal Cells Is Controlled by Dietary Vitamin A. The Journal of Immunology 186 (4): 1934–1942.

    Article  CAS  PubMed  Google Scholar 

  56. Mellor, A.L., and D.H. Munn. 2004. Ido expression by dendritic cells: Tolerance and tryptophan catabolism. Nature Reviews Immunology 4 (10): 762–774.

    Article  CAS  PubMed  Google Scholar 

  57. Torres, M.I., M.A. López-Casado, P. Lorite, and A. Ríos. 2007. Tryptophan metabolism and indoleamine 2,3-dioxygenase expression in coeliac disease. Clinical and Experimental Immunology 148 (3): 419–424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fallarino, F., M.T. Pallotta, D. Matino, M. Gargaro, C. Orabona, C. Vacca, et al. 2015. LPS-conditioned dendritic cells confer endotoxin tolerance contingent on tryptophan catabolism. Immunobiology 220 (2): 315–321.

    Article  CAS  PubMed  Google Scholar 

  59. Mbongue, J., D. Nicholas, T. Torrez, N.S. Kim, A. Firek, and W. Langridge. 2015. The Role of Indoleamine 2, 3-Dioxygenase in Immune Suppression and Autoimmunity. Vaccines. 3 (3): 703–729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Manni, G., G. Mondanelli, G. Scalisi, M.T. Pallotta, D. Nardi, E. Padiglioni, et al. 2020. Pharmacologic Induction of Endotoxin Tolerance in Dendritic Cells by L-Kynurenine. Frontiers in Immunology 11 (11): 292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tiszlavicz, Z., B. Németh, F. Fülöp, L. Vécsei, K. Tápai, I. Ocsovszky, et al. 2011. Different inhibitory effects of kynurenic acid and a novel kynurenic acid analogue on tumour necrosis factor-α (TNF-α) production by mononuclear cells, HMGB1 production by monocytes and HNP1-3 secretion by neutrophils. Naunyn-Schmiedeberg’s Archives of Pharmacology 383 (5): 447–455.

    Article  CAS  PubMed  Google Scholar 

  62. Lee, W.S., S.M. Lee, M.K. Kim, S.G. Park, I.W. Choi, I. Choi, et al. 2013. The tryptophan metabolite 3-hydroxyanthranilic acid suppresses T cell responses by inhibiting dendritic cell activation. International Immunopharmacology 17 (3): 721–726.

    Article  CAS  PubMed  Google Scholar 

  63. Liu, P.T., S.R. Krutzik, J. Kim, and R.L. Modlin. 2005. Cutting Edge: All- trans Retinoic Acid Down-Regulates TLR2 Expression and Function. The Journal of Immunology 174 (5): 2467–2470.

    Article  CAS  PubMed  Google Scholar 

  64. Kim, S.Y., J.E. Koo, M.R. Song, and J.Y. Lee. 2013. Retinol suppresses the activation of toll-like receptors in MyD88- and STAT1-independent manners. Inflammation 36 (2): 426–433.

    Article  CAS  PubMed  Google Scholar 

  65. Manicassamy, S., R. Ravindran, J. Deng, H. Oluoch, T.L. Denning, S.P. Kasturi, et al. 2009. Toll-like receptor 2–dependent induction of vitamin A–metabolizing enzymes in dendritic cells promotes T regulatory responses and inhibits autoimmunity. Nature Medicine 15 (4): 401–409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhang, X., A. Wang, E. Chang, B. Han, J. Xu, Y. Fu, et al. 2023. Effects of dietary tryptophan on the antioxidant capacity and immune response associated with TOR and TLRs/MyD88/NF-κB signaling pathways in northern snakehead, Channa argus (Cantor, 1842). Frontiers in Immunology 11: 14.

    CAS  Google Scholar 

  67. Xiao, B.G., Y.M. Huang, and H. Link. 2006. Tolerogenic dendritic cells: The ins and outs of outcome. Journal of Immunotherapy 29 (5): 465–471.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Funding

The represented study was supported by The Research Institute for Gastroenterology and Liver Diseases (RIGLD), Shahid Beheshti University of Medical Sciences (Tehran, Iran).

Author information

Authors and Affiliations

Authors

Contributions

F A:‬ Conceptualization, Methodology, Data analysis, Investigation, Writing – original draft. A N: ‬Conceptualization, Data curation, Validation, Investigation, Writing – review & editing. K B: Methodology, Validation, Data analysis, Data curation, Investigation, Writing – review & editing. S S: Validation, Data analysis, Data curation, Investigation, Writing – review & editing. A M: Writing – review & editing, Data curation. M R: Conceptualization, Data analysis, Investigation, Validation, Data Curation, Writing – review & editing, Supervision, Project administration.‬

Corresponding author

Correspondence to Mohammad Rostami-Nejad.

Ethics declarations

Ethical Considerations

Ethical Approval Prior to conducting the research, current project’s protocols were reviewed and approved by the Shahid Beheshti University of Medical Sciences (SBMU) and the Research Institute for Gastroenterology and Liver Diseases (RIGLD) ethical committee. The approved code of ethics (Code of Ethics: IR.SBMU.MSP.REC. 1400.326) was accordance with the ethical standards of these institutes. The written informed consent was signed by every participants prior any sampling.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 307 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asgari, F., Nikzamir, A., Baghaei, K. et al. Immunomodulatory and Anti-Inflammatory Effects of Vitamin A and Tryptophan on Monocyte-Derived Dendritic Cells Stimulated with Gliadin in Celiac Disease Patients. Inflammation (2024). https://doi.org/10.1007/s10753-024-02004-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10753-024-02004-7

KEY WORDS

Navigation