Issue 7, 2024

Restorative effects of (+)-epicatechin in a rodent model of aging induced muscle atrophy: underlying mechanisms

Abstract

Sarcopenia is a progressive and generalized age-related skeletal muscle (SkM) disorder characterized by the accelerated loss of muscle mass (atrophy) and function. SkM atrophy is associated with increased incidence of falls, functional decline, frailty and mortality. In its early stage, SkM atrophy is associated with increased pro-inflammatory cytokine levels and proteasome-mediated protein degradation. These processes also link to the activation of atrophy associated factors and signaling pathways for which, there is a lack of approved pharmacotherapies. The objective of this study, was to characterize the capacity of the flavanol (+)-epicatechin (+Epi) to favorably modulate SkM mass and function in a rat model of aging induced sarcopenia and profile candidate mechanisms. Using 23 month old male Sprague-Dawley rats, an 8 weeks oral administration of the +Epi (1 mg per kg per day in water by gavage) was implemented while control rats only received water. SkM strength (grip), treadmill endurance, muscle mass, myofiber area, creatine kinase, lactate dehydrogenase, troponin, α-actin, tumor necrosis factor (TNF)-α and atrophy related endpoints (follistatin, myostatin, NFκB, MuRF 1, atrogin 1) were quantified in plasma and/or gastrocnemius. We also evaluated effects on insulin growth factor (IGF)-1 levels and downstream signaling (AKT/mTORC1). Treatment of aged rats with +Epi, led to significant increases in front paw grip strength, treadmill time and SkM mass vs. controls as well as beneficial changes in makers of myofiber integrity. Treatment significantly reversed adverse changes in plasma and/or SkM TNF-α, IGF-1, atrophy and protein synthesis related endpoints vs. controls. In conclusion, +Epi has the capacity to reverse sarcopenia associated detrimental changes in regulatory pathways leading to improved SkM mass and function. Given these results and its recognized safety and tolerance profile, +Epi warrants consideration for clinical trials.

Graphical abstract: Restorative effects of (+)-epicatechin in a rodent model of aging induced muscle atrophy: underlying mechanisms

Supplementary files

Article information

Article type
Paper
Submitted
26 Sep 2023
Accepted
29 Feb 2024
First published
15 Mar 2024

Food Funct., 2024,15, 3669-3679

Restorative effects of (+)-epicatechin in a rodent model of aging induced muscle atrophy: underlying mechanisms

I. Ramirez-Sanchez, V. Navarrete-Yañez, L. Ramirez, L. Galera, E. Mendez-Bolaina, V. Najera, G. Ceballos and F. Villarreal, Food Funct., 2024, 15, 3669 DOI: 10.1039/D3FO04004F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements