Skip to main content
Log in

Geochemistry of tourmaline-rich rocks in the Gavião Block, Northern São Francisco craton: implications for its formation

  • Research
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Tourmaline is a valuable forensic mineral that contains a wide range of elemental components capable of reconstructing its geologic evolution. In this study, we developed detailed petrographic and geochemical research on tourmaline-bearing rocks and tourmalinites found surrounding the ca. 3.30 Ga rhyolite of the Gavião Block, northern São Francisco Craton. Two distinct types of mineral assemblages in the tourmaline-bearing rocks are recognized based on the presence of sulfides, oxide minerals, and carbonaceous matter. Along with these tourmaline-bearing rocks, tourmalinite samples are found. The mineral chemistry of tourmalines from the two types of tourmaline-bearing rocks reveals mainly schorl-dravite as tourmaline from a mineral assemblage containing quartz, tourmaline, pyrite, and hematite, and a diverse composition ranging from schorl-dravite, feruvite-uvite, and schorl-feruvite solid solutions for tourmalines present in the mineral assemblage that contains quartz, pyrite, and carbonaceous matter. The tourmaline composition is essentially foitite-schorl in tourmalinite samples. Most of the metasedimentary rocks studied have felsic and mafic source compositions. The interaction of hydrothermal fluid was crucial for the formation of sulfide and tourmaline minerals. However, distinct tourmaline origins are recognized in tourmaline-rich rocks, pointing out the relevance of sedimentary and metamorphic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data presented in the text of the article are fully available without restriction from authors upon request. Code availability is not applicable.

References

  • Aigner-Torres M, Blundy J, Ulmer P, Pettke T (2007) Laser ablation ICPMS study of trace element partitioning between plagioclase and basaltic melts: an experimental approach. Contrib Mineral Petrol 153:647–667

    Article  ADS  CAS  Google Scholar 

  • Alkmim FF, Teixeira W (2017) The Paleoproterozoic Mineiro Belt and the Quadrilátero Ferrífero. 71–94. https://doi.org/10.1007/978-3-319-01715-0_5

  • Anani CY, Bonsu S, Kwayisi D, Asiedu DK (2019) Geochemistry and provenance of neoproterozoic metasedimentary rocks from the Togo structural unit, Southeastern Ghana. J Afr Earth Sci 153:208–218

    Article  CAS  Google Scholar 

  • Anders E, Grevesse N (1989) Abundances of the elements: meteoritic and solar. Geochim Cosmochim Acta 53:197–214

    Article  ADS  CAS  Google Scholar 

  • Barbosa JSF, Barbosa RG (2017) The paleoproterozoic eastern Bahia orogenic domain. In: Heibron M, Cordani UG, Alkimim FF (eds) São Francisco Craton, eastern Brazil. Springer, Tectonic genealogy of a miniature continent, pp 57–69

    Chapter  Google Scholar 

  • Barbosa JSF, Sabaté P (2002) Geological features and the Paleoproterozoic collision of four Archean crustal segments of the São Francisco Craton, Bahia, Brazil. A synthesis. Acad Bras Cienc 74:343–359

    Article  CAS  Google Scholar 

  • Barbosa JSF, Sabaté P (2003a) The four Archean crustal segments of the São Francisco craton. Bahia, Brazil and their Paleoproterozoic collision. 1:151–154

    Google Scholar 

  • Barbosa JSF, Sabaté P (2003b) Colagem paleoproterozóica De Placas arqueanas do cráton do São Francisco na Bahia. Rev Bras Geociências 33:07–14

    Article  Google Scholar 

  • Barbosa JSF, Sabaté P (2004) Archean and Paleoproterozoic crust of the São Francisco Craton, Bahia, Brazil: geodynamic features. Precambrian Res 133:1–27

    Article  ADS  CAS  Google Scholar 

  • Barbosa JSF, Mascarenhas JF, Correa-Gomes LC et al (2012) Geologia Da Bahia: pesquisa e atualização, 13th edn. Série Publicações Especiais, Salvador-Bahia

    Google Scholar 

  • Bau M (1991) Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Chem Geol 93:219–230

    Article  ADS  CAS  Google Scholar 

  • Bau M (1996) Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contrib Mineral Petrol 123:323–333

    Article  ADS  CAS  Google Scholar 

  • Bau M, Alexander BW (2009) Distribution of high field strength elements (Y, zr, REE, Hf, Ta, Th, U) in adjacent magnetite and chert bands and in reference standards FeR-3 and FeR-4 from the Temagami iron-formation, Canada, and the redox level of the Neoarchean ocean. Precambrian Res 174:337–346

    Article  ADS  CAS  Google Scholar 

  • Bau M, Dulski P (1995) Comparative study of yttrium and rare-earth element behaviours in fluorine-rich hydrothermal fluids. Contrib Mineral Petrol 119:213–223

    Article  ADS  CAS  Google Scholar 

  • Bau M, Dulski P (1996) Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Res 79:37–55

    Article  ADS  CAS  Google Scholar 

  • Bau M, Dulski P (1999) Comparing yttrium and rare earths in hydrothermal fluids from the Mid-atlantic Ridge: implications for Y and REE behaviour during near-vent mixing and for the Y/Ho ratio of proterozoic seawater. Chem Geol 155:77–90

    Article  ADS  CAS  Google Scholar 

  • Bau M, Dulski P, Moller P (1995) Yttrium and Holmium in South Pacific seawater: vertical distribution and possible fractionation mechanisms. Chem Erde 55:1–15

    CAS  Google Scholar 

  • Bau M, Frei R, Garbe-Schönberg D, Viehmann S (2022) High-resolution Ge-Si-Fe, Cr isotope and Th-U data for the Neoarchean Temagami BIF, Canada, suggest primary origin of BIF bands and oxidative terrestrial weathering 2.7 Ga ago. Earth Planet Sci Lett 589:117579

    Article  CAS  Google Scholar 

  • Bernard S, Papineau D (2014) Graphitic carbons and biosignatures. Elements 10:435–440

    Article  ADS  CAS  Google Scholar 

  • Bokhari SNH, Meisel TC (2016) Method development and optimisation of sodium peroxide sintering forgGeological samples. Geostand Geoanalytical Res 41:181–195

    Article  Google Scholar 

  • Bolhar R, Kamber BS, Moorbath S et al (2004) Characterisation of early archaean chemical sediments by trace element signatures. Earth Planet Sci Lett 222:43–60

    Article  ADS  CAS  Google Scholar 

  • Bonnand P, Lalonde SV, Boyet M et al (2020) Post-depositional REE mobility in a Paleoarchean banded iron formation revealed by La-Ce geochronology: a cautionary tale for signals of ancient oxygenation. Earth Planet Sci Lett 547:116452

    Article  CAS  Google Scholar 

  • Buseck PR, Beyssac O (2014) From organic matter to graphite: Graphitization. Elements 10:421–426

    Article  ADS  CAS  Google Scholar 

  • Cavarretta G, Puxeddu M (1990) Schorl-Dravite-ferridravite tourmalines deposited by hydrothermal magmatic fluids during early evolution of the Larderello geothermal field, Italy. Econ Geol 85:1236–1251

    Article  CAS  Google Scholar 

  • Collerson KD, Kamber BS (1999) Evolution of the continents and the atmosphere inferred from Th-U-Nb systematics of the depleted mantle. Sci (80-) 283:1519–1522

    Article  ADS  CAS  Google Scholar 

  • Condie KC (1993) Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chem Geol 104:1–37

    Article  ADS  CAS  Google Scholar 

  • Cullers RL (2000) The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, USA: implications for provenance and metamorphic studies. Lithos 51:181–203

    Article  ADS  CAS  Google Scholar 

  • da Silva Filho CVR (2017) Geologia isotópica das Formações ferríferas Bandadas do Cráton São Francisco na transição arqueano paleoproterozoico. Universidade de Brasília

  • Derry LA (1991) The chemical evolution of precambrian seawater: evidence from REEs in banded iron formations. Geochim Cosmochim Acta 55:1181

    Article  ADS  Google Scholar 

  • Dutrow BL, Henry DJ (2011) Tourmaline: a geologic DVD. Elements 7:301–306

    Article  ADS  CAS  Google Scholar 

  • Elderfield H, Whitfield M, Burton JD et al (1988) The oceanic chemistry of the rare-earth elements. Philos Trans R Soc Lond Ser Math Phys Sci 325:105–126

    ADS  CAS  Google Scholar 

  • Floyd PA, Leveridge BE (1987) Tectonic environment of the devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones. J Geol Soc 144:531–542

    Article  CAS  Google Scholar 

  • Frondel C, Collette RL (1957) Synthesis of tourmaline by reaction of mineral grains with NaCl-H3BO3 solution, and its implications in rock metamorphism. Am Mineral 42:754–758

    CAS  Google Scholar 

  • Gordilho Barbosa R, Lana C, de Zincone C (2021) Paleoproterozoic granitic magmatism in the northern São Francisco Craton, NE Brazil: new perspectives from geochemistry, zircon U–Pb geochronology and hf isotopes. J South Am Earth Sci 105:103004

    Article  CAS  Google Scholar 

  • Gordilho Barbosa R, Ferreira A, Leitzke FP et al (2022) A review of 3.66 to 2.77 Ga crustal differentiation in the northern São Francisco Craton, Brazil. Int Geol Rev 00:1–17

    Google Scholar 

  • Grew ES, Dymek RF, De Hoog JCM et al (2015) Boron isotopes in tourmaline from the ca. 3.7–3.8 Ga Isua supracrustal belt, Greenland: sources for boron in Eoarchean continental crust and seawater. Geochim Cosmochim Acta 163:156–177

    Article  ADS  CAS  Google Scholar 

  • Guitreau M, Blichert-Toft J, Martin H et al (2012) Hafnium isotope evidence from Archean granitic rocks for deep-mantle origin of continental crust. Earth Planet Sci Lett 337–338:211–223

    Article  ADS  Google Scholar 

  • Henry DJ, Dutrow BL (1996) Metamorphic tourmaline and its petrologic applications. In: Boron. Mineralogy, Petrology, and Geochemistry, pp 503–558

  • Henry DJ, Dutrow BL (2012) Tourmaline at diagenetic to low-grade metamorphic conditions: its petrologic applicability. Lithos 154:16–32

    Article  ADS  CAS  Google Scholar 

  • Henry DJ, Dutrow BL (2018) Tourmaline studies through time: contributions to scientific advancements. J Geosci (Czech Republic) 63:77–98

    Google Scholar 

  • Henry DJ, Novák M, Hawthorne FC et al (2011) Nomenclature of the tourmaline-supergroup minerals. Am Mineral 96:895–913

    Article  ADS  CAS  Google Scholar 

  • Lopes LBL, Ganade CE, Duarte Campos L et al (2021) Crustal reworking and Archean TTG generation in the south Gavião Block, São Francisco Craton, Brazil. Precambrian Res 363. https://doi.org/10.1016/j.precamres.2021.106333

  • MacRae ND, Nesbitt HW, Kronberg BI (1992) Development of a positive Eu anomaly during diagenesis. Earth Planet Sci Lett 109:585–591

    Article  ADS  CAS  Google Scholar 

  • Marchesin WF (2015) Geologia, geoquímica e geocronologia do Domo da Serra dos Meiras, Bloco Gavião, Bahia. 1–68

  • Marinho M (1991) La sequence volcano-sedimentaire de Contendas-Mirante et la bordure occidentale du bloc de Jequie (craton du Sao Francisco, Bresil); un exemple de transition archeen-proterozoique. Clermont-Ferrand 2

  • Marinho MM, Sabate P, Barbosa JSF (1993) The Contendas-Mirante volcano-sedimentary belt. Bol IG-USP, Publicação Espec 15:37–72.

    Google Scholar 

  • Marinho MM, Costa PH, de O, Silva EFA, Torquato JRF (2009) A Sequência Vulcanossedimentar de uma estrutura do tipo Greenstone Belt? Companhia. Salvador

  • Martin H, Sabaté P, Peucat J-J, Cunha J (1991) Un segment de crôut continentale d’âge arhéen ancien (3,4 milliards d’années): le massif de Sete Voltas (Bahia, Brasil). Cah Rech l’Academie Destr Sci Paris 531–538

  • Martin H, Peucat JJ, Sabaté P, Cunha JC (1997) Crustal evolution in the early Archaean of South America: example of the Sete Voltas Massif, Bahia State, Brazil. Precambrian Res 82:35–62

    Article  ADS  CAS  Google Scholar 

  • McLennan SM, Hemming S, McDaniel DK, Hanson GN (1993) Geochemical approaches to sedimentation, provenance, and tectonics. Spec Pap Geol Soc Am 284:21–40

    Google Scholar 

  • Medaris LG, Fournelle JH, Henry DJ (2003) Tourmaline-bearing quartz veins in the Baraboo quartzite, Wisconsin: occurrence and significance of foitite and oxy-foitite. Can Mineral 41:749–758

    Article  CAS  Google Scholar 

  • Meisel T, Schöner N, Paliulionyte V, Kahr E (2002) Determination of rare earth elements, Y, Th, Zr, Hf, Nb and Ta in geological reference materials G-2, G-3, SCo-1 and WGB-1 by sodium peroxide sintering and inductively coupled plasma-mass spectrometry. Geostand Newsl 26:53–61

    Article  CAS  Google Scholar 

  • Mishima S, Ohtomo Y, Kakegawa T (2016) Occurrence of tourmaline in metasedimentary rocks of the Isua Supracrustal Belt, Greenland: implications for ribose stabilization in Hadean Marine sediments. Orig Life Evol Biosph 46:247–271

    Article  ADS  CAS  PubMed  Google Scholar 

  • Nutman AP, Cordani UG (1993) SHRIMP U-Pb zircon geochronology of archaean granitoids from the Contendas-Mirante area of the São Francisco Craton, Bahia, Brazil. Precambrian Res 63:179–188

    Article  ADS  CAS  Google Scholar 

  • Oliveira EP, McNaughton NJ, Zincone SA, Talavera C (2020) Birthplace of the São Francisco Craton, Brazil: evidence from 3.60 to 3.64 Ga gneisses of the Mairi Gneiss Complex. Terra Nov 281–289. https://doi.org/10.1111/ter.12460

  • Pourmand A, Dauphas N, Ireland TJ (2012) A novel extraction chromatography and MC-ICP-MS technique for rapid analysis of REE, sc and Y: revising CI-chondrite and Post-archean Australian Shale (PAAS) abundances. Chem Geol 291:38–54

    Article  ADS  CAS  Google Scholar 

  • Sabaté P, Marinho MM, Vidal P, Caen-Vachette M (1990) The 2-Ga peraluminous magmatism of the Jacobina-Contendas Mirante belts (Bahia, Brazil): geologic and isotopic constraints on the sources. Chem Geol 83:325–338

    Article  ADS  Google Scholar 

  • Santos C, Zincone SA, Queiroga GN et al (2022a) Evidence for change in crust formation process during the Paleoarchean in the São Francisco Craton (Gavião Block): coupled zircon Lu-Hf and U-Pb isotopic analyses and tectonic implications. Precambrian Res 368:1–14

    Google Scholar 

  • Santos MCP, Silva RW, Oliveira NS et al (2022b) Integração De Dados exploratórios Da sequência Contendas-Mirante. Salvador- Bahia

  • Slack JF (1996) Tourmaline associations with hydrothermal ore deposits. In: Reviews in Mineralogy. pp 558–643

  • Szczepański J, Ilnicki S (2014) From cadomian arc to Ordovician passive margin: geochemical records preserved in metasedimentary successions of the Orlica-Śnieżnik Dome in SW Poland. Int J Earth Sci 103:627–647

    Article  Google Scholar 

  • Teixeira W, Oliveira EP, Marques LS (2017) Nature and evolution of the Archean crust of the São Francisco Craton. In: Heibron M, Cordani UG, Alkimim FF (eds) The São Francisco Craton and its margins. Springer, pp 29–56

    Google Scholar 

  • Trumbull RB, Codeço MS, Jiang SY et al (2020) Boron isotope variations in tourmaline from hydrothermal ore deposits: a review of controlling factors and insights for mineralizing systems. Ore Geol Rev 125:103682

    Article  Google Scholar 

  • Van den Boorn SHJM, Van Bergen MJ, Vroon PZ et al (2010) Silicon isotope and trace element constraints on the origin of ∼3.5 Ga cherts: implications for early archaean marine environments. Geochim Cosmochim Acta 74:1077–1103

    Article  ADS  Google Scholar 

  • Van Hinsberg VJ, Schumacher JC (2011) Tourmaline as a petrogenetic indicator mineral in the haut-allier metamorphic suite, Massif Central, France. Can Mineral 49:177–194

    Article  Google Scholar 

  • Van Hinsberg VJ, Henry DJ, Dutrow BL (2011a) Tourmaline as a petrologic forensic mineral: a unique recorder of its geologic past. Elements 7:327–332

    Article  ADS  Google Scholar 

  • Van Hinsberg VJ, Henry DJ, Marschall HR (2011b) Tourmaline: an ideal indicator of its host environment. Can Mineral 49:1–16

    Article  Google Scholar 

  • Van Kranendonk MJ, Webb GE, Kamber BS (2003) Geological and trace element evidence for a marine sedimentary environment of deposition and biogenicity of 3.45 Ga stromatolitic carbonates in the Pilbara Craton, and support for a reducing Archaean ocean. Geobiology 1:91–108

    Article  Google Scholar 

  • Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187

    Article  ADS  CAS  Google Scholar 

  • Yavuz F, Karakaya N, Yildirim DK et al (2014) A Windows program for calculation and classification of tourmaline-supergroup (IMA-2011). Comput Geosci 63:70–87

    Article  ADS  CAS  Google Scholar 

  • Zhang J, Amakawa H, Nozaki Y (1994) The comparative behaviors of yttrium and lanthanides in the seawater of the North Pacific. Geophys Res Lett 21:2677–2680

    Article  ADS  CAS  Google Scholar 

  • Zhang AC, Wang RC, Hu H et al (2004) Occurrences of foitite and rossmanite from the Koktokay 3 granitic pegmatite dyke, altai, northwestern China: a record of hydrothermal fluids. Can Mineral 42:873–882

    Article  CAS  Google Scholar 

  • Zincone SA, Oliveira EP (2017) Field and geochronological evidence for origin of the Contendas-Mirante supracrustal Belt, São Francisco Craton, Brazil, as a paleoproterozoic foreland basin. Precambrian Res 299:117–131

    Article  ADS  CAS  Google Scholar 

  • Zincone SA, Oliveira EP, Laurent O et al (2016) 3.30 Ga high-silica intraplate volcanic–plutonic system of the Gavião Block, São Francisco Craton, Brazil: evidence of an intracontinental rift following the creation of insulating continental crust. Lithos 266–267:414–434

    Article  ADS  Google Scholar 

  • Zincone SA, Barbuena D, Oliveira EP, Baldim MR (2017) Detrital zircon U-Pb ages as evidence for deposition of the Saúde Complex in a paleoproterozoic foreland basin, northern São Francisco Craton, Brazil. J South Am Earth Sci 79:537–548

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Author E.M.B.F is grateful to the Fundação de Amparo à Pesquisa do Estado de Minas Gerais and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior for providing a scholarship and Universidade Federal de Ouro Preto for institutional support. We are thankful for the assistance of the Microscopy and Microanalysis Laboratory of the Universidade Federal de Ouro Preto and the SGS Geosol Laboratórios Ltda., Minas Gerais State, Brazil. We are also grateful to the anonymous reviewers and the editors, Qihai Shu and Lutz Nasdala, for their insightful comments and suggestions on this manuscript.

Funding

Author E.M.B.F was funded by Fundação de Amparo à Pesquisa do Estado de Minas Gerais and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior. S. A. Z. received financial support from Ministério da Ciência, Tecnologia e Inovação and Conselho de Desenvolvimento Científico e Tecnológico (436648/2018), Fundação de Apoio à Pesquisa do Distrito Federal (193.001.263/2017), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior and Conselho de Desenvolvimento Científico e Tecnológico (465613/2014-4).

Author information

Authors and Affiliations

Authors

Contributions

E.M.B.F., S.A.Z., and L.M.G. conceived and carried out the research. E.M.B.F. drafted the manuscript. G.N.Q. contributed the resources. C.S., G.H.T.A.S., and F.B.O. contributed to the data discussion and revision of the manuscript.

Corresponding author

Correspondence to Eliana Marinho Branches Farias.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Editorial handling: Q. Shu.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 2

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farias, E.M.B., Zincone, S.A., dos Santos, C. et al. Geochemistry of tourmaline-rich rocks in the Gavião Block, Northern São Francisco craton: implications for its formation. Miner Petrol (2024). https://doi.org/10.1007/s00710-024-00852-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00710-024-00852-7

Keywords

Navigation