Skip to main content
Log in

Combined Plasma Olink Proteomics and Transcriptomics Identifies CXCL1 and TNFRSF12A as Potential Predictive and Diagnostic Inflammatory Markers for Acute Kidney Injury

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Acute kidney injury (AKI) poses a significant global public health challenge. Current methods for detecting AKI rely on monitoring changes in serum creatinine (Scr), blood urea nitrogen (BUN), urinary output and some commonly employed biomarkers. However, these indicators are usually neither specific nor sensitive to AKI, especially in cases of mild kidney injury. AKI is accompanied by severe inflammatory reactions, resulting in the upregulation of numerous inflammation-associated proteins in the plasma. Plasma biomarkers are a noninvasive method for detecting kidney injury, and to date, plasma inflammation-associated cytokines have not been adequately studied in AKI patients. The objective of our research was to identify novel inflammatory biomarkers for AKI. We utilized Olink proteomics to analyze the alterations in plasma inflammation-related proteins in the serum of healthy mice (n = 2) or mice treated with cisplatin (n = 6). Additionally, transcriptome datasets for the lipopolysaccharide (LPS), cisplatin, and ischemia‒reperfusion injury (IRI) groups were obtained from the National Center of Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) database. We calculated the intersection of differentially expressed proteins (DEPs) and genes (DEGs) from both datasets. In the Olink proteomics analysis, the AKI group had significantly greater levels of 11 DEPs than did the control group. In addition, 56 common upregulated DEGs were obtained from the transcriptome dataset. The expression of CXCL1 and TNFRSF12A overlapped across all the datasets. The transcription and protein expression levels of CXCL1 and TNFRSF12A were detected in vivo. The gene and protein levels of CXCL1 and TNFRSF12A were significantly increased in different AKI mouse models and clinical patients, suggesting that these genes and proteins could be potential specific biomarkers for the identification of AKI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Materials

The datasets of the current study are available from the corresponding author on reasonable request.

References

  1. Hoste, E.A.J., J.A. Kellum, N.M. Selby, A. Zarbock, P.M. Palevsky, S.M. Bagshaw, et al. 2018. Global epidemiology and outcomes of acute kidney injury. Nature Reviews Nephrology 14 (10): 607–625. https://doi.org/10.1038/s41581-018-0052-0.

    Article  CAS  PubMed  Google Scholar 

  2. Kwiatkowska, E., L. Domanski, V. Dziedziejko, A. Kajdy, K. Stefanska, and S. Kwiatkowski. 2021. The mechanism of drug nephrotoxicity and the methods for preventing kidney damage. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms22116109.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mesropian, P.D., J. Othersen, D. Mason, J. Wang, A. Asif, and R.O. Mathew. 2016. Community-acquired acute kidney injury: A challenge and opportunity for primary care in kidney health. Nephrology (Carlton, Vic.) 21 (9): 729–735. https://doi.org/10.1111/nep.12751.

    Article  PubMed  Google Scholar 

  4. Turgut, F., A.S. Awad, and E.M. Abdel-Rahman. 2023. Acute Kidney Injury: Medical Causes and Pathogenesis. Journal of Clinical Medicine. https://doi.org/10.3390/jcm12010375.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Harrill, A.H., H. Lin, J. Tobacyk, and J.C. Seely. 2018. Mouse population-based evaluation of urinary protein and miRNA biomarker performance associated with cisplatin renal injury. Experimental Biology and Medicine (Maywood, N.J.) 243 (3): 237–247. https://doi.org/10.1177/1535370217740854.

    Article  CAS  PubMed  Google Scholar 

  6. Bonavia, A., and K. Singbartl. 2018. A review of the role of immune cells in acute kidney injury. Pediatric Nephrology(Berlin, Germany) 33 (10): 1629–1639. https://doi.org/10.1007/s00467-017-3774-5.

    Article  PubMed  Google Scholar 

  7. Singbartl, K., C.L. Formeck, and J.A. Kellum. 2019. Kidney-Immune system crosstalk in AKI. Seminars in Nephrology 39 (1): 96–106. https://doi.org/10.1016/j.semnephrol.2018.10.007.

    Article  CAS  PubMed  Google Scholar 

  8. Kuo, P.Y., K.F. Tsai, P.J. Wu, P.C. Hsu, C.H. Wu, W.C. Lee, et al. 2023. Interleukin-18 and gelsolin are associated with acute kidney disease after cardiac catheterization. Biomolecules. https://doi.org/10.3390/biom13030487.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Farooqui, N., M. Zaidi, L. Vaughan, T.D. McKee, E. Ahsan, K.D. Pavelko, et al. 2023. Cytokines and immune cell phenotype in acute kidney injury associated with immune checkpoint inhibitors. Kidney International Reports 8 (3): 628–641. https://doi.org/10.1016/j.ekir.2022.11.020.

    Article  PubMed  Google Scholar 

  10. Kurts, C., U. Panzer, H.J. Anders, and A.J. Rees. 2013. The immune system and kidney disease: basic concepts and clinical implications. Nature Reviews Immunology 13 (10): 738–753. https://doi.org/10.1038/nri3523.

    Article  CAS  PubMed  Google Scholar 

  11. Bolisetty, S., and A. Agarwal. 2009. Neutrophils in acute kidney injury: not neutral any more. Kidney International 75 (7): 674–676. https://doi.org/10.1038/ki.2008.689.

    Article  CAS  PubMed  Google Scholar 

  12. Wang, X., K.C. Yip, A. He, J. Tang, S. Liu, R. Yan, et al. 2022. Plasma olink proteomics identifies CCL20 as a novel predictive and diagnostic inflammatory marker for preeclampsia. Journal of Proteome Research 21 (12): 2998–3006. https://doi.org/10.1021/acs.jproteome.2c00544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bao, X.H., B.F. Chen, J. Liu, Y.H. Tan, S. Chen, F. Zhang, et al. 2023. Olink proteomics profiling platform reveals non-invasive inflammatory related protein biomarkers in autism spectrum disorder. Frontiers in Molecular Neuroscience. https://doi.org/10.3389/fnmol.2023.1185021.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gradin, A., H. Andersson, T. Luther, S.B. Anderberg, S. Rubertsson, M. Lipcsey, et al. 2021. Urinary cytokines correlate with acute kidney injury in critically ill COVID-19 patients. Cytokine. https://doi.org/10.1016/j.cyto.2021.155589.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sun, B.B., J.C. Maranville, J.E. Peters, D. Stacey, J.R. Staley, J. Blackshaw, et al. 2018. Genomic atlas of the human plasma proteome. Nature 558 (7708): 73–79. https://doi.org/10.1038/s41586-018-0175-2.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Haslam, D.E., J. Li, S.T. Dillon, X. Gu, Y. Cao, O.A. Zeleznik, et al. 2022. Stability and reproducibility of proteomic profiles in epidemiological studies: comparing the Olink and SOMAscan platforms. Proteomics. https://doi.org/10.1002/pmic.202100170.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wei, Q., and Z. Dong. 2012. Mouse model of ischemic acute kidney injury: technical notes and tricks. American Journal of Physiology. Renal Physiology 303 (11): F1487–F1494. https://doi.org/10.1152/ajprenal.00352.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xu, Y., H. Ma, J. Shao, J. Wu, L. Zhou, Z. Zhang, et al. 2015. A role for tubular necroptosis in cisplatin-induced AKI. Journal of the American Society of Nephrology 26 (11): 2647–2658. https://doi.org/10.1681/ASN.2014080741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen, G.Y., and G. Nunez. 2010. Sterile inflammation: sensing and reacting to damage. Nature Reviews Immunology 10 (12): 826–837. https://doi.org/10.1038/nri2873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kaltenmeier, C., R. Wang, B. Popp, D. Geller, S. Tohme, and H.O. Yazdani. 2022. Role of immuno-inflammatory signals in liver ischemia-reperfusion injury. Cells. https://doi.org/10.3390/cells11142222.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Eltzschig, H.K., and T. Eckle. 2011. Ischemia and reperfusion–from mechanism to translation. Nature Medicine 17 (11): 1391–1401. https://doi.org/10.1038/nm.2507.

    Article  CAS  PubMed  Google Scholar 

  22. Stasi, A., A. Intini, C. Divella, R. Franzin, E. Montemurno, G. Grandaliano, et al. 2017. Emerging role of Lipopolysaccharide binding protein in sepsis-induced acute kidney injury. Nephrology, Dialysis, Transplantation 32 (1): 24–31. https://doi.org/10.1093/ndt/gfw250.

    Article  CAS  PubMed  Google Scholar 

  23. Peerapornratana, S., C.L. Manrique-Caballero, H. Gomez, and J.A. Kellum. 2019. Acute kidney injury from sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney International 96 (5): 1083–1099. https://doi.org/10.1016/j.kint.2019.05.026.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Vidya, M.K., V.G. Kumar, V. Sejian, M. Bagath, G. Krishnan, and R. Bhatta. 2018. Toll-like receptors: Significance, ligands, signaling pathways, and functions in mammals. International Reviews of Immunology 37 (1): 20–36. https://doi.org/10.1080/08830185.2017.1380200.

    Article  CAS  PubMed  Google Scholar 

  25. Chen, J.J., T.H. Lee, C.C. Lee, and C.H. Chang. 2021. Using lipocalin as a prognostic biomarker in acute kidney injury. Expert Review of Molecular Diagnostics 21 (5): 455–464. https://doi.org/10.1080/14737159.2021.1917384.

    Article  CAS  PubMed  Google Scholar 

  26. Hughes, C.E., and R.J.B. Nibbs. 2018. A guide to chemokines and their receptors. FEBS Journal 285 (16): 2944–2971. https://doi.org/10.1111/febs.14466.

    Article  CAS  PubMed  Google Scholar 

  27. Akcay, A., Q. Nguyen, Z. He, K. Turkmen, D. Won Lee, A.A. Hernando, et al. 2011. IL-33 exacerbates acute kidney injury. Journal of the American Society of Nephrology 22 (11): 2057–2067. https://doi.org/10.1681/ASN.2010091011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu, P., X. Li, W. Lv, and Z. Xu. 2020. Inhibition of CXCL1-CXCR2 axis ameliorates cisplatin-induced acute kidney injury by mediating inflammatory response. Biomedicine & Pharmacotherapy. https://doi.org/10.1016/j.biopha.2019.109693.

    Article  Google Scholar 

  29. Ciesielska, A., M. Matyjek, and K. Kwiatkowska. 2021. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cellular and Molecular Life Sciences 78 (4): 1233–1261. https://doi.org/10.1007/s00018-020-03656-y.

    Article  CAS  PubMed  Google Scholar 

  30. Akcay, A., Q. Nguyen, and C.L. Edelstein. 2009. Mediators of inflammation in acute kidney injury. Mediators of Inflammation. https://doi.org/10.1155/2009/137072.

    Article  PubMed  Google Scholar 

  31. Su, L., N. Li, H. Tang, Z. Lou, X. Chong, C. Zhang, et al. 2018. Kupffer cell-derived TNF-alpha promotes hepatocytes to produce CXCL1 and mobilize neutrophils in response to necrotic cells. Cell Death & Disease 9 (3): 323. https://doi.org/10.1038/s41419-018-0377-4.

    Article  CAS  Google Scholar 

  32. Wiley, S.R., L. Cassiano, T. Lofton, T. Davis-Smith, J.A. Winkles, V. Lindner, et al. 2001. A novel TNF receptor family member binds TWEAK and is implicated in angiogenesis. Immunity 15 (5): 837–846. https://doi.org/10.1016/s1074-7613(01)00232-1.

    Article  CAS  PubMed  Google Scholar 

  33. Wiley, S.R., and J.A. Winkles. 2003. TWEAK, a member of the TNF superfamily, is a multifunctional cytokine that binds the TweakR/Fn14 receptor. Cytokine & Growth Factor Reviews 14 (3–4): 241–249. https://doi.org/10.1016/s1359-6101(03)00019-4.

    Article  CAS  Google Scholar 

  34. Sanz, A.B., M.D. Sanchez-Nino, and A. Ortiz. 2011. TWEAK, a multifunctional cytokine in kidney injury. Kidney International 80 (7): 708–718. https://doi.org/10.1038/ki.2011.180.

    Article  CAS  PubMed  Google Scholar 

  35. Feng, S.L., Y. Guo, V.M. Factor, S.S. Thorgeirsson, D.W. Bell, J.R. Testa, et al. 2000. The Fn14 immediate-early response gene is induced during liver regeneration and highly expressed in both human and murine hepatocellular carcinomas. American Journal of Pathology 156 (4): 1253–1261. https://doi.org/10.1016/S0002-9440(10)64996-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Justo, P., A.B. Sanz, M.D. Sanchez-Nino, J.A. Winkles, C. Lorz, J. Egido, et al. 2006. Cytokine cooperation in renal tubular cell injury: the role of TWEAK. Kidney International 70 (10): 1750–1758. https://doi.org/10.1038/sj.ki.5001866.

    Article  CAS  PubMed  Google Scholar 

  37. Tirnitz-Parker, J.E., C.S. Viebahn, A. Jakubowski, B.R. Klopcic, J.K. Olynyk, G.C. Yeoh, et al. 2010. Tumor necrosis factor-like weak inducer of apoptosis is a mitogen for liver progenitor cells. Hepatology 52 (1): 291–302. https://doi.org/10.1002/hep.23663.

    Article  CAS  PubMed  Google Scholar 

  38. Hotta, K., M. Sho, I. Yamato, K. Shimada, H. Harada, T. Akahori, et al. 2011. Direct targeting of fibroblast growth factor-inducible 14 protein protects against renal ischemia reperfusion injury. Kidney International 79 (2): 179–188. https://doi.org/10.1038/ki.2010.379.

    Article  CAS  PubMed  Google Scholar 

  39. Meighan-Mantha, R.L., D.K. Hsu, Y. Guo, S.A. Brown, S.L. Feng, K.A. Peifley, et al. 1999. The mitogen-inducible Fn14 gene encodes a type I transmembrane protein that modulates fibroblast adhesion and migration. Journal of Biological Chemistry 274 (46): 33166–33176. https://doi.org/10.1074/jbc.274.46.33166.

    Article  CAS  PubMed  Google Scholar 

  40. Munoz-Garcia, B., J.L. Martin-Ventura, E. Martinez, S. Sanchez, G. Hernandez, L. Ortega, et al. 2006. Fn14 is upregulated in cytokine-stimulated vascular smooth muscle cells and is expressed in human carotid atherosclerotic plaques: modulation by atorvastatin. Stroke 37 (8): 2044–2053. https://doi.org/10.1161/01.STR.0000230648.00027.00.

    Article  CAS  PubMed  Google Scholar 

  41. Sanz, A.B., M.D. Sanchez-Nino, M.C. Izquierdo, A. Jakubowski, P. Justo, L.M. Blanco-Colio, et al. 2009. Tweak induces proliferation in renal tubular epithelium: a role in uninephrectomy induced renal hyperplasia. Journal of Cellular and Molecular Medicine 13 (9B): 3329–3342. https://doi.org/10.1111/j.1582-4934.2009.00766.x.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Donohue, P.J., C.M. Richards, S.A. Brown, H.N. Hanscom, J. Buschman, S. Thangada, et al. 2003. TWEAK is an endothelial cell growth and chemotactic factor that also potentiates FGF-2 and VEGF-A mitogenic activity. Arteriosclerosis, Thrombosis, and Vascular Biology 23 (4): 594–600. https://doi.org/10.1161/01.ATV.0000062883.93715.37.

    Article  CAS  PubMed  Google Scholar 

  43. Sanz, A.B., P. Justo, M.D. Sanchez-Nino, L.M. Blanco-Colio, J.A. Winkles, M. Kreztler, et al. 2008. The cytokine TWEAK modulates renal tubulointerstitial inflammation. Journal of the American Society of Nephrology 19 (4): 695–703. https://doi.org/10.1681/ASN.2007050577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gao, H.X., S.R. Campbell, L.C. Burkly, A. Jakubowski, I. Jarchum, B. Banas, et al. 2009. TNF-like weak inducer of apoptosis (TWEAK) induces inflammatory and proliferative effects in human kidney cells. Cytokine 46 (1): 24–35. https://doi.org/10.1016/j.cyto.2008.12.001.

    Article  CAS  PubMed  Google Scholar 

  45. Campbell, S., L.C. Burkly, H.X. Gao, J.W. Berman, L. Su, B. Browning, et al. 2006. Proinflammatory effects of TWEAK/Fn14 interactions in glomerular mesangial cells. The Journal of Immunology 176 (3): 1889–1898. https://doi.org/10.4049/jimmunol.176.3.1889.

    Article  CAS  PubMed  Google Scholar 

  46. Mesleh, A.G., S.A. Abdulla, and O. El-Agnaf. 2021. Paving the way toward personalized medicine: Current advances and challenges in Multi-OMICS approach in autism spectrum disorder for biomarkers discovery and patient stratification. Journal of Personalized Medicine. https://doi.org/10.3390/jpm11010041.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Cameron, G.J.M., K.M. Cautivo, S. Loering, S.H. Jiang, A.V. Deshpande, P.S. Foster, et al. 2019. Group 2 innate lymphoid cells are redundant in experimental renal ischemia-reperfusion injury. Frontiers in Immunology 10: 826. https://doi.org/10.3389/fimmu.2019.00826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lin, F., L. Xu, R. Yuan, S. Han, J. Xie, K. Jiang, et al. 2022. Identification of inflammatory response and alternative splicing in acute kidney injury and experimental verification of the involvement of RNA-binding protein RBFOX1 in this disease. International Journal of Molecular Medicine. https://doi.org/10.3892/ijmm.2022.5087.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Poveda, J., L.C. Tabara, B. Fernandez-Fernandez, C. Martin-Cleary, A.B. Sanz, R. Selgas, et al. 2013. TWEAK/Fn14 and non-canonical NF-kappaB signaling in kidney disease. Frontiers in Immunology 4: 447. https://doi.org/10.3389/fimmu.2013.00447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sanz, A.B., O. Ruiz-Andres, M.D. Sanchez-Nino, M. Ruiz-Ortega, A.M. Ramos, and A. Ortiz. 2016. Out of the TWEAKlight: elucidating the role of Fn14 and TWEAK in acute kidney injury. Seminars in Nephrology 36 (3): 189–198. https://doi.org/10.1016/j.semnephrol.2016.03.006.

    Article  CAS  PubMed  Google Scholar 

  51. Wik, L., N. Nordberg, J. Broberg, J. Bjorkesten, E. Assarsson, S. Henriksson, et al. 2021. Proximity extension assay in combination with next-generation sequencing for high-throughput proteome-wide analysis. Molecular and Cellular Proteomics. https://doi.org/10.1016/j.mcpro.2021.100168.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Laboratory Animal Center, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital) for providing the experimental mice and their housing conditions.

Funding

This work was supported by the Key Laboratory Construction Plan Project of Shanxi Provincial Health Commission (2023035), Natural Science Foundation of Shanxi Province (202203021222359), Key Medical Research Project of Shanxi Province (2022XM30) and Shanxi Administration of Traditional Chinese Medicine Scientific research project (2023ZYYC2031).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: LL G. Analyzed the data: XY L and XY Z. Drafted the manuscript: XY L. Performed the experiments: XY L, XY Z, X Z, HX K, HJ G, LL L and YH M. Collection of serum from AKI patients: XB P. Contributed reagents/materials: RS L and LL G. Reviewed and edited the manuscript: LL G. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Lili Guo.

Ethics declarations

Ethics Approval and Consent to Participate

This study protocol was approved by the Ethics Committee of Shanxi Provincial People's Hospital, and informed consent was obtained from all patients and their families in strict compliance with the Declaration of Helsinki (approved no. 2023–438). This experimental procedure and animal use protocol were approved by the Ethics Committee of Shanxi Provincial People's Hospital (approved no. 2023–439).

Competing Interests

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zhou, X., Ping, X. et al. Combined Plasma Olink Proteomics and Transcriptomics Identifies CXCL1 and TNFRSF12A as Potential Predictive and Diagnostic Inflammatory Markers for Acute Kidney Injury. Inflammation (2024). https://doi.org/10.1007/s10753-024-01993-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10753-024-01993-9

KEY WORDS

Navigation