Skip to main content
Log in

Insecticide activity under changing environmental conditions: a meta-analysis

  • Review
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

The effect of environmental change on activity of insecticides against insects has been greatly debated, and it is of significance to evaluate general patterns of change and explore the potential mechanisms that drive the changes in the context of global climate change. To that end, we constructed three multilevel meta-analyses and phylogenetically-corrected models based on 810 individual effect sizes of insecticide activity from 95 studies with variable levels of temperatures, humidities, and CO2 concentrations. We found that increasing temperatures could overall increase the insecticidal activity of insecticides by 1.33 times. Increasing temperatures will boost the activity of some types of insecticides (e.g., acetylcholinesterase inhibitors), but decrease the activity of some other types (e.g., sodium channel modulators). Activities of stomach toxicants and fumigants are overall more sensitive to increasing temperatures than other insecticides. The sensitivity of insects in Hemiptera, Coleoptera, and Diptera to insecticides will also tend to increase significantly due to increasing temperatures. The magnitude of warming was found to have strong interactive effects with both insecticide class and insect group. Although moisture changes were showed to have no significant effects on insecticidal activity overall, our meta-regression analyses identified a positive relationship between insecticide activity and the magnitude of humidity change. No significant relationships between changes in CO2 concentrations and insecticide activity were identified. Our results are critical in adaptation of insecticide application and pest management strategies, and forecasting insecticide risks (e.g., resistance development) across global climate regions under future warming conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The compiled datasets for this study, as well as R scripts, can be found in the supplementary materials.

References

Download references

Acknowledgements

The authors would like to thank all researchers who reported the effects of changes in temperature, humidity, and CO2 concentration on insecticide activity.

Funding

This work was supported by the National Natural Science Foundation of China (31971431).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deguang Liu.

Ethics declarations

Conflict of interest

The authors have declared that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by Chris Cutler.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Jiang, K., Wang, X. et al. Insecticide activity under changing environmental conditions: a meta-analysis. J Pest Sci (2024). https://doi.org/10.1007/s10340-024-01766-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10340-024-01766-1

Keywords

Navigation