Skip to main content
Log in

Progranulin Facilitates Corneal Repair Through Dual Mechanisms of Inflammation Suppression and Regeneration Promotion

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The cornea serves as a vital protective barrier for the eye; however, it is prone to injury and damage that can disrupt corneal epithelium and nerves, triggering inflammation. Therefore, understanding the biological effects and molecular mechanisms involved in corneal wound healing and identifying drugs targeting these pathways is crucial for researchers in this field. This study aimed to investigate the therapeutic potential of progranulin (PGRN) in treating corneal injuries. Our findings demonstrated that PGRN significantly enhanced corneal wound repair by accelerating corneal re-epithelialization and re-innervation. In vitro experiments with cultured epithelial cells and trigeminal ganglion cells further revealed that PGRN stimulated corneal epithelial cell proliferation and promoted axon growth in trigeminal ganglion cells. Through RNA-sequencing (RNA-seq) analysis and other experimental techniques, we discovered that PGRN exerted its healing effects modulating Wnt signaling pathway, which played a critical role in repairing epithelial cells and promoting axon regeneration in trigeminal neurons. Importantly, our study highlighted the anti-inflammatory properties of PGRN by inhibiting the NF-κB signaling pathway, leading to decreased infiltration of macrophages. In conclusion, our findings underscored the potential of PGRN in facilitating corneal wound healing by promoting corneal epithelial cell proliferation, trigeminal ganglion cell axon regeneration, and suppressing ocular inflammation. These results suggest that PGRN could potentially expedite the healing process and improve visual outcomes in patients with corneal injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Bal-Öztürk, A., E. Özcan-Bülbül, H.E. Gültekin, B. Cecen, E. Demir, A. Zarepour, et al. 2023. Application of convergent science and technology toward ocular disease treatment. Pharmaceuticals (Basel). 16 (3): 445.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wang, Z., W. Shan, H. Li, J. Feng, S. Lu, B. Ou, et al. 2019. The PACAP-derived peptide MPAPO facilitates corneal wound healing by promoting corneal epithelial cell proliferation and trigeminal ganglion cell axon regeneration. International Journal of Biological Sciences 15 (12): 2676–2691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bardag-Gorce, F., R.H. Hoft, A. Wood, J. Oliva, H. Niihara, A. Makalinao, et al. 2016. The role of E-cadherin in maintaining the barrier function of corneal epithelium after treatment with cultured autologous oral mucosa epithelial cell sheet grafts for limbal stem deficiency. Journal of Ophthalmology 2016: 4805986.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Li, S., K. Pang, S. Zhu, K. Pate, and J. Yin. 2022. Perfluorodecalin-based oxygenated emulsion as a topical treatment for chemical burn to the eye. Nature Communications 13 (1): 7371.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yao, G., X. Mo, S. Liu, Q. Wang, M. Xie, W. Lou, et al. 2023. Snowflake-inspired and blink-driven flexible piezoelectric contact lenses for effective corneal injury repair. Nature Communications 14 (1): 3604.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bonelli, F., I. Demirsoy, R.M. Lasagni Vitar, P. Fonteyne, and G. Ferrari. 2023. Topical formulations of Aprepitant are safe and effective in relieving pain and inflammation, and drive neural regeneration. The Ocular Surface 30: 92–103.

    Article  PubMed  Google Scholar 

  7. Yu, F., D. Gong, D. Yan, H. Wang, N. Witman, Y. Lu, et al. 2023. Enhanced adipose-derived stem cells with IGF-1-modified mRNA promote wound healing following corneal injury. Molecular Therapy 31 (8): 2454–2471.

    Article  CAS  PubMed  Google Scholar 

  8. Chen, Z., H.Y. Lao, and L. Liang. 2021. Update on the application of amniotic membrane in immune-related ocular surface diseases. Taiwan Journal of Ophthalmology 11 (2): 132–140.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chen, Y., S. Wang, H. Alemi, T. Dohlman, and R. Dana. 2022. Immune regulation of the ocular surface. Experimental Eye Research 218: 109007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yoo, W., J. Lee, K.H. Noh, S. Lee, D. Jung, M.H. Kabir, et al. 2019. Progranulin attenuates liver fibrosis by downregulating the inflammatory response. Cell Death & Disease 10 (10): 758.

    Article  Google Scholar 

  11. Wang, B., Q. Zhang, L. Wu, C. Deng, M. Luo, Y. Xie, et al. 2023. Data-independent acquisition-based mass spectrometry(DIA-MS) for quantitative analysis of patients with chronic hepatitis B. Proteome Science 21 (1): 9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Simon, M.J., T. Logan, S.L. DeVos, and G. Di Paolo. 2023. Lysosomal functions of progranulin and implications for treatment of frontotemporal dementia. Trends in Cell Biology 33 (4): 324–339.

    Article  CAS  PubMed  Google Scholar 

  13. Kao, A.W., A. McKay, P.P. Singh, A. Brunet, and E.J. Huang. 2017. Progranulin, lysosomal regulation and neurodegenerative disease. Nature Reviews Neuroscience 18 (6): 325–333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Altmann, C., V. Vasic, S. Hardt, J. Heidler, A. Häussler, I. Wittig, et al. 2016. Progranulin promotes peripheral nerve regeneration and reinnervation: Role of notch signaling. Molecular Neurodegeneration 11 (1): 69.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Logan, T., M.J. Simon, A. Rana, G.M. Cherf, A. Srivastava, S.S. Davis, et al. 2021. Rescue of a lysosomal storage disorder caused by Grn loss of function with a brain penetrant progranulin biologic. Cell 184 (18): 4651–68.e25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yan, D., F. Yu, D.N. Gong, S.Y. Zhang, H. Sun, and Y. Fu. 2023. Cell-free matrix derived from adipose mesenchymal stromal cells enhances corneal rehabilitation via delivery of nerve regenerative PGRN. Materials and Design 227: 111786.

    Article  CAS  Google Scholar 

  17. Bizrah, M., A. Yusuf, and S. Ahmad. 2019. An update on chemical eye burns. Eye (London, England) 33 (9): 1362–1377.

    Article  CAS  PubMed  Google Scholar 

  18. Lan, C., G. Liu, L. Huang, X. Wang, J. Tan, Y. Wang, et al. 2022. Forkhead domain inhibitor-6 suppresses corneal neovascularization and subsequent fibrosis after alkali burn in rats. Investigative Ophthalmology & Visual Science 63 (4): 14.

    Article  Google Scholar 

  19. Zhang, K., M.Y. Guo, Q.G. Li, X.H. Wang, Y.Y. Wan, Z.J. Yang, et al. 2021. Drp1-dependent mitochondrial fission mediates corneal injury induced by alkali burn. Free Radical Biology & Medicine 176: 149–161.

    Article  CAS  Google Scholar 

  20. Ouyang, W., S. Wang, D. Yan, J. Wu, Y. Zhang, W. Li, et al. 2023. The cGAS-STING pathway-dependent sensing of mitochondrial DNA mediates ocular surface inflammation. Signal Transduction and Targeted Therapy 8 (1): 371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chikama, T., N. Takahashi, M. Wakuta, N. Morishige, and T. Nishida. 2008. In vivo biopsy by laser confocal microscopy for evaluation of traumatic recurrent corneal erosion. Molecular Vision 14: 2333–2339.

    PubMed  PubMed Central  Google Scholar 

  22. Yan, D., F. Yu, L.B. Chen, Q.K. Yao, C.X. Yan, S.Y. Zhang, et al. 2020. Subconjunctival injection of regulatory T cells potentiates corneal healing via orchestrating inflammation and tissue repair after acute alkali burn. Investigative Ophthalmology and Visual Science. 61 (14): 21.

    ADS  Google Scholar 

  23. Liu, Z., W. Tang, J. Liu, Y. Han, Q. Yan, Y. Dong, et al. 2023. A novel sprayable thermosensitive hydrogel coupled with zinc modified metformin promotes the healing of skin wound. Bioactive Materials 20: 610–626.

    Article  CAS  PubMed  Google Scholar 

  24. Wei, Q., Z. Jin, W. Zhang, Y. Zhao, Y. Wang, Y. Wei, et al. 2023. Honokiol@PF127 crosslinked hyaluronate-based hydrogel for promoting wound healing by regulating macrophage polarization. Carbohydrate Polymers 303: 120469.

    Article  CAS  PubMed  Google Scholar 

  25. Yan, D., F. Yu, L. Chen, Q. Yao, C. Yan, S. Zhang, et al. 2020. Subconjunctival injection of regulatory T cells potentiates corneal healing via orchestrating inflammation and tissue repair after acute alkali burn. Investigative Ophthalmology & Visual Science 61 (14): 22.

    Article  CAS  Google Scholar 

  26. Kasamatsu, M., T. Arima, T. Ikebukuro, Y. Nakano, Y. Tobita, M. Uchiyama, et al. 2022. Prophylactic instillation of hydrogen-rich water decreases corneal inflammation and promotes wound healing by activating antioxidant activity in a rat alkali burn model. International Journal of Molecular Sciences 23 (17): 9774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Verma, S., I.Y. Moreno, C. Prinholato da Silva, M. Sun, X. Cheng, T.F. Gesteira, et al. 2023. Endogenous TSG-6 modulates corneal inflammation following chemical injury. The Ocular Surface 32: 26–38.

    Article  PubMed  Google Scholar 

  28. Sall, K., G.N. Foulks, A.D. Pucker, K.L. Ice, R.C. Zink, and G. Magrath. 2023. Validation of a modified national eye institute grading scale for corneal fluorescein staining. Clinical Ophthalmology 17: 757–767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cunningham, J.G., J.D. Scripter, S.A. Nti, and E.S. Tucker. 2022. Early construction of the thalamocortical axon pathway requires c-Jun N-terminal kinase signaling within the ventral forebrain. Developmental Dynamics 251 (3): 459–480.

    Article  CAS  PubMed  Google Scholar 

  30. Yan, D., C. Yan, F. Yu, S. Zhang, L. Chen, N. Wu, et al. 2020. Exploitation of human mesenchymal stromal cell derived matrix towards the structural and functional restoration of the ocular surface. Biomaterials Science 8 (17): 4712–4727.

    Article  CAS  PubMed  Google Scholar 

  31. Bu, Y., K.C. Shih, H.L. Wong, S.S. Kwok, A.C. Lo, J.Y. Chan, et al. 2023. The association between altered intestinal microbiome, impaired systemic and ocular surface immunity, and impaired wound healing response after corneal alkaline-chemical injury in diabetic mice. Frontiers in Immunology 14: 1063069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yazdanpanah, G., R. Shah, R.S.S. Raghurama, K.N. Anwar, X. Shen, S. An, et al. 2021. In-situ porcine corneal matrix hydrogel as ocular surface bandage. The Ocular Surface 21: 27–36.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mohan, R.R., L.M. Martin, and N.R. Sinha. 2021. Novel insights into gene therapy in the cornea. Experimental Eye Research 202: 108361.

    Article  CAS  PubMed  Google Scholar 

  34. Caprara, G.A., S. Perni, C. Morabito, M.A. Mariggiò, and S. Guarnieri. 2014. Specific association of growth-associated protein 43 with calcium release units in skeletal muscles of lower vertebrates. European Journal of Histochemistry 58 (4): 2453.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Galasso, C., I. Orefice, P. Pellone, P. Cirino, R. Miele, A. Ianora, et al. 2018. On the neuroprotective role of astaxanthin: New perspectives? Marine Drugs 16 (8): 247.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wang, W.J., Y.B. Zhong, J.J. Zhao, M. Ren, S.C. Zhang, M.S. Xu, et al. 2021. Transcranial pulse current stimulation improves the locomotor function in a rat model of stroke. Neural Regeneration Research 16 (7): 1229–1234.

    Article  CAS  PubMed  Google Scholar 

  37. Bolsover, S.R. 2005. Calcium signalling in growth cone migration. Cell Calcium 37 (5): 395–402.

    Article  CAS  PubMed  Google Scholar 

  38. Leong, C.Y., A.A. Naffi, W.H. Wan Abdul Halim, and M.C. Bastion. 2023. Usage of topical insulin for the treatment of diabetic keratopathy, including corneal epithelial defects. World Journal of Diabetes 14 (6): 930–8.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yin, Y., N.T. Kizer, P.H. Thaker, K.B. Chiappinelli, K.M. Trinkaus, P.J. Goodfellow, et al. 2013. Glycogen synthase kinase 3β inhibition as a therapeutic approach in the treatment of endometrial cancer. International Journal of Molecular Sciences 14 (8): 16617–16637.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Buechler, J., and P.C. Salinas. 2018. Deficient Wnt signaling and synaptic vulnerability in Alzheimer’s disease: Emerging roles for the LRP6 receptor. Frontiers in Synaptic Neuroscience 10: 38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bordonaro, M., and D.L. Lazarova. 2016. Determination of the role of CBP- and p300-mediated Wnt signaling on colonic cells. JMIR Research Protocols 5 (2): e66.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mohammad Nejad, T., S. Iannaccone, W. Rutherford, P.M. Iannaccone, and C.D. Foster. 2015. Mechanics and spiral formation in the rat cornea. Biomechanics and Modeling in Mechanobiology 14 (1): 107–122.

    Article  CAS  PubMed  Google Scholar 

  43. Liu, L., H. Guo, A. Song, J. Huang, Y. Zhang, S. Jin, et al. 2020. Progranulin inhibits LPS-induced macrophage M1 polarization via NF-кB and MAPK pathways. BMC Immunology 21 (1): 32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Saeedi-Boroujeni, A., D. Purrahman, A. Shojaeian, ŁA. Poniatowski, F. Rafiee, and M.R. Mahmoudian-Sani. 2023. Progranulin (PGRN) as a regulator of inflammation and a critical factor in the immunopathogenesis of cardiovascular diseases. Journal of Inflammation (London) 20 (1): 1.

    Article  CAS  Google Scholar 

  45. Alquézar, C., A. de la Encarnación, F. Moreno, A. López de Munain, and Á. Martín-Requero. 2016. Progranulin deficiency induces overactivation of WNT5A expression via TNF-α/NF-κB pathway in peripheral cells from frontotemporal dementia-linked granulin mutation carriers. Journal of Psychiatry and Neuroscience 41 (4): 225–39.

    Article  PubMed  Google Scholar 

  46. Jian, J., G. Li, A. Hettinghouse, and C. Liu. 2018. Progranulin: A key player in autoimmune diseases. Cytokine 101: 48–55.

    Article  CAS  PubMed  Google Scholar 

  47. Waugh, D.T. 2019. The contribution of fluoride to the pathogenesis of eye diseases: Molecular mechanisms and implications for public health. International Journal of Environmental Research and Public Health 16 (5): 856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kim, S., Y.W. Jang, Y.A. Ku, Y. Shin, M.M. Rahman, M.H. Chung, et al. 2022. Investigating the anti-inflammatory effects of RCI001 for Treating ocular surface diseases: Insight into the mechanism of action. Frontiers in Immunology 13: 850287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Du, Y., P. Ren, Q. Wang, S.K. Jiang, M. Zhang, J.Y. Li, et al. 2018. Cannabinoid 2 receptor attenuates inflammation during skin wound healing by inhibiting M1 macrophages rather than activating M2 macrophages. Journal of Inflammation (London) 15: 25.

    Article  CAS  Google Scholar 

  50. El-Husseiny, H.M., E.A. Mady, L. Hamabe, A. Abugomaa, K. Shimada, T. Yoshida, et al. 2022. Smart/stimuli-responsive hydrogels: Cutting-edge platforms for tissue engineering and other biomedical applications. Materials Today Bio 13: 100186.

    Article  CAS  PubMed  Google Scholar 

  51. Akash, M.S., and K. Rehman. 2015. Recent progress in biomedical applications of Pluronic (PF127): Pharmaceutical perspectives. Journal of Controlled Release 209: 120–138.

    Article  CAS  PubMed  Google Scholar 

  52. Wenzel, J.G., K.S. Balaji, K. Koushik, C. Navarre, S.H. Duran, C.H. Rahe, et al. 2002. Pluronic F127 gel formulations of deslorelin and GnRH reduce drug degradation and sustain drug release and effect in cattle. Journal of Controlled Release 85 (1–3): 51–59.

    Article  CAS  PubMed  Google Scholar 

  53. Almoshari, Y., R. Ren, H. Zhang, Z. Jia, X. Wei, N. Chen, et al. 2020. GSK3 inhibitor-loaded osteotropic Pluronic hydrogel effectively mitigates periodontal tissue damage associated with experimental periodontitis. Biomaterials 261: 120293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li, D., J. Sun, and T.P. Zhong. 2022. Wnt signaling in heart development and regeneration. Current Cardiology Reports 24 (10): 1425–1438.

    Article  PubMed  Google Scholar 

  55. Rim, E.Y., H. Clevers, and R. Nusse. 2022. The Wnt pathway: From signaling mechanisms to synthetic modulators. Annual Review of Biochemistry 91: 571–598.

    Article  CAS  PubMed  Google Scholar 

  56. Lyu, J., and C.K. Joo. 2006. Expression of Wnt and MMP in epithelial cells during corneal wound healing. Cornea 25 (10 Suppl 1): S24–S28.

    Article  PubMed  Google Scholar 

  57. Lyu, J., and C.K. Joo. 2005. Wnt-7a up-regulates matrix metalloproteinase-12 expression and promotes cell proliferation in corneal epithelial cells during wound healing. Journal of Biological Chemistry 280 (22): 21653–21660.

    Article  CAS  PubMed  Google Scholar 

  58. Yang, S., Y. Zhang, Z. Zhang, J. Dan, Q. Zhou, X. Wang, et al. 2020. Insulin promotes corneal nerve repair and wound healing in type 1 diabetic mice by enhancing Wnt/β-catenin signaling. American Journal of Pathology 190 (11): 2237–2250.

    Article  CAS  PubMed  Google Scholar 

  59. Liang, W., L. Huang, X. Ma, L. Dong, R. Cheng, M. Dehdarani, et al. 2022. Pathogenic role of diabetes-induced overexpression of kallistatin in corneal wound healing deficiency through inhibition of canonical Wnt signaling. Diabetes 71 (4): 747–761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yap, S.Q., S. Mathavarajah, and R.J. Huber. 2021. The converging roles of Batten disease proteins in neurodegeneration and cancer. iScience 24 (4): 102337.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  61. Arechavaleta-Velasco, F., C.E. Perez-Juarez, G.L. Gerton, and L. Diaz-Cueto. 2017. Progranulin and its biological effects in cancer. Medical Oncology 34 (12): 194.

    Article  PubMed  Google Scholar 

  62. Wang, X.M., P. Zeng, Y.Y. Fang, T. Zhang, and Q. Tian. 2021. Progranulin in neurodegenerative dementia. Journal of Neurochemistry 158 (2): 119–137.

    Article  CAS  PubMed  Google Scholar 

  63. Abella, V., J. Pino, M. Scotece, J. Conde, F. Lago, M.A. Gonzalez-Gay, et al. 2017. Progranulin as a biomarker and potential therapeutic agent. Drug Discovery Today 22 (10): 1557–1564.

    Article  CAS  PubMed  Google Scholar 

  64. Alyahya, A.M. 2022. The role of progranulin in ischemic heart disease and its related risk factors. European Journal of Pharmaceutical Sciences 175: 106215.

    Article  CAS  PubMed  Google Scholar 

  65. Jian, J., J. Konopka, and C. Liu. 2013. Insights into the role of progranulin in immunity, infection, and inflammation. Journal of Leukocyte Biology 93 (2): 199–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Egashira, Y., Y. Suzuki, Y. Azuma, T. Takagi, K. Mishiro, S. Sugitani, et al. 2013. The growth factor progranulin attenuates neuronal injury induced by cerebral ischemia-reperfusion through the suppression of neutrophil recruitment. Journal of Neuroinflammation 10: 105.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Barrientez, B., S.E. Nicholas, A. Whelchel, R. Sharif, J. Hjortdal, and D. Karamichos. 2019. Corneal injury: Clinical and molecular aspects. Experimental Eye Research 186: 107709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Dan Yan made substantial contributions to the conception, acquisition, analysis, design of the work; Yunuo Zhang revised it critically for important intellectual content; Yuhan Huang helped write the manuscript. Weijie Ouyang approved the version to be published and agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. All authors reviewed the manuscript.

Corresponding author

Correspondence to Weijie Ouyang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 875 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, D., Zhang, Y., Huang, Y. et al. Progranulin Facilitates Corneal Repair Through Dual Mechanisms of Inflammation Suppression and Regeneration Promotion. Inflammation (2024). https://doi.org/10.1007/s10753-024-01999-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10753-024-01999-3

KEY WORDS

Navigation