Skip to main content
Log in

Effect of MoS2 and (phosphorene, germanene, borophene) hybrid structure on the performance of an SPR biosensor for detection of bacteria

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

In this paper, the effect of different structures and flakes of phosphorene (Ph), germanene (Ge), and borophene (B) sandwiched between MoS2 layers on the surface plasmon resonance (SPR) biosensor structure is simulated and investigated in the Lumerical software environment. The main structure is based on the Kretschmann structure, utilizing the BK7 prism, a 30 nm gold (Au) layer, and an MoS2 and (Ph, Ge, B) hybrid structure as the top layer. The reflectance curves of the proposed SPR biosensors were obtained, analyzed, and compared for different refractive index modes, specifically n = 1.33 for a neutral aqueous medium and n = 1.339 for a bacterial medium. The results demonstrate that the minimum reflectance occurs for a 30 nm Au layer at an SPR resonance angle of θ = 71.95°. However, when different configurations of (Ph, Ge, B) with varying thicknesses are sandwiched between MoS2 layers on the Au layer, the resonance angle increases. The minimum reflectance values for a monolayer of phosphorene, a triple layer of germanene, and a triple layer of borophene sandwiched between MoS2 double layers on the Au layer are 0.027, 0.002, and 0.004, respectively. The triple layer of germanene exhibits the highest sensitivity of 152°/RIU for Δn = 0.009 with a detection accuracy of 0.090. The simulation results of the proposed structures present new opportunities for enhancing the sensitivity and performance of SPR biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

References

  1. Váradi, L., et al.: Methods for the detection and identification of pathogenic bacteria: past, present, and future. Chem. Soc. Rev. 46(16), 4818–4832 (2017)

    Article  PubMed  Google Scholar 

  2. Ryan, K., Ray, C.: Principles of laboratory diagnosis of infectious diseases. In: Sherris Medical Microbiology, New York, p. 225 (1994).

  3. James, T., Mannoor, M.S., Ivanov, D.V.: BioMEMS–advancing the frontiers of medicine. Sensors 8(9), 6077–6107 (2008)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sabri, N., et al.: Toward optical sensors: review and applications. J. Phys.: Conf. Ser. 423, 012064 (2013)

    CAS  Google Scholar 

  5. Ho, A.H.-P., et al.: SPR Biosensors 5. Channels. 15, p. 37 (2017)

  6. Wang, Y., et al.: Investigation of phase SPR biosensor for efficient targeted drug screening with high sensitivity and stability. Sens. Actuators B Chem. 209, 313–322 (2015)

    Article  CAS  Google Scholar 

  7. Nurrohman, D.T., Chiu, N.-F.: Surface plasmon resonance biosensor performance analysis on 2D material based on graphene and transition metal dichalcogenides. ECS J. Solid State Sci. Technol. 9(11), 115023 (2020)

    Article  ADS  CAS  Google Scholar 

  8. Sahoo, P.R., et al.: Surface plasmon resonance based biosensor: a new platform for rapid diagnosis of livestock diseases. Vet. World 9(12), 1338 (2016)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang, C., et al.: U-bent fiber optic SPR sensor based on graphene/AgNPs. Sens. Actuators B Chem. 251, 127–133 (2017)

    Article  CAS  Google Scholar 

  10. Hossain, M.B., et al.: High performance refractive index SPR sensor modeling employing graphene tri sheets. Results Phys. 15, 102719 (2019)

    Article  Google Scholar 

  11. Sheng, X., et al.: Optimization of tunable symmetric SPR sensor based on Ag-graphene. Optik 184, 339–347 (2019)

    Article  ADS  CAS  Google Scholar 

  12. Zhao, A., Wang, B.: Two-dimensional graphene-like Xenes as potential topological materials. APL Mater. 8(3), 030701 (2020)

    Article  ADS  CAS  Google Scholar 

  13. Hu, H., et al.: Recent advances in two-dimensional transition metal dichalcogenides for biological sensing. Biosens. Bioelectron. 142, 111573 (2019)

    Article  CAS  PubMed  Google Scholar 

  14. AlaguVibisha, G., et al.: Sensitivity enhancement of surface plasmon resonance sensor using hybrid configuration of 2D materials over bimetallic layer of Cu–Ni. Opt. Commun. 463, 125337 (2020)

    Article  CAS  Google Scholar 

  15. Tao, W., et al.: Emerging two-dimensional monoelemental materials (Xenes) for biomedical applications. Chem. Soc. Rev. 48(11), 2891–2912 (2019)

    Article  CAS  PubMed  Google Scholar 

  16. Pielnhofer, F., et al.: Designing 3D topological insulators by 2D-Xene (X= Ge, Sn) sheet functionalization in GaGeTe-type structures. J. Mater. Chem. C 5(19), 4752–4762 (2017)

    Article  CAS  Google Scholar 

  17. Kumar, A., Kumar, A., Srivastava, S.: A study on surface plasmon resonance biosensor for the detection of CEA biomarker using 2D materials graphene, Mxene and MoS2. Optik 258, 168885 (2022)

    Article  ADS  CAS  Google Scholar 

  18. Deepa, C., Rajeshkumar, L., Ramesh, M.: Preparation, synthesis, properties and characterization of graphene-based 2D nano-materials for biosensors and bioelectronics. J. Market. Res. 19, 2657–2694 (2022)

    CAS  Google Scholar 

  19. Raether, H.: Surface plasmons on smooth surfaces. In: Surface Plasmons on Smooth and Rough Surfaces and on Gratings, pp. 4–39. Springer, New york (1988)

    Chapter  Google Scholar 

  20. Choi, K., et al.: Analytic design and visualization of multiple surface plasmon resonance excitation using angular spectrum decomposition for a Gaussian input beam. Opt. Express 13(22), 8866–8874 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Khorasani, S., Rashidian, B.: Modified transfer matrix method for conducting interfaces. J. Opt. A: Pure Appl. Opt. 4(3), 251 (2002)

    Article  ADS  Google Scholar 

  22. Sreekanth, K.V., et al.: Sensitivity enhanced biosensor using graphene-based one-dimensional photonic crystal. Sens. Actuators, B Chem. 182, 424–428 (2013)

    Article  CAS  Google Scholar 

  23. Rahman, M.S., et al.: Design and numerical analysis of highly sensitive Au-MoS2-graphene based hybrid surface plasmon resonance biosensor. Opt. Commun. 396, 36–43 (2017)

    Article  ADS  CAS  Google Scholar 

  24. Abasi, T., Boochani, A., Masharian, S.: Metallic and intra-band investigation of optical properties for Borophene nano-sheet: a DFT study. Int. Nano Lett. 10(1), 33–41 (2020)

    Article  CAS  Google Scholar 

  25. Pamungkas, M.A., Salim, M.F., Afifah, D.N.: Effects of sodium and chlorine doping on optical properties of germanene: density functional theory calculation. IOP Conf. Ser.: Mater. Sci. Eng. 299, 012045 (2018)

    Article  Google Scholar 

  26. Ross, A.M., et al.: Anisotropic complex refractive indices of atomically thin materials: determination of the optical constants of few-layer black phosphorus. Materials 13(24), 5736 (2020)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vahed, H., Nadri, C.: Sensitivity enhancement of SPR optical biosensor based on Graphene–MoS2 structure with nanocomposite layer. Opt. Mater. 88, 161–166 (2019)

    Article  ADS  CAS  Google Scholar 

  28. Homola, J.: Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 108(2), 462–493 (2008)

    Article  CAS  PubMed  Google Scholar 

  29. Ramanujam, J., Singh, U.P.: Copper indium gallium selenide based solar cells–a review. Energy Environ. Sci. 10(6), 1306–1319 (2017)

    Article  CAS  Google Scholar 

  30. Fotovvati, B., Namdari, N., Dehghanghadikolaei, A.: On coating techniques for surface protection: a review. J. Manuf. Mater. Process. 3(1), 28 (2019)

    CAS  Google Scholar 

  31. Weber, W., McCarthy, S.: Surface-plasmon resonance as a sensitive optical probe of metal-film properties. Phys. Rev. B 12(12), 5643 (1975)

    Article  ADS  CAS  Google Scholar 

  32. Ordal, M.A., et al.: Optical properties of the metals al, co, cu, au, fe, pb, ni, pd, pt, ag, ti, and w in the infrared and far infrared. Appl. Opt. 22(7), 1099–1119 (1983)

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Sadowski, J.W., Lekkala, J., Vikholm, I.: Biosensors based on surface plasmons excited in non-noble metals. Biosens. Bioelectron. 6(5), 439–444 (1991)

    Article  CAS  Google Scholar 

  34. Sharma, N.K.: Performances of different metals in optical fibre-based surface plasmon resonance sensor. Pramana 78, 417–427 (2012)

    Article  ADS  CAS  Google Scholar 

  35. Wu, L., et al.: Highly sensitive graphene biosensors based on surface plasmon resonance. Opt. Express 18(14), 14395–14400 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Maharana, P.K., Jha, R.: Chalcogenide prism and graphene multilayer based surface plasmon resonance affinity biosensor for high performance. Sens. Actuators, B Chem. 169, 161–166 (2012)

    Article  CAS  Google Scholar 

  37. Komlev, A., Dyukin, R., Shutova, E.: The method of controlling the thickness of the deposited film on the basis of the surface plasmon resonance effect. J. Phys.: Conf. Ser. 872, 012042 (2017)

    Google Scholar 

  38. Maurya, J., Prajapati, Y., Tripathi, R.: Effect of molybdenum disulfide layer on surface plasmon resonance biosensor for the detection of bacteria. Silicon 10(2), 245–256 (2018)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mokhtar Aarabi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davami, A., Aarabi, M. Effect of MoS2 and (phosphorene, germanene, borophene) hybrid structure on the performance of an SPR biosensor for detection of bacteria. Opt Rev (2024). https://doi.org/10.1007/s10043-024-00875-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10043-024-00875-7

Keywords

Navigation