Skip to main content
Log in

Fabrication and characterization of vanadium oxide-polyaniline (VOP) composites for high-performance supercapacitors

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

This work portrays the synthesis of vanadium oxide with a polyaniline-based composite for supercapacitor utilization. For this purpose, by integrating vanadium pentaoxide V2O5 (VO) into the Polyaniline (PANI) and reduced graphene oxide ‘rGO’ (RG) matrix through an in situ polymerization and sol-gel technique, polyaniline/vanadium pentaoxide (VOP), rGO/Vanadium pentaoxide (VORG) nanocomposites are effectively designed. The XRD patterns of nanocomposites show clear, well-defined peaks, indicating the existence of the VO inside the PANI and rGO matrix. Images obtained using a scanning electron microscope (SEM) reveal that the rGO and PANI were evenly distributed among the nanoparticles in the composites. Current voltage measurements confirm the maximal conductivity for VOP nanocomposites. The electrochemical performance was tested in a standard three-electrode assembly that revealed superior charge storage properties of the VOP composite at a current density of 1 A g−1, with the highest specific capacitance of 1666.67 F g−1 among all the electrodes at similar conditions. The maximum energy density value of 227.92 Wh kg−1 with a power density of 918.85 W kg−1 is observed for VOP nanocomposites. Furthermore, VOP retains around 98.6% of its original capacitance after 1000 charge-discharge cycles and displays better cyclic stability.

Graphical Abstract

Highlights

  • Using sol-gel technique, polyaniline/vanadium pentaoxide, rGO/ Vanadium pentaoxide nanocomposites are effectively designed.

  • XRD patterns shows well-defined peaks, and morphology reveals evenly distribution of rGo and PANI among VO nanocomposites.

  • Current voltage measurements confirm the maximal conductivity for VOP nanocomposites.

  • The VOP composite shows the highest specific capacitance of 1666.67 F g−1 at a current density of 1A g−1.

  • The maximum energy density value of 227.92 Wh kg−1 with a power density of 918.85 W kg−1 is observed for VOP nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All the related data is available from the authors upon request.

References

  1. Sajjad M, Zhang J, Zhang S, Zhou J, Mao Z, Chen Z (2023) Long‐life lead‐carbon batteries for stationary energy storage applications. Chem Record, e202300315. https://doi.org/10.1002/tcr.202300315

  2. Roy A, Ray A, Sadhukhan P, Saha S, Das S (2018) Morphological behaviour, electronic bond formation and electrochemical performance study of V2O5-polyaniline composite and its application in asymmetric supercapacitor. Mater Res Bull 107:379–390

    Article  CAS  Google Scholar 

  3. Xu M, Zhu J, Xie J, Mao Y, Hu W (2023) Dynamically cross-linked, self-healable, and stretchable all-hydrogel supercapacitor with extraordinary energy density and real-time pressure sensing. Small n/a(n/a):2305448. https://doi.org/10.1002/smll.202305448. (acccessed 2023/11/06)

    Article  CAS  Google Scholar 

  4. Sajjad M, Zhang J, Mao Z, Chen Z (2023) A review on iron-nitride (Fe2N) based nanostructures for electrochemical energy storage applications: Research progress, and future perspectives. J Alloys Compd 976(5):172626

    Google Scholar 

  5. Wang M, Yang J, Liu S, Che X, He S, Chen G, Qiu J (2023) Nitrogen-doped porous carbon electrode for aqueous iodide redox supercapacitor. Chem Eng J 451:138501

    Article  CAS  Google Scholar 

  6. Tiwari DK, Ray A, Roy A, Das S (2018) Water splitting by using electrochemical properties of material. Water Remediation, 135–153. https://doi.org/10.1007/978-981-10-7551-3_8

  7. Sajjad M, Javed MS, Imran M, Mao Z (2021) CuCo 2 O 4 nanoparticles wrapped in a rGO aerogel composite as an anode for a fast and stable Li-ion capacitor with ultra-high specific energy. N J Chem 45(44):20751–20764

    Article  CAS  Google Scholar 

  8. Liu R, Sun S, Zhong R, Zhang H, Wu X (2020) Nitrogen-doped microporous carbon coated on carbon nanotubes for high performance supercapacitors. Microporous Mesoporous Mater 305:110300

    Article  CAS  Google Scholar 

  9. Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196(1):1–12

    Article  CAS  Google Scholar 

  10. Wang D, Wang X-X, Jin ML, He P, Zhang S (2022) Molecular level manipulation of charge density for solid-liquid TENG system by proton irradiation. Nano Energy 103:107819

    Article  CAS  Google Scholar 

  11. Zhang X, Tang Y, Zhang F, Lee CS (2016) A novel aluminum–graphite dual‐ion battery. Adv Energy Mater 6(11):1502588

    Article  Google Scholar 

  12. Wang M, Jiang C, Zhang S, Song X, Tang Y, Cheng H-M (2018) Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nat Chem 10(6):667–672. https://doi.org/10.1038/s41557-018-0045-4

    Article  CAS  PubMed  Google Scholar 

  13. Yu G, Xie X, Pan L, Bao Z, Cui Y (2013) Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy 2(2):213–234

    Article  CAS  Google Scholar 

  14. Stura E, Nicolini C (2006) New nanomaterials for light weight lithium batteries. Anal Chim acta 568(1-2):57–64

    Article  CAS  PubMed  Google Scholar 

  15. Li X, Wei B (2013) Supercapacitors based on nanostructured carbon. Nano Energy 2(2):159–173

    Article  CAS  Google Scholar 

  16. Lu W, Hartman R, Qu L, Dai L (2011) Nanocomposite electrodes for high-performance supercapacitors. J Phys Chem Lett 2(6):655–660

    Article  CAS  Google Scholar 

  17. Mu S, Liu Q, Kidkhunthod P, Zhou X, Wang W, Tang Y (2021) Molecular grafting towards high-fraction active nanodots implanted in N-doped carbon for sodium dual-ion batteries. Natl Sci Rev 8(7):nwaa178

    CAS  PubMed  Google Scholar 

  18. Huang Z, Luo P, Jia S, Zheng H, Lyu Z (2022) A sulfur-doped carbon-enhanced Na3V2 (PO4) 3 nanocomposite for sodium-ion storage. J Phys Chem Solids 167:110746

    Article  CAS  Google Scholar 

  19. Zhao H, Pan L, Xing S, Luo J, Xu J (2013) Vanadium oxides–reduced graphene oxide composite for lithium-ion batteries and supercapacitors with improved electrochemical performance. J Power Sources 222:21–31

    Article  CAS  Google Scholar 

  20. Huang Z, Luo P, Wu Q, Zheng H (2022) Constructing one-dimensional mesoporous carbon nanofibers loaded with NaTi2 (PO4) 3 nanodots as novel anodes for sodium energy storage. J Phys Chem Solids 161:110479

    Article  CAS  Google Scholar 

  21. Liu Y, Liu X, Li X, Yuan H, Xue Y (2022) Model predictive control-based dual-mode operation of an energy-stored quasi-Z-source photovoltaic power system. IEEE Trans Ind Electron 70(9):9169–9180

    Article  Google Scholar 

  22. Liu B, Wang X, Chen Y, Xie H, Zhao X, Nassr AB, Li Y (2023) Honeycomb carbon obtained from coal liquefaction residual asphaltene for high-performance supercapacitors in ionic and organic liquid-based electrolytes. J Energy Storage 68:107826

    Article  Google Scholar 

  23. Lu L, Wu W, Gao Y, Pan C, Yu X, Zhang C, Jin Z (2022) Study on current discrepancy and redistribution of HTS non-insulation closed-loop coils during charging/discharging and subsequent transient process toward steady-state operation. Superconductor Sci Technol 35(9):095001

    Article  ADS  CAS  Google Scholar 

  24. Lu Y, Stegmaier M, Nukala P, Giambra MA, Ferrari S, Busacca A, Pernice WH, Agarwal R (2017) Mixed-mode operation of hybrid phase-change nanophotonic circuits. Nano Lett 17(1):150–155

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Sajjad M, Ismail J, Shah A, Mahmood A, Shah MZU, ur Rahman S, Lu W (2021) Fabrication of 1.6 V hybrid supercapacitor developed using MnSe2/rGO positive electrode and phosphine based covalent organic frameworks as a negative electrode enables superb stability up to 28,000 cycles. J Energy Storage 44:103318

    Article  Google Scholar 

  26. Sajjad M, Lu W (2022) Honeycomb‐based heterostructures: An emerging platform for advanced energy applications: A review on energy systems. Electrochem Sci Adv 2(5):e202100075

    Article  CAS  Google Scholar 

  27. Lu C, Ren R, Zhu Z, Pan G, Wang G, Xu C, Qiao J, Sun W, Huang Q, Liang H (2023) BaCo0. 4Fe0. 4Nb0. 1Sc0. 1O3-δ perovskite oxide with super hydration capacity for a high-activity proton ceramic electrolytic cell oxygen electrode. Chem Eng J 472:144878

    Article  CAS  Google Scholar 

  28. Yang S, Huang Z, Hu Q, Zhang Y, Wang F, Wang H, Shu Y (2022) Proportional optimization model of multiscale spherical BN for enhancing thermal conductivity. ACS Appl Electron Mater 4(9):4659–4667

    Article  CAS  Google Scholar 

  29. Sajjad M, Xu C, Guan L, Zhang S, Jiao Y, Zhang S, Lin Y, Ren Y, Zhou X, Liu Z (2020) Influence of stirring time on the electrochemical properties of NiCo2S4 hexagonal plates and NiCo− OH nanoparticles as high‐performance pseudocapacitor electrode materials. ChemistrySelect 5(8):2634–2642

    Article  CAS  Google Scholar 

  30. Sajjad M, Jiang Y, Guan L, Chen X, Iqbal A, Zhang S, Ren Y, Zhou X, Liu Z (2019) NiCo2S4 nanosheet grafted SiO2@ C core-shelled spheres as a novel electrode for high performance supercapacitors. Nanotechnology 31(4):045403

    Article  ADS  PubMed  Google Scholar 

  31. Carlos E, Martins R, Fortunato E, Branquinho R (2020) Solution combustion synthesis: towards a sustainable approach for metal oxides. Chem–A Eur J 26(42):9099–9125

    Article  CAS  Google Scholar 

  32. Quispe-Garrido V, Cerron-Calle GA, Bazan-Aguilar A, Ruiz-Montoya JG, López EO, Baena-Moncada AM (2021) Advances in the design and application of transition metal oxide-based supercapacitors. Open Chem 19(1):709–725

    Article  CAS  Google Scholar 

  33. Sajjad M, Khan MI, Cheng F, Lu W (2021) A review on selection criteria of aqueous electrolytes performance evaluation for advanced asymmetric supercapacitors. J Energy Storage 40:102729

    Article  Google Scholar 

  34. Iro ZS, Subramani C, Dash S (2016) A brief review on electrode materials for supercapacitor. Int J Electrochem Sci 11(12):10628–10643

    Article  CAS  Google Scholar 

  35. Majumdar D, Mandal M, Bhattacharya SK (2019) V2O5 and its carbon‐based nanocomposites for supercapacitor applications. ChemElectroChem 6(6):1623–1648

    Article  CAS  Google Scholar 

  36. Li Q, Wang H, Yu H, Fu M, Liu W, Zhao Q, Huang S, Zhou L, Wei W, Ji X (2023) Engineering an ultrathin and hydrophobic composite zinc anode with 24 μm thickness for high-performance Zn batteries. Adv Funct Mater 33(40):2303466

    Article  CAS  Google Scholar 

  37. Wang L, Jiang Y, Li S-Y, Chen X-H, Xi F-S, Wan X-H, Ma W-H, Deng R (2023) Scalable synthesis of N-doped Si/G@ voids@ C with porous structures for high-performance anode of lithium-ion batteries. Rare Metals 42(12):1–12

    Article  Google Scholar 

  38. Li X, Aftab S, Abbas A, Hussain S, Aslam M, Kabir F, Abd-Rabboh HS, Hegazy H, Xu F, Ansari MZ (2023) Advances in mixed 2D and 3D perovskite heterostructure solar cells: A comprehensive review. Nano Energy 18:108979

    Article  Google Scholar 

  39. Wei T, Zhou Y, Sun C, Guo X, Xu S, Chen D, Tang Y (2023) An intermittent lithium deposition model based on CuMn-bimetallic MOF derivatives for composite lithium anode with ultrahigh areal capacity and current densities. Nano Res 1–7. https://doi.org/10.1007/s12274-023-6187-8.

  40. Borenstein A, Hanna O, Attias R, Luski S, Brousse T, Aurbach D (2017) Carbon-based composite materials for supercapacitor electrodes: a review. J Mater Chem A 5(25):12653–12672

    Article  CAS  Google Scholar 

  41. Zhu J, Cao L, Wu Y, Gong Y, Liu Z, Hoster HE, Zhang Y, Zhang S, Yang S, Yan Q (2013) Building 3D structures of vanadium pentoxide nanosheets and application as electrodes in supercapacitors. Nano Lett 13(11):5408–5413

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Zhi M, Xiang C, Li J, Li M, Wu N (2013) Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5(1):72–88

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Augustyn V, Simon P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 7(5):1597–1614

    Article  CAS  Google Scholar 

  44. Kuang W, Wang H, Li X, Zhang J, Zhou Q, Zhao Y (2018) Application of the thermodynamic extremal principle to diffusion-controlled phase transformations in Fe-CX alloys: Modeling and applications. Acta Mater 159:16–30

    Article  ADS  CAS  Google Scholar 

  45. Yan Z, Hu Q, Jiang F, Lin S, Li R, Chen S (2023) Mechanism and technology evaluation of a novel alternating-arc-based directed energy deposition method through polarity-switching self-adaptive shunt. Addit Manuf 67:103504

    CAS  Google Scholar 

  46. Wang Z, Li J, Hu C, Li X, Zhu Y (2024) Hybrid energy storage system and management strategy for motor drive with high torque overload. J Energy Storage 75:109432

    Article  Google Scholar 

  47. Chalker CJ, An H, Zavala J, Parija A, Banerjee S, Lutkenhaus JL, Batteas JD (2017) Fabrication an d electrochemical performance of structured mesoscale open shell V2O5 networks Langmuir 33(24):5975–5981

  48. Liu Y, Jia C, Wan Z, Weng X, Xie J, Deng L (2015) Electrochemical and electrochromic properties of novel nanoporous NiO/V2O5 hybrid film. Sol Energy Mater Sol Cells 132:467–475

    Article  CAS  Google Scholar 

  49. Karade SS, Lalwani S, Eum J-H, Kim H (2020) Coin cell fabricated symmetric supercapacitor device of two-steps synthesized V2O5 Nanorods. J Electroanal Chem 864:114080

    Article  CAS  Google Scholar 

  50. Zhang H, Han X, Gan R, Guo Z, Ni Y, Zhang L (2020) A facile biotemplate-assisted synthesis of mesoporous V2O5 microtubules for high performance asymmetric supercapacitors. Appl Surf Sci 511:145527

    Article  CAS  Google Scholar 

  51. Li H, Tian H, Chang T-H, Zhang J, Koh SN, Wang X, Wang C-H, Chen P-Y (2019) High-purity V2O5 nanosheets synthesized from gasification waste: flexible energy storage devices and environmental assessment. ACS Sustain Chem Eng 7(14):12474–12484

    CAS  Google Scholar 

  52. Lee H, Kumbhar VS, Lee J, Choi Y, Lee K (2020) Highly reversible crystal transformation of anodized porous V2O5 nanostructures for wide potential window high-performance supercapacitors. Electrochim Acta 334:135618

    Article  CAS  Google Scholar 

  53. Zheng X, Cai G, Guo J, Gao W, Huang Y, Tong X (2023) Combustion characteristics and thermal decomposition mechanism of the flame-retardant cable in urban utility tunnel. Case Stud Therm Eng 44:102887

    Article  Google Scholar 

  54. Zhang Y, He X, Cong X, Wang Q, Yi H, Li S, Zhang C, Zhang T, Wang X, Chi Q (2023) Enhanced energy storage performance of polyethersulfone-based dielectric composite via regulating heat treatment and filling phase. J Alloy Compd 960:170539

    Article  CAS  Google Scholar 

  55. Hsiao Y-S, Chang-Jian C-W, Syu W-L, Yen S-C, Huang J-H, Weng H-C, Lu C-Z, Hsu S-C (2021) Enhanced electrochromic performance of carbon-coated V2O5 derived from a metal–organic framework. Appl Surf Sci 542:148498

    Article  CAS  Google Scholar 

  56. Thalji MR, Ali GA, Lee SP, Chong KF (2019) Solvothermal synthesis of reduced graphene oxide as electrode material for supercapacitor application. Chem Adv Mater 4(3):17–26

    Google Scholar 

  57. Yang Z, Tian J, Yin Z, Cui C, Qian W, Wei F (2019) Carbon nanotube-and graphene-based nanomaterials and applications in high-voltage supercapacitor: A review. Carbon 141:467–480

    Article  CAS  Google Scholar 

  58. Faraji S, Ani FN (2015) The development supercapacitor from activated carbon by electroless plating—A review. Renew Sustain Energy Rev 42:823–834

    Article  CAS  Google Scholar 

  59. Patel R, Park JT, Patel M, Dash JK, Gowd EB, Karpoormath R, Mishra A, Kwak J, Kim JH (2018) Transition-metal-based layered double hydroxides tailored for energy conversion and storage. J Mater Chem A 6(1):12–29

    Article  CAS  Google Scholar 

  60. Noked M, Avraham E, Bohadana Y, Soffer A, Aurbach D (2009) Development of anion stereoselective, activated carbon molecular sieve electrodes prepared by chemical vapor deposition. J Phys Chem C 113(17):7316–7321

    Article  CAS  Google Scholar 

  61. Xu Y, Lin Z, Zhong X, Huang X, Weiss NO, Huang Y, Duan X (2014) Holey graphene frameworks for highly efficient capacitive energy storage. Nat Commun 5(1):4554

    Article  ADS  CAS  PubMed  Google Scholar 

  62. Cheng J, Gu G, Guan Q, Razal JM, Wang Z, Li X, Wang B (2016) Synthesis of a porous sheet-like V 2 O 5–CNT nanocomposite using an ice-templating ‘bricks-and-mortar’assembly approach as a high-capacity, long cyclelife cathode material for lithium-ion batteries. J Mater Chem A 4(7):2729–2737

    Article  CAS  Google Scholar 

  63. Kim Y, Kim J-S, Thieu M-T, Dinh H-C, Yeo I-H, Cho WI, Mho S-I (2010) Increase in discharge capacity of Li battery assembled with electrochemically prepared V2O5/polypyrrole-composite-film cathode. B Kor Chem Soc 31:3109–3114

    Article  CAS  Google Scholar 

  64. Fang W-C, Fang W-L (2008) Fast and reversible surface redox reduction in V2O5 dispersed on CN x nanotubes. Chem Commun 41:5236–5238. https://doi.org/10.1039/B809253B

    Article  Google Scholar 

  65. Chen L-M, Lai Q-Y, Hao Y-J, Zhao Y, Ji X-Y (2009) Investigations on capacitive properties of the AC/V2O5 hybrid supercapacitor in various aqueous electrolytes. J Alloy Compd 467(1-2):465–471

    Article  CAS  Google Scholar 

  66. Wang Y, Takahashi K, Lee KH, Cao G (2006) Nanostructured vanadium oxide electrodes for enhanced lithium‐ion intercalation. Adv Funct Mater 16(9):1133–1144

    Article  CAS  Google Scholar 

  67. Zhai T, Liu H, Li H, Fang X, Liao M, Li L, Zhou H, Koide Y, Bando Y, Golberg D (2010) Centimeter‐long V2O5 nanowires: from synthesis to field‐emission, electrochemical, electrical transport, and photoconductive properties. Adv Mater 22(23):2547–2552

    Article  CAS  PubMed  Google Scholar 

  68. Perera SD, Patel B, Bonso J, Grunewald M, Ferraris JP, Balkus Jr KJ (2011) Vanadium oxide nanotube spherical clusters prepared on carbon fabrics for energy storage applications. ACS Appl Mater Interfaces 3(11):4512–4517

    Article  CAS  PubMed  Google Scholar 

  69. Bonso JS, Rahy A, Perera SD, Nour N, Seitz O, Chabal YJ, Balkus Jr KJ, Ferraris JP, Yang DJ (2012) Exfoliated graphite nanoplatelets–V2O5 nanotube composite electrodes for supercapacitors. J Power Sources 203:227–232

    Article  CAS  Google Scholar 

  70. Wu Y, Gao G, Wu G (2015) Self-assembled three-dimensional hierarchical porous V 2 O 5/graphene hybrid aerogels for supercapacitors with high energy density and long cycle life. J Mater Chem A 3(5):1828–1832

    Article  CAS  Google Scholar 

  71. Kim B-H, Kim CH, Yang KS, Rahy A, Yang DJ (2012) Electrospun vanadium pentoxide/carbon nanofiber composites for supercapacitor electrodes. Electrochim Acta 83:335–340

    Article  CAS  Google Scholar 

  72. Perera SD, Liyanage AD, Nijem N, Ferraris JP, Chabal YJ, Balkus Jr KJ (2013) Vanadium oxide nanowire–Graphene binder free nanocomposite paper electrodes for supercapacitors: A facile green approach. J Power Sources 230:130–137

    Article  CAS  Google Scholar 

  73. Ding B, Wu X (2020) Transition metal oxides anchored on graphene/carbon nanotubes conductive network as both the negative and positive electrodes for asymmetric supercapacitor. J Alloy Compd 842:155838

    Article  CAS  Google Scholar 

  74. Tarcan R, Todor-Boer O, Petrovai I, Leordean C, Astilean S, Botiz I (2020) Reduced graphene oxide today. J Mater Chem C 8(4):1198–1224

    Article  CAS  Google Scholar 

  75. Yue W, Jiang S, Huang W, Gao Z, Li J, Ren Y, Zhao X, Yang X (2013) Sandwich-structural graphene-based metal oxides as anode materials for lithium-ion batteries. J Mater Chem A 1(23):6928–6933

    Article  CAS  Google Scholar 

  76. Yasmeen S, Iqbal F, Munawar T, Nawaz MA, Asghar M, Hussain A (2019) Synthesis, structural and optical analysis of surfactant assisted ZnO–NiO nanocomposites prepared by homogeneous precipitation method. Ceram Int 45(14):17859–17873

    Article  CAS  Google Scholar 

  77. Pan A, Zhang J-G, Nie Z, Cao G, Arey BW, Li G, Liang S-Q, Liu J (2010) Facile synthesized nanorod structured vanadium pentoxide for high-rate lithium batteries. J Mater Chem 20(41):9193–9199

    Article  CAS  Google Scholar 

  78. Bai M-H, Liu T-Y, Luan F, Li Y, Liu X-X (2014) Electrodeposition of vanadium oxide–polyaniline composite nanowire electrodes for high energy density supercapacitors. J Mater Chem A 2(28):10882–10888

    Article  CAS  Google Scholar 

  79. Guo H-L, Wang X-F, Qian Q-Y, Wang F-B, Xia X-H (2009) A green approach to the synthesis of graphene nanosheets. ACS Nano 3(9):2653–2659

    Article  CAS  PubMed  Google Scholar 

  80. Zhang S, Gao H, Zhou J (2018) Reduced graphene oxide-modified Ni-Co phosphate nanosheet self-assembled microplates as high-performance electrode materials for supercapacitors. J Alloy Compd 746:549–556

    Article  CAS  Google Scholar 

  81. Balamuralitharan B, Cho I-H, Bak J-S, Kim H-J (2018) V 2 O 5 nanorod electrode material for enhanced electrochemical properties by a facile hydrothermal method for supercapacitor applications. N J Chem 42(14):11862–11868

    Article  Google Scholar 

  82. Saravanakumar B, Purushothaman KK, Muralidharan G (2016) Fabrication of two-dimensional reduced graphene oxide supported V2O5 networks and their application in supercapacitors. Mater Chem Phys 170:266–275

    Article  CAS  Google Scholar 

  83. Wang J, Cui C, Gao G, Zhou X, Wu J, Yang H, Li Q, Wu G (2015) A new method to prepare vanadium oxide nano-urchins as a cathode for lithium ion batteries. RSC Adv 5(59):47522–47528

    Article  ADS  CAS  Google Scholar 

  84. Naderi HR, Ganjali MR, Dezfuli AS (2018) High-performance supercapacitor based on reduced graphene oxide decorated with europium oxide nanoparticles. J Mater Sci: Mater Electron 29:3035–3044

    CAS  Google Scholar 

  85. Manju V, Rohith R, Prasannakumar AT, Bhavija B, Varma SJ (2022) Dielectric and electrochemical performance of rhombohedral lanthanum manganite perovskite nanostructures. N J Chem 46(41):19874–19887

    Article  Google Scholar 

Download references

Acknowledgements

This research has been funded by the Scientific Research Deanship at the University of Ha’il- Saudi Arabia, through project number BA-23 013. The authors highly appreciate and introduce deep thanks for the Scientific Research Deanship University of Hail, Saudi Arabia.

Author contributions

The Authors, SUA and KDA, suggest the idea. RB, and SUA, synthesized the material. KDA, BHA, SUA, and RB, helped to write the initial draft and helped to improve the manuscript till the final version. The manuscript was written through the contributions of all authors. All authors have approved the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kaseb D. Alanazi or Sana Ullah Asif.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alanazi, K.D., Alshammari, B.H., Bashir, R. et al. Fabrication and characterization of vanadium oxide-polyaniline (VOP) composites for high-performance supercapacitors. J Sol-Gel Sci Technol (2024). https://doi.org/10.1007/s10971-024-06328-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10971-024-06328-6

Keywords

Navigation