Skip to main content
Log in

Improving the Oxidation Behavior of CoCrFe2Ni0.5 High Entropy Alloy Through Powder-Pack Boriding

  • Original Paper
  • Published:
High Temperature Corrosion of Materials Aims and scope Submit manuscript

Abstract

The oxidation performance of CoCrFe2Ni0.5 HEA borided through a powder-pack boriding process was investigated at 900 °C for 120 h. The boriding process at 900 °C for 6 h resulted in the formation of a two-zone structure: the outmost part contained a Ni2Si layer and the inner part consisted of a MB/M2B layer. The borided alloy displayed better oxidation resistance with the least oxidation rate constant value of 0.0383 (mgn cm−2n h−1). Moreover, this alloy rendered a continuous oxide layer that was denser, more compact, and contained fewer defects, which confirmed the improvement in oxidation resistance. The Ni2Si layer plus the boride layer was responsible for the enhanced oxidation performance of borided alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. Y. Garip, Journal of Alloys and Compounds 920, 2022 (165951).

    Article  CAS  Google Scholar 

  2. R. Hu, J. Du, J. Jiang, Y. Zhang, Q. Ji, and R. Zhang, Journal of Alloys and Compounds 921, 2022 (165455).

    Article  CAS  Google Scholar 

  3. Y. Garip, Corrosion Science 206, 2022 (110497).

    Article  CAS  Google Scholar 

  4. J. Dabrowa, G. Cieslak, M. Stygar, K. Mroczka, K. Berent, T. Kulik, and M. Danielewski, Intermetallics 84, 2017 (52).

    Article  CAS  Google Scholar 

  5. M. Hirscher, et al., Journal of Alloys and Compounds 827, 2020 (153548).

    Article  CAS  Google Scholar 

  6. J.-J. Yang, C.-M. Kuo, P.-T. Lin, H.-C. Liu, C.-Y. Huang, H.-W. Yen, and C.-W. Tsai, Journal of Alloys and Compounds 825, 2020 (153983).

    Article  CAS  Google Scholar 

  7. D. Huang, J. Lu, Y. Zhuang, C. Tian, and Y. Li, Corrosion Science 158, 2019 (108088).

    Article  CAS  Google Scholar 

  8. J. Lu, Y. Chen, H. Zhang, N. Ni, L. Li, L. He, R. Mu, X. Zhao, and F. Guo, Corrosion Science 166, 2020 (108426).

    Article  CAS  Google Scholar 

  9. M. Ma, A. Han, Z. Zhang, Y. Lian, C. Zhao, and J. Zhang, Corrosion Science 185, 2021 (109417).

    Article  CAS  Google Scholar 

  10. A. Günen, K. M. Doleker, M. E. Korkmaz, M. S. Gok, and A. Erdogan, Surface and Coatings Technology 409, 2021 (126906).

    Article  Google Scholar 

  11. C. Li, B. Shen, G. Li, and C. Yang, Surface and Coatings Technology 202, 2008 (5882).

    Article  CAS  Google Scholar 

  12. I. Uslu, H. Comert, M. Ipek, F. G. Celebi, O. Ozdemir, and C. Bindal, Materials & Design 28, 2007 (1819).

    Article  CAS  Google Scholar 

  13. G. A. Rodríguez-Castro, C. D. Reséndiz-Calderon, L. F. Jiménez-Tinoco, A. Meneses-Amador, E. A. Gallardo-Hernández, and I. E. Campos-Silva, Surface and Coatings Technology 284, 2015 (258).

    Article  Google Scholar 

  14. D. Mu, B.-L. Shen, and X. Zhao, Materials & Design 31, 2010 (3933).

    Article  CAS  Google Scholar 

  15. R. S. Petrova, N. Suwattananont, and V. Samardzic, Journal of Materials Engineering and Performance 17, 2008 (340).

    Article  ADS  CAS  Google Scholar 

  16. N. Ueda, T. Mizukoshi, K. Demizu, T. Sone, A. Ikenaga, and M. Kawamoto, Surface and Coatings Technology 126, 2000 (25).

    Article  CAS  Google Scholar 

  17. T. Dixit, I. Singh, and K. E. Prasad, Wear 420–421, 2019 (207).

    Article  Google Scholar 

  18. H. Yokota, T. Kudoh, and T. Suzuki, Surface and Coatings Technology 169–170, 2003 (171–173).

    Article  Google Scholar 

  19. E. Dokumaci, I. Özkan, and B. Önay, Surface and Coatings Technology 232, 2013 (22).

    Article  CAS  Google Scholar 

  20. Y. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen, and P. K. Liaw, Advanced Engineering Materials 10, 2008 (534).

    Article  CAS  Google Scholar 

  21. S. Guo and C. T. Liu, Progress in Natural Science: Materials International 21, 2011 (433).

    Article  Google Scholar 

  22. X. Yang and Y. Zhang, Materials Chemistry and Physics 132, 2012 (233).

    Article  CAS  Google Scholar 

  23. S. Cengiz, International Journal of Refractory Metals and Hard Materials 95, 2021 (105418).

    Article  CAS  Google Scholar 

  24. T. Lindner, M. Löbel, B. Sattler, and T. Lampke, Surface and Coatings Technology 371, 2019 (389).

    Article  CAS  Google Scholar 

  25. H. C. Chen, E. Pfender, and J. Heberlein, Thin Solid Films 293, 1997 (227).

    Article  ADS  CAS  Google Scholar 

  26. Y. Azakli and M. Tarakci, Surface Engineering 34, 2018 (226).

    Article  CAS  Google Scholar 

  27. S. Cengiz and M. Thuvander, Materials 15, 2022 (2282).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. J. Ju, Z. Shen, et al., Corrosion Science 217, 2023 (111116).

    Article  CAS  Google Scholar 

  29. M. P. Agustianingrum, F. H. Latief, N. Park, and U. Lee, Intermetallics 120, 2020 (106757).

    Article  CAS  Google Scholar 

  30. N. K. Adomako, J. H. Kim, and Y. T. Hyun, Journal of Thermal Analysis and Calorimetry 133, 2018 (13).

    Article  CAS  Google Scholar 

  31. K.-Y. Tsai, M.-H. Tsai, and J.-W. Yeh, Acta Materialia 61, 2013 (4887).

    Article  ADS  CAS  Google Scholar 

  32. Y. Lu, D. Qu, Y. Duan, and M. Peng, Ceramics International 48, 2022 (5646).

    Article  CAS  Google Scholar 

  33. D. Mu and B. Shen, International Journal of Refractory Metals and Hard Materials 28, 2010 (424).

    Article  CAS  Google Scholar 

  34. X. P. Lu, H. M. Xiang, P. Han, M. S. Li, and Y. C. Zhou, Corrosion Science 162, 2020 (108201).

    Article  CAS  Google Scholar 

  35. E. Dokumaci, I. Özkan, M. B. Özyigit, and B. Önay, International Journal of Refractory Metals and Hard Materials 41, 2013 (276).

    Article  CAS  Google Scholar 

  36. J. Ptačinová, M. Drienovský, M. Palcut, R. Čička, M. Kusý, and M. Hudáková, Kovove Materialy 53, 2015 (1).

    Google Scholar 

  37. M. Khenifer, O. Allaoui, and M. B. Taouti, Acta Physica Polonica A 132, 2017 (518).

    Article  ADS  CAS  Google Scholar 

  38. J. Jiang, Y. Wang, Q. Zhong, Q. Zhou, and L. Zhang, Surface and Coatings Technology 206, 2011 (473).

    Article  CAS  Google Scholar 

  39. P. Dziarski, N. Makuch, and M. Tulinski, Corrosion Science 195, 2022 (109985).

    Article  CAS  Google Scholar 

  40. S. V. Dyck, L. Delaey, L. Froyen, and L. Buekenhout, Intermetlallics 5, 1997 (137).

    Article  Google Scholar 

  41. P. L. Tam, Y. Cao, U. Jelvestam, and L. Nyborg, Surface and Coatings Technology 206, 2011 (1160).

    Article  CAS  Google Scholar 

  42. M. M. Verdian, K. Raeissi, and M. Salehi, Surface and Coatings Technology 240, 2014 (70).

    Article  CAS  Google Scholar 

  43. M. M. Verdian, K. Raeissi, and M. Salehi, Surface and Coatings Technology 273, 2013 (426).

    CAS  Google Scholar 

  44. N. Makuch, Transactions of Nonferrous Metals Society of China 31, 2021 (764).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Yiğit Garip wrote the main manuscript text, prepared figures and reviewed the manuscript.

Corresponding author

Correspondence to Yiğit Garip.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garip, Y. Improving the Oxidation Behavior of CoCrFe2Ni0.5 High Entropy Alloy Through Powder-Pack Boriding. High Temperature Corrosion of mater. (2024). https://doi.org/10.1007/s11085-024-10228-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11085-024-10228-z

Keywords

Navigation