Skip to main content
Log in

Synthesis and Porous Crystal Structure of a New Tetranuclear \(\text{\{Mn}_2^{\text{II}}\text{Mn}_2^{\text{III}}\}\) Cluster Based on a Calix[4]Arene Functionalized at the Upper Rim by Distal p-(4-Nitrophenyl)Diazenyl and p-tert-Butyl Groups

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

New crystalline \(\{\text{Mn}_{2}^{\text{II}}\text{Mn}_{2}^{\text{III}}\}\) tetranuclear cluster is prepared by the interaction of manganese(II) chloride with calix[4]arene 3 functionalized at the upper rim by distal p-(4-nitrophenyl)diazenyl and p-tert-butyl groups displaying different electronic effects and sizes. The structure of the cluster is studied by single-crystal XRD. Due to the presence of (4-nitrophenyl)diazenyl moieties at the upper rim of the macrocyclic ligand, the molecules of the tetranuclear \(\{\text{Mn}_{2}^{\text{II}}\text{Mn}_{2}^{\text{III}}\}\) clusters are involved in π-stacking interactions leading to the formation of 2D supramolecular layers affording a porous crystal packing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

REFERENCES

  1. A. Zabala-Lekuona, J. Manuel Seco, and E. Colacio. Single-molecule magnets: From Mn12-ac to dysprosium metallocenes, a travel in time. Coord. Chem. Rev., 2021, 441, 213984. https://doi.org/10.1016/j.ccr.2021.213984

    Article  CAS  Google Scholar 

  2. E. Moreno-Pineda and W. Wernsdorfer. Measuring molecular magnets for quantum technologies. Nat. Rev. Phys., 2021, 3, 645. https://doi.org/10.1038/s42254-021-00340-3

    Article  CAS  Google Scholar 

  3. S. M. Aldoshin, D. V. Korchagin, A. V. Palii, and B. S. Tsukerblat. Some new trends in the design of single molecule magnets. Pure Appl. Chem., 2017, 89(8), 1119. https://doi.org/10.1515/pac-2017-0103

    Article  CAS  Google Scholar 

  4. C. D. Gutsche, M. Iqbal, and D. Stewart. Calixarenes. 19. Syntheses procedures for p-tert-butylcalix[4]arene. J. Org. Chem., 1986, 51(5), 742-745. https://doi.org/10.1021/jo00355a033

    Article  CAS  Google Scholar 

  5. A. Ovsyannikov, S. Solovieva, I. Antipin, and S. Ferlay. Coordination polymers based on calixarene derivatives: Structures and properties. Coord. Chem. Rev., 2017, 352, 151-186. https://doi.org/10.1016/j.ccr.2017.09.004

    Article  CAS  Google Scholar 

  6. R. O. Fuller, G. A. Koutsantonis, and M. I. Ogden. Magnetic properties of calixarene-supported metal coordination clusters. Coord. Chem. Rev., 2020, 402, 213066. https://doi.org/10.1016/j.ccr.2019.213066

    Article  CAS  Google Scholar 

  7. A. S. Ovsyannikov, I. V. Khariushin, S. E. Solovieva, I. S. Antipin, H. Komiya, N. Marets, H. Tanaka, H. Ohmagari, M. Hasegawa, J. J. Zakrzewski, S. Chorazy, N. Kyritsakas, M. W. Hosseini, and S. Ferlay. Mixed Tb/Dy coordination ladders based on tetra(carboxymethyl)thiacalix[4]arene: A new avenue towards luminescent molecular nanomagnets. RSC Adv., 2020, 10, 11755. https://doi.org/10.1039/D0RA01263G

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  8. S. M. Taylor, G. Karotsis, R. D. McIntosh, S. Kennedy, S. J. Teat, C. M. Beavers, W. Wernsdorfer, S. Piligkos, S. J. Dalgarno, and E. K. Brechin. A family of calix[4]arene-supported [Mn(III)2Mn(II)2] clusters. Chem. - Eur. J., 2011, 17, 7521. https://doi.org/10.1002/chem.201003327

    Article  CAS  Google Scholar 

  9. S. M. Aldoshin, I. S. Antipin, V. I. Ovcharenko, S. E. Solov′eva, A. S. Bogomyakov, D. V. Korchagin, G. V. Shilov, E. A. Yur′eva, F. B. Mushenok, K. V. Bozhenko, and A. N. Utenyshev. Synthesis, structure, and properties of a new representative of the family of calix[4]arene-containing [MnII2MnIII2]-clusters. Russ. Chem. Bull., 2013, 62, 536. https://doi.org/10.1007/s11172-013-0074-5

    Article  CAS  Google Scholar 

  10. S. M. Aldoshin, I. S. Antipin, S. E. Solov′eva, N. A. Sanina, D. V. Korchagin, G. V. Shilov, F. B. Mushenok, A. N. Utenyshev, and K. V. Bozhenko. Experimental and theoretical study of the influence of peripheral environment on magnetic properties of tetranuclear manganese skeleton in new representatives of calix[4]arene-containing [MnII2 MnIII2] clusters. J. Mol. Struct., 2015, 1081, 217. https://doi.org/10.1016/j.molstruc.2014.10.022

    Article  CAS  ADS  Google Scholar 

  11. M. A. Palacios, R. McLellan, C. M. Beavers, S. J. Teat, H. Weihe, S. Piligkos, S. J. Dalgarno, and E. K. Brechin. Facile interchange of 3d and ions in single-molecule magnets: Stepwise assembly of [Mn4], [Mn3Ln] and [Mn2Ln2] cages within calix[4]arene scaffolds. Chem. - Eur. J., 2015, 21, 11212. https://doi.org/10.1002/chem.201500001

    Article  CAS  Google Scholar 

  12. A. S. Ovsyannikov, I. V. Strelnikova, I. D. Shutilov, D. R. Islamov, P. V. Dorovatovskii, A. T. Gubaidullin, A. S. Agarkov, S. E. Solovieva, and I.S. Antipin. A series of new manganese(II) polynuclear complexes based on nitrothiacalix[4]arenes: The study of interplay between macrocycle platform flexibility and structural diversity of coordination compounds. Crystals, 2023, 13, 1017. https://doi.org/10.3390/cryst13071017

    Article  CAS  Google Scholar 

  13. A. S. Ovsyannikov, N. A. Epifanova, E. V. Popova, N. Kyritsakas, S. Ferlay, M. W. Hosseini, S. K. Latypov, S. E. Solovieva, I. S. Antipin, and A. I. Konovalov. Template synthesis of tetrakis-triazolylthiacalix[4]arene in the cone conformation and supramolecular structure of its hexanuclear complex with Ag(I). Macroheterocycles, 2014, 7(2), 189-195. https://doi.org/10.6060/mhc140273s

    Article  Google Scholar 

  14. I. V. Khariushin, A. S. Ovsyannikov, D. R. Islamov, A. I. Samigullina, S. E. Solovieva, J. J. Zakrzewski, S. Chorazy, and S. Ferlay. Tuning crystal packing and magnetic properties in a series of [Dy12] metallocubanes based on azobenzene derivatives of salicylic acid. Inorg. Chem., 2023, 62(27), 10548. https://doi.org/10.1021/acs.inorgchem.3c00433

    Article  CAS  PubMed  Google Scholar 

  15. A. E. Thorarinsdottir and T. D. Harris. Metal–organic framework magnets. Chem. Rev., 2020, 120(16), 8716. https://doi.org/10.1021/acs.chemrev.9b00666

    Article  CAS  PubMed  Google Scholar 

  16. H. G. Becker, W. Berger, and G. Domschke. ORGANIKUM. Organisch-chemisches Grundpraktikum. Berlin, Germany: Deutscher Verlag der Wissenschaften, 1965.

  17. S. Elcin and H. Deligoz. Di-substituted azocalix[4]arenes containing chromogenic groups: Synthesis, characterization, extraction, and thermal behavior. Tetrahedron, 2013, 69(33), 6832. https://doi.org/10.1016/j.tet.2013.06.018

    Article  CAS  Google Scholar 

  18. V. A. Lazarenko, P. V. Dorovatovskii, Y. V. Zubavichus, A. S. Burlov, Y. V. Koshchienko, V. G. Vlasenko, and V. N. Khrustalev. High-throughput small-molecule crystallography at the ′Belok′ beamline of the Kurchatov synchrotron radiation source: Transition metal complexes with azomethine ligands as a case study. Crystals, 2017, 7(11), 325. https://doi.org/10.3390/cryst7110325

    Article  CAS  Google Scholar 

  19. R. D. Svetogorov, P. V. Dorovatovskii, and V. A. Lazarenko. Belok/XSA diffraction beamline for studying crystalline samples at Kurchatov synchrotron radiation source. Cryst. Res. Technol., 2020, 55(5), 1900184. https://doi.org/10.1002/crat.201900184

    Article  Google Scholar 

  20. W. Kabsch. XDS. Acta Crystallogr., Sect. D: Biol. Crystallogr., 2010, 66(2), 125-132. https://doi.org/10.1107/s0907444909047337

    Article  CAS  ADS  Google Scholar 

  21. G. M. Sheldrick. SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr., Sect. A: Found. Adv., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053273314026370

    Article  ADS  Google Scholar 

  22. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. J. Puschmann. OLEX2: a complete structure solution, refinement and analysis program. Appl. Crystallogr., 2009, 42, 339. https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  23. Z. Asfari, A. Bilyk, C. Bond, J. M. Harrowfield, G. A. Koutsantonis, N. Lengkeek, M. Mocerino, B. W. Skelton, A. N. Sobolev, S. Strano, J. Vicens, and A. H. White. Factors influencing solvent adduct formation by calixarenes in the solid state. Org. Biomol. Chem., 2004, 2, 387. https://doi.org/10.1039/B308214H

    Article  CAS  PubMed  Google Scholar 

  24. N. Ehlinger and M. Perrin. Structure of p-tetrakis-(4-nitrophenylazo)calix[4]-arene-4-picoline (1:4) complex. J. Incl. Phenom. Macrocycl. Chem., 1995, 22, 33. https://doi.org/10.1007/BF00706496

    Article  CAS  Google Scholar 

  25. C. M. Jin, Z. Wang, K. L. Zhang, G.-Y. Lu, and X.-Z. You. Crystal structure of the molecular adduct of 5-mono[(4-nitrophenyl)azo]-25,26,27,28-tetrahydroxycalix[4]arene with chloroform (1:1). J. Chem. Crystallogr., 2002, 32, 293. https://doi.org/10.1023/A:1020253423983

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the Russian Science Foundation (grant No. 19-73-20035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Ovsyannikov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Russian Text © The Author(s), 2024, published in Zhurnal Strukturnoi Khimii, 2024, Vol. 65, No. 2, 122224.https://doi.org/10.26902/JSC_id122224

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovsyannikov, A.S., Strelnikova, Y.V., Iova, A.A. et al. Synthesis and Porous Crystal Structure of a New Tetranuclear \(\text{\{Mn}_2^{\text{II}}\text{Mn}_2^{\text{III}}\}\) Cluster Based on a Calix[4]Arene Functionalized at the Upper Rim by Distal p-(4-Nitrophenyl)Diazenyl and p-tert-Butyl Groups. J Struct Chem 65, 313–322 (2024). https://doi.org/10.1134/S0022476624020094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476624020094

Keywords

Navigation