Skip to main content
Log in

The effect of photobiomodulation with 830-nm LED on corneal alkali burnt rat model

  • Brief Report
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Singh P, Tyagi M, Kumar Y, Gupta K, Sharma P (2013) Ocular chemical injuries and their management. Oman J Ophthalmol 6:83. https://doi.org/10.4103/0974-620X.116624

    Article  PubMed  PubMed Central  Google Scholar 

  2. Dua HS, King AJ, Joseph A (2001) A new classification of ocular surface burns. Br J Ophthalmol 85:1379–1383. https://doi.org/10.1136/bjo.85.11.1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Soleimani M, Naderan M (2020) Management strategies of ocular chemical burns: current perspectives. Clin Ophthalmol 14:2687. https://doi.org/10.2147/OPTH.S235873

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hamblin MR (2016) Photobiomodulation or low-level laser therapy. J Biophotonics 9:1122–1124. https://doi.org/10.1002/jbio.201670113

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kim WS, Calderhead RG (2011) Is light-emitting diode phototherapy (LED-PBM) really effective? Laser Ther 20:205–215. https://doi.org/10.5978/islsm.20.205

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chung H, Dai T, Sharma SK, Huang YY, Carroll JD, Hamblin MR (2012) The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng 40:516–533. https://doi.org/10.1007/s10439-011-0454-7

    Article  PubMed  Google Scholar 

  7. Kanavi MR, Tabeie F, Sahebjam F, Poursani N, Jahanbakhsh N, Paymanpour P et al (2016) Short-term effects of extremely low-frequency pulsed electromagnetic field and pulsed low-level laser therapy on rabbit model of corneal alkali burn. Exp Eye Res 145:216–223. https://doi.org/10.1016/J.EXER.2016.01.007

    Article  Google Scholar 

  8. Xia Y, Chai X, Zhou C, Ren Q (2011) Corneal nerve morphology and sensitivity changes after ultraviolet A/riboflavin treatment. Exp Eye Res 93:541–547. https://doi.org/10.1016/J.EXER.2011.06.021

    Article  CAS  PubMed  Google Scholar 

  9. Silveira PCL, da Silva LA, Fraga DB, Freitas TP, Streck EL, Pinho R (2009) Evaluation of mitochondrial respiratory chain activity in muscle healing by low-level laser therapy. J Photochem Photobiol B Biol 95:89–92. https://doi.org/10.1016/J.JPHOTOBIOL.2009.01.004

    Article  CAS  Google Scholar 

  10. Corazza AV, Jorge J, Kurachi C, Bagnato VS (2007) Photobiomodulation on the angiogenesis of skin wounds in rats using different light sources. Photomed Laser Surg 25:102–106. https://doi.org/10.1089/PHO.2006.2011

    Article  PubMed  Google Scholar 

  11. Lee JH, Chiang MH, Chen PH, Ho ML, Lee HE, Wang YH (2023) Anti-inflammatory effects of low-level laser therapy on human periodontal ligament cells: in vitro study. https://doi.org/10.1007/s10103-017-2376-6

  12. Kim H, Kim HB, Seo JH, Kim H, Cho KJ (2021) Effect of 808-nm laser photobiomodulation treatment in blepharitis rat model. Cornea 40:358–363. https://doi.org/10.1097/ICO.0000000000002596

  13. Goo H, Kim H, Ahn J, Cho KJ (2019) Effects of low-level light therapy at 740 nm on dry eye disease in vivo. Med Lasers; Eng Basic Res Clin Appl 8:50–58. https://doi.org/10.25289/ML.2019.8.2.50

  14. Posten W, Wrone DA, Dover JS, Arndt KA, Silapunt S, Alam M (2005) Low-level laser therapy for wound healing: mechanism and efficacy. Dermatologic Surg 31:334–340. https://doi.org/10.1097/00042728-200503000-00016

    Article  CAS  Google Scholar 

  15. Hopkins JT, McLoda TA, Seegmiller JG, Baxter GD (2004) Low-level laser therapy facilitates superficial wound healing in humans: a triple-blind, sham-controlled study. J Athl Train 39:223–229

    PubMed  PubMed Central  Google Scholar 

  16. Castano AP, Dai T, Yaroslavsky I, Cohen R, Apruzzese WA, Smotrich MH et al (2007) Low-level laser therapy for zymosan-induced arthritis in rats: importance of illumination time. Lasers Surg Med 39:543–550. https://doi.org/10.1002/lsm.20516

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ivandic BT, Ivandic T (2008) Low-level laser therapy improves vision in patients with age-related macular degeneration. Photomed Laser Surg 26:241–245. https://doi.org/10.1089/PHO.2007.2132

    Article  PubMed  Google Scholar 

  18. Calderhead RG, Kim W-S, Ohshiro T, Trelles MA, Vasily DB (2015) Adjunctive 830 nm light-emitting diode therapy can improve the results following aesthetic procedures. Laser Ther 24:277. https://doi.org/10.5978/ISLSM.15-OR-17

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhang G, Yi L, Wang C, Yang P, Zhang J, Wang J, et al. (2022) Photobiomodulation promotes angiogenesis in wound healing through stimulating the nuclear translocation of VEGFR2 and STAT3. J Photochem Photobiol B Biol 237. https://doi.org/10.1016/J.JPHOTOBIOL.2022.112573

  20. Cury V, Moretti AIS, Assis L, Bossini P, De Souza CJ, Neto CB et al (2013) Low level laser therapy increases angiogenesis in a model of ischemic skin flap in rats mediated by VEGF, HIF-1α and MMP-2. J Photochem Photobiol B 125:164. https://doi.org/10.1016/J.JPHOTOBIOL.2013.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Alves ACA, Vieira RDP, Leal-Junior ECP, dos Santos SA, Ligeiro AP, Albertini R et al (2013) Effect of low-level laser therapy on the expression of inflammatory mediators and on neutrophils and macrophages in acute joint inflammation. Arthritis Res Ther 15:R116. https://doi.org/10.1186/AR4296

    Article  PubMed  PubMed Central  Google Scholar 

  22. Da Ré GF, Vieira CP, Oliveira LP, Marques PP, dos Santos AM, Pimentel ER (2016) Low-level laser therapy modulates pro-inflammatory cytokines after partial tenotomy. Lasers Med Sci 31:759–766. https://doi.org/10.1007/S10103-016-1918-7

    Article  Google Scholar 

  23. Park Y, Kim H, Kim S, Cho KJ (2022) Effect of low-level light therapy in patients with dry eye: a prospective, randomized, observer-masked trial. Sci Rep 12:1–8. https://doi.org/10.1038/s41598-022-07427-6

Download references

Acknowledgements

The present research was supported by the research fund of Dankook University in 2022.

Funding

The present research was supported by the research fund of Dankook University in 2022.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Hoon Kim and Kyong Jin Cho. The first draft of the manuscript was written by Hoon Kim, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Kyong-Jin Cho.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Cho, KJ. The effect of photobiomodulation with 830-nm LED on corneal alkali burnt rat model. Lasers Med Sci 39, 81 (2024). https://doi.org/10.1007/s10103-024-04003-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10103-024-04003-4

Navigation