Skip to main content
Log in

Total ionizing dose effect modeling method for CMOS digital-integrated circuit

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Simulating the total ionizing dose (TID) of an electrical system using transistor-level models can be difficult and expensive, particularly for digital-integrated circuits (ICs). In this study, a method for modeling TID effects in complementary metal-oxide semiconductor (CMOS) digital ICs based on the input/output buffer information specification (IBIS) was proposed. The digital IC was first divided into three parts based on its internal structure: the input buffer, output buffer, and functional area. Each of these three parts was separately modeled. Using the IBIS model, the transistor VI characteristic curves of the buffers were processed, and the physical parameters were extracted and modeled using VHDL-AMS. In the functional area, logic functions were modeled in VHDL according to the data sheet. A golden digital IC model was developed by combining the input buffer, output buffer, and functional area models. Furthermore, the golden ratio was reconstructed based on TID experimental data, enabling the assessment of TID effects on the threshold voltage, carrier mobility, and time series of the digital IC. TID experiments were conducted using a CMOS non-inverting multiplexer, NC7SZ157, and the results were compared with the simulation results, which showed that the relative errors were less than 2% at each dose point. This confirms the practicality and accuracy of the proposed modeling method. The TID effect model for digital ICs developed using this modeling technique includes both the logical function of the IC and changes in electrical properties and functional degradation impacted by TID, which has potential applications in the design of radiation-hardening tolerance in digital ICs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Algorithm 1
Algorithm 2
Algorithm 3
Algorithm 4
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are openly available in Science Data Bank at https://cstr.cn/31253.11.sciencedb.14189 and https://www.doi.org/10.57760/sciencedb.14189.

References

  1. J.R. Schwank, M.R. Shaneyfelt, D.M. Fleetwood et al., Radiation effects in MOS oxides. IEEE Trans. Nucl. Sci. 55(4), 1833–1853 (2008). https://doi.org/10.1109/TNS.2008.2001040

    Article  ADS  Google Scholar 

  2. A.V. Kuzminova, N.A. Kulikov, V.D. Popov, Investigation into radiation effects in a p-channel MOS transistor. Semiconductors 54(8), 877–881 (2020). https://doi.org/10.1134/s1063782620080138

    Article  ADS  Google Scholar 

  3. M. Lee, S. Cho, N. Lee, J. Kim, New radiation-hardened design of a CMOS instrumentation amplifier and its tolerant characteristic analysis. Electronics 9(3), 388 (2020). https://doi.org/10.3390/electronics9030388

    Article  Google Scholar 

  4. L.E. Seixas, O.L. Gonçalez, R.G. Vaz et al., Minimizing the TID effects due to gamma rays by using diamond layout for MOSFETs. J. Mater. Sci. Mater. Electron. 30, 4339–4351 (2019). https://doi.org/10.1007/s10854-019-00747-w

    Article  Google Scholar 

  5. Y. Deval, H. Lapuyade, F. Rivet, Design of CMOS integrated circuits for radiation hardening and its application to space electronics. 13th IEEE International Conference on ASIC 2019 Chongqing, China, Oct 29-Nov 01, 2019, pp. 1-4. https://doi.org/10.1109/ASICON47005.2019.8983531

  6. D. Nair, R. Gale, T. Karp, Total ionizing dose effects on data retention capabilities of battery-backed CMOS SRAM. IEEE Trans. Nucl. Sci. 60(4), 2611–2616 (2013). https://doi.org/10.1109/TNS.2013.2258039

    Article  ADS  Google Scholar 

  7. Y.B. Huang, B. Li, L. Yang et al., Three-dimensional TCAD simulation study of the total ionizing dose effect on bulk nFinFET. Microelectron. Comput. 35(08), 42–47 (2018). https://doi.org/10.19304/j.cnki.issn1000-7180.2018.08.009

    Article  Google Scholar 

  8. B.C. Wang, M.T. Qiu, W. Chen et al., Machine learning-based analyses for total ionizing dose effects in bipolar junction transistors. Nucl. Sci. Tech. 33, 131 (2022). https://doi.org/10.1007/s41365-022-01107-w

    Article  Google Scholar 

  9. P. Wu, L. Wen, Z.Q. Xu et al., Synergistic effects of total ionizing dose and radiated electromagnetic interference on analog-to-digital converter. Nucl. Sci. Tech. 33, 39 (2022). https://doi.org/10.1007/s41365-022-01017-x

    Article  Google Scholar 

  10. S. Ashrafi, B. Eslami, Investigation of sensitivity and threshold voltage shift of commercial MOSFETs in gamma irradiation. Nucl. Sci. Tech. 27(6), 144 (2016). https://doi.org/10.1007/s41365-016-0149-8

    Article  Google Scholar 

  11. H. Jafari, S.A.H. Feghhi, S. Boorboor, The effect of interface trapped charge on threshold voltage shift estimation for gamma irradiated MOS device. Radiat. Meas. 73, 69–77 (2015). https://doi.org/10.1016/j.radmeas.2014.12.008

    Article  Google Scholar 

  12. X.T. Li, W. Wei, Y. Zhang et al., A 5.12 GHz LC-based Phase-Locked Loop for silicon pixel readouts of high energy physics. Nucl. Sci. Tech. 33, 82 (2022). https://doi.org/10.1007/s41365-022-01074-2

    Article  Google Scholar 

  13. J. Liu, Z. Zhou, D. Wang et al., Prototype of single-event effect localization system with CMOS pixel sensor. Nucl. Sci. Tech. 33, 136 (2022). https://doi.org/10.1007/s41365-022-01128-5

    Article  Google Scholar 

  14. I.S. Esqueda, H.J. Barnaby, M.P. King, Compact modeling of total ionizing dose and aging effects in MOS technologies. IEEE Trans. Nucl. Sci. 62(4), 1501–1515 (2015). https://doi.org/10.1109/TNS.2015.2414426

    Article  ADS  Google Scholar 

  15. I.S. Esqueda, H.J. Barnaby, K.E. Holbert et al., Modeling of ionizing radiation-induced degradation in multiple gate field effect transistors. IEEE Trans. Nucl. Sci. 58(2), 499–505 (2011). https://doi.org/10.1109/TNS.2010.2101615

    Article  ADS  Google Scholar 

  16. S. İlik, A. Kabaoğlu, N.Ṣ Solmaz et al., Modeling of total ionizing dose degradation on 180-nm n-MOSFETs using BSIM3. IEEE Trans. Elect. Dev. 66(11), 4617–4622 (2019). https://doi.org/10.1109/TED.2019.2926931

    Article  ADS  Google Scholar 

  17. W.H. Chen, L. Du, Y.Q. Zhuang et al., A model considering the ionizing radiation effects in MOS structure. Acta Phys. Sin. 58(6), 4090–4095 (2009). https://doi.org/10.7498/aps.58.4090

    Article  Google Scholar 

  18. A. Nikolaou, M. Bucher, N. Makris, Modeling of High Total Ionizing Dose (TID) effects for enclosed layout transistors in 65 nm bulk CMOS. et al., International Semiconductor Conference(CAS). Sinaia, Romania 2018, pp. 133–136 (2018). https://doi.org/10.1109/SMICND.2018.8539806

  19. W. Gao, M. Wu, Y. Tang et al., Total-ionization-dose radiation-induced noise modeling and analysis of a 2k \(\times\) 2k 4T CMOS active pixel sensor for space applications. IEEE Sens. J. 18(19), 8053–8063 (2018). https://doi.org/10.1109/JSEN.2018.2860787

    Article  ADS  Google Scholar 

  20. M. Lee, N. Lee, J. Kim et al., Modeling and simulation-based layout optimization for tolerance to TID effect on n-MOSFET. Electronics 10, 887 (2021). https://doi.org/10.3390/ELECTRONICS10080887

    Article  Google Scholar 

  21. J.Q. Hu, W.W. He, J. Chen et al., New method of total ionizing dose compact modeling in partially depleted silicon-on-insulator MOSFETs. Chin. Phys. Lett. 33(9), 86–89 (2016). https://doi.org/10.1088/0256-307X/33/9/096101

    Article  Google Scholar 

  22. X. Wang, Z. Gui, J. Li, Analytical I-V model of TID-effect in NMOSFET at low gate voltages. 018 IEEE MTT-S International Wireless Symposium (IWS), Chengdu, China, 2018, pp. 1-4. https://doi.org/10.1109/IEEE-IWS.2018.8400924

  23. C.M. Zhang, F. Jazaeri, G. Borghello et al., Characterization and modeling of gigarad-TID-induced drain leakage current of 28-nm bulk MOSFETs. IEEE Trans. Nucl. Sci. 66(1), 38–47 (2019). https://doi.org/10.1109/TNS.2018.2878105

    Article  ADS  Google Scholar 

  24. T. Li, Y. Yang, T. Liu, Modeling of 0.18 \(\mu\)m NMOSFETs for TID effect., IEEE International Nanoelectronics Conference (INEC). Chengdu, China 2016, pp. 1–2 (2016). https://doi.org/10.1109/INEC.2016.7589287

  25. X.Z. Wang, J.G. Huang, K. Wang et al., A concise numerical TID radiation model for n-MOSFET with nano-scaled LOCOS isolation under zero gate bias. Nanosci. Nanotech. Let. 6(9), 840–844 (2014). https://doi.org/10.1166/nnl.2014.1891

    Article  Google Scholar 

  26. J. Wei, T. Zhao, Z. Zhang, Modeling of CMOS Transistors from 0.18 \(\mu\)m Process by Artificial Neural Network. et al., China Semiconductor Technology International Conference (CSTIC). Shanghai, China 2021, pp. 1–3 (2021). https://doi.org/10.1109/CSTIC52283.2021.9461456

  27. K.O. Petrosyants, I.A. Kharitonov, L.M. Sambursky, SOI/SOS MOSFET universal compact SPICE model with account for radiation effects. EUROSOI-ULIS 2015:2015 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon, Bologna, Italy, 2015, pp. 305-308. https://doi.org/10.1109/ULIS.2015.7063834

  28. K.O. Petrosyants, I.A. Kharitonov, SPICE simulation of total dose and aging effects in MOSFET circuits., IEEE East-West Design & Test Symposium (EWDTS). Kazan, Russia 2018, pp. 1–6 (2018). https://doi.org/10.1109/EWDTS.2018.8524852

  29. E.O. Mikkola, B. Vermeire, H.G. Parks et al., VHDL-AMS modeling of total ionizing dose radiation effects on CMOS mixed signal circuits. IEEE Trans. Nucl. Sci. 54(4), 929–934 (2007). https://doi.org/10.1109/TNS.2007.903185

    Article  ADS  Google Scholar 

  30. The IBIS Open Forum, IBIS modeling cookbook for ibis version 4.0 (2005). https://ibis.org/cookbook/cookbook-v4.pdf

  31. D.A. Neamen, Semiconductor physics and devices, 4th edn. (Publishing House of Electronics Industry, China, 2011), pp.174–338

  32. C. Stankus, M. Ahmed, Comparing smoothing techniques for extracting MOSFET threshold voltage. Solid State Electron. 164(2), 107744 (2020). https://doi.org/10.1109/SMICND.2018.8539806

    Article  Google Scholar 

  33. R.D. Rodolfo, O.C. Adelmo, A.A. Carlos et al., A new integration-based procedure to extract the threshold voltage, the mobility enhancement factor, and the series resistance of thin-film MOSFETs. IEEE Trans. Elect. Dev. 66(7), 2979–2985 (2019). https://doi.org/10.1109/TED.2019.2913699

    Article  ADS  Google Scholar 

  34. J. Luo, J. Chen, Z. Chai et al., TID effects in tunnel-diode body-contact SOI nMOSFETs. IEEE Trans. Nucl. Sci. 61(6), 3018–3022 (2014). https://doi.org/10.1109/TNS.2014.2364923

    Article  ADS  Google Scholar 

  35. T.R. Oldham, F.B. Mclean, Total ionizing dose effects in MOS oxides and devices. IEEE Trans. Nucl. Sci. 50(3), 483–499 (2003). https://doi.org/10.1109/tns.2003.812927

    Article  ADS  Google Scholar 

  36. Q.Q. Wang, H.X. Liu, S.P. Chen et al., Effects of total dose irradiation on the threshold voltage of H-gate SOI NMOS devices. Nucl. Sci. Tech. 27, 117 (2016). https://doi.org/10.1007/s41365-016-0110-x

    Article  Google Scholar 

  37. M.V. Cassani, L.S. Salomone, S. Carbonetto et al., Experimental characterization and numerical modeling of total ionizing dose effects on field oxide MOS dosimeters. Radiat. Phys. Chem. 182, 109338 (2020). https://doi.org/10.1016/j.radphyschem.2020.109338

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by JHL, XPZ, GL, WDT, and XDZ. The first draft of the manuscript was written by BL and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jin-Hui Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

This work was supported by the special fund of the State Key Laboratory of Intense Pulsed Radiation Simulation and Effect (No. SKLIPR2011).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, B., Liu, JH., Zhang, XP. et al. Total ionizing dose effect modeling method for CMOS digital-integrated circuit. NUCL SCI TECH 35, 26 (2024). https://doi.org/10.1007/s41365-024-01378-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-024-01378-5

Keywords

Navigation