Skip to main content
Log in

Compression of femtosecond-pulse waveforms in spectral intensity filters

  • Special Section: Regular Paper
  • The Fourteenth Japan-Finland Joint Symposium on Optics in Engineering (OIE’23), Hamamatsu, Japan
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

Femtosecond pulsed lasers are widely used in applied technologies, such as laser processing, nonlinear optical microscopy, and time-of-flight measurement, wherein narrowing the pulse duration is particularly important for improving the processing efficiency and signal-to-noise ratio of measurement systems. This paper proposes a method for shortening temporal pulse waveforms using spectral intensity filtering. Symmetrical spectral filtering was specifically applied at the central wavelength of the femtosecond pulsed laser spectrum. To investigate the pulse-narrowing effect, we numerically simulated the pulse duration as a function of the filtering width and cut-off wavelength position. The results of these simulations showed that the pulse duration decreased as the filter wavelength approached the central wavelength of the light. Furthermore, increasing the filter width reduced the pulse duration. Additionally, we implemented a spatial light modulator-based pulse-shaping system to realize a spectral intensity filter. We experimentally demonstrated that the duration of a telecom-band pulse was reduced by 9.8% when using a spectral intensity filter with a width of 1 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gunaratne, T.C., Zhu, X., Lozovoy, V.V., Dantus, M.: Influence of the temporal shape of femtosecond pulses on silicon micromachining. J. Appl. Phys. 106, 123101 (2009)

    Article  ADS  Google Scholar 

  2. Hernandez-Rueda, J., Siegel, J., Galvan-Sosa, M., Ruiz de la Cruz, A., Garcia-Lechuga, M., Solis, J.: Controlling ablation mechanisms in sapphire by tuning the temporal shape of femtosecond laser pulses. J. Opt. Soc. Am. 32(1), 150–156 (2015)

    Article  ADS  Google Scholar 

  3. Zhu, X., Gunaratne, T.C., Lozovoy, V.V., Dantus, M.: In-situ femtosecond laser pulse characterization and compression during micromachining. Opt. Express 15(24), 16061–16066 (2007)

    Article  ADS  Google Scholar 

  4. Nie, B., Saytashev, I., Chong, A., Liu, H., Arkhipov, S.N., Wise, F.W., Dantus, M.: Multimodal microscopy with sub-30 fs Yb fiber laser oscillator. Biomed. Opt. Express 3, 1750–1756 (2012)

    Article  Google Scholar 

  5. Liang, X., Hu, W., Fu, L.: Pulse compression in two-photon excitation fluorescence microscopy. Opt. Express 18(14), 14893–14904 (2010)

    Article  ADS  Google Scholar 

  6. Fernández, A., Grüner-Nielsen, L., Andreana, M., Stadler, M., Kirchberger, S., Sturtzel, C., Distel, M., Zhu, L., Kautek, W., Leitgeb, R., Baltuska, A., Jespersen, K., Verhoef, A.: Optimizing pulse compressibility in completely all-fibered Ytterbium chirped pulse amplifiers for in vivo two photon laser scanning microscopy. Biomed. Opt. Express 8(8), 3526–3537 (2017)

    Article  Google Scholar 

  7. Takahashi, H., Watanabe, K., Shigematsu, K., Inoue, T., Satozono, H.: Measurement of group refractive indices of glass using color-selective multi-pulse generated with a spatial light modulator. Opt. Lett. 46, 1534–1537 (2021)

    Article  ADS  Google Scholar 

  8. Hentschel, M., Kienberger, R., Spielmann, C., Reider, G.A., Milosevic, N., Brabec, T., Corkum, P., Heinzmann, U., Drescher, M., Krausz, F.: Attosecond metrology. Nature 414(6863), 509–513 (2001)

    Article  ADS  Google Scholar 

  9. Takahashi, E.J., Lan, P., Mücke, O.D., Nabekawa, Y., Midorikawa, K.: Infrared two-color multicycle laser field synthesis for generating an intense attosecond pulse. Phys. Rev. Lett. 104(23), 233901 (2010)

    Article  ADS  Google Scholar 

  10. Takahashi, E.J., Lan, P., Mücke, O.D., Nabekawa, Y., Midorikawa, K.: Attosecond nonlinear optics using gigawatt-scale isolated attosecond pulses. Nat. Commun. 4(1), 2691 (2013)

    Article  ADS  Google Scholar 

  11. Xue, B., Tamaru, Y., Fu, Y., Yuan, H., Lan, P., Mücke, O.D., Suda, A., Midorikawa, K., Takahashi, E.J.: Fully stabilized multi-TW optical waveform synthesizer: toward gigawatt isolated attosecond pulses. Sci. Adv. 6(16), 2802 (2020)

    Article  ADS  Google Scholar 

  12. Weiner, A.M.: Femtosecond pulse shaping using spatial light modulators. Rev. Sci. Instrum. 71, 1929–1960 (2000)

    Article  ADS  Google Scholar 

  13. Weiner, A.M., Leaird, D.E., Patel, J.S., Wullert, J.R.: Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator. Opt. Lett. 15(6), 326–328 (1990)

    Article  ADS  Google Scholar 

  14. Baumert, T., Brixner, T., Seyfried, V., Strehle, M., Gerber, G.: Femtosecond pulse shaping by an evolutionary algorithm with feedback. Appl. Phys. B 65, 779–782 (1997)

    Article  ADS  Google Scholar 

  15. Yelin, D., Meshulach, D., Silberberg, Y.: Adaptive femtosecond pulse compression. Opt. Lett. 22(23), 1793–1795 (1997)

    Article  ADS  Google Scholar 

  16. Matsumoto, N., Konno, A., Inoue, T., Watanabe, K., Okazaki, S.: Amplitude-modulation-type multi-ring mask for two-photon excitation scanning microscopy. OSA Contin. 4(6), 1696–1711 (2021)

    Article  Google Scholar 

  17. Oketani, R., Doi, A., Smith, N.I., Nawa, Y., Kawata, S., Fujita, K.: Saturated two-photon excitation fluorescence microscopy with core-ring illumination. Opt. Lett. 42(3), 571–574 (2017)

    Article  ADS  Google Scholar 

  18. Hell, S.W., Hänninen, P.E., Kuusisto, A., Schrader, M., Soini, E.: Annular aperture two-photon excitation microscopy. Opt. Commun. 117(1–2), 20–24 (1995)

    Article  ADS  Google Scholar 

  19. Corral, M.M., Andrés, P., Rodrguez, C.J.Z., Kowalczyk, M.: Three-dimensional superresolution by annular binary filters. Opt. Commun. 165(4–6), 267–278 (1999)

    Article  ADS  Google Scholar 

  20. Watanabe, K., Inoue, T.: Energy adjustment pulse shaping algorithm part I: accuracy improvement of phase retrieval IFTA. Opt. Express 28(10), 14807–14814 (2020)

    Article  ADS  Google Scholar 

  21. Watanabe, K., Inoue, T.: Energy adjustment pulse shaping algorithm part II: realization of a spectral intensity design. Opt. Express 28(10), 14815–14823 (2020)

    Article  ADS  Google Scholar 

  22. Katilius, E., Neal, W.W.: Multiphoton excitation of fluorescent DNA base analogs. J. Biomed. Opt. 11(4), 004004 (2006)

    Article  Google Scholar 

  23. Liangjia, Z.: Reliable chromatic dispersion measurement method for installed optical fibers. Appl. Opt. 54(26), 79730–87977 (2015)

    Google Scholar 

  24. Hult, J., Watt, R.S., Kaminski, C.F.: Dispersion measurement in optical fibres using supercontinuum pulses. J. Light. Technol. 25(3), 820–824 (2007)

    Article  ADS  Google Scholar 

  25. Moon, S., Kim, D.Y.: Reflectometric fiber dispersion measurement using a supercontinuum pulse source. IEEE Photon. Technol. Lett. 21(17), 1262–1264 (2009)

    Article  ADS  Google Scholar 

  26. Zhang, S., Zou, X., Zhang, Y., Zhang, X., Liu, Y.: Precise measurement of fiber dispersion based on phase-modulated signal fading. Microw. Opt. Technol. Lett. 56(2), 427–430 (2014)

    Article  ADS  Google Scholar 

  27. Baker, C., Lu, Y., Bao, X.: Chromatic-dispersion measurement by modulation phase-shift method using a kerr phase-interrogator. Opt. Express 22(19), 22314–22319 (2014)

    Article  ADS  Google Scholar 

  28. Hlubina, P., Kadulova, M., Mergo, P.: Chromatic dispersion measurement of holey fibres using a supercontinuum source and a dispersion balanced interferometer. Opt. Lasers Eng. 51(4), 421–425 (2013)

    Article  Google Scholar 

  29. Frumker, E., Silberberg, Y.: Phase and amplitude pulse shaping with two-dimensional phase-only spatial light modulators. J. Opt. Soc. Am. B 24(12), 2940–2947 (2007)

    Article  ADS  Google Scholar 

  30. Frumker, E., Silberberg, Y.: Two-dimensional phase-only spatial light modulators for dynamic phase and amplitude pulse shaping. J. Mod. Opt. 56(18–19), 2049–2054 (2009)

    Article  ADS  Google Scholar 

  31. Vaughan, J.C., Hornung, T., Feurer, T., Nelson, K.A.: Diffraction-based femtosecond pulse shaping with a two-dimensional spatial light modulator. Opt. Lett. 30(3), 323–325 (2005)

    Article  ADS  Google Scholar 

  32. Wefers, M.M., Nelson, K.A.: Programmable phase and amplitude femtosecond pulse shaping. Opt. Lett. 18(23), 2032–2034 (1993)

    Article  ADS  Google Scholar 

  33. Davis, J.A., Cottrell, D.M., Campos, J., Yzuel, M.J., Moreno, I.: Encoding amplitude information onto phase-only filters. Appl. Opt. 38(23), 5004–5013 (1999)

    Article  ADS  Google Scholar 

  34. Ando, T., Ohtake, Y., Matsumoto, N., Inoue, T., Fukuchi, N.: Mode purities of Laguerre–Gaussian beams generated via complex-amplitude modulation using phase-only spatial light modulators. Opt. Lett. 34(1), 34–36 (2009)

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by JSPS KAKENHI (Grant Number JP23K04625).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koyo Watanabe.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest associated with this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watanabe, K., Takahashi, H., Shigematsu, K. et al. Compression of femtosecond-pulse waveforms in spectral intensity filters. Opt Rev 31, 236–241 (2024). https://doi.org/10.1007/s10043-024-00866-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-024-00866-8

Keywords

Navigation