Skip to main content
Log in

SPH–DEM modeling overtopping failure of earthfill dams

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Overtopping failure of earthfill dams is a complex process that involves strong soil–water coupling and structural failure. Physically based numerical models are essential for characterizing the breach mechanism and the failure process. In this study, a dam-break model that considers the combined effects of seepage and overflow is proposed. This model simultaneously solves the governing equations for solid and fluid phases in two different sets of Lagrangian particles. The coupling between water and soil are, respectively, modelled with SPH and DEM particles by considering their interactions, including drag force, buoyancy and particle adhesion. The capillary force caused by the meniscus between soil particles is incorporated to characterize the saturation degree of the soil. The dam-break model is validated by simulating seepage through an earth dam, a small-scale dam-break test, and dam erosion progress. Finally, the proposed model is employed to simulate the overtopping failure of an earthfill dam. Numerical simulations show that the proposed numerical model is capable for capturing the salient features of dam breach. Moreover, some other soil–water coupling processes, such as reservoir water infiltration, dam slope erosion and collapse, breach development, and dam failure, can be predicted by this model as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Abbaspour-Gilandeh Y, Hasankhani-Ghavam F, Shahgoli G et al (2018) Investigation of the effect of soil moisture content, contact surface material and soil texture on soil friction and soil adhesion coefficients. Acta Technol Agr 21(2):44–50. https://doi.org/10.2478/ata-2018-0009

    Article  Google Scholar 

  2. Akinci N, Akinci G, Teschner M (2013) Versatile surface tension and adhesion for SPH fluids. Acm T Graphic (TOG) 32(6):1–8. https://doi.org/10.1145/2508363.2508395

    Article  Google Scholar 

  3. Brown RJ, Rogers DC (1981) BRDAM users manual. US Department of the Interior, Water and Power Resources Service

  4. Bui HH, Fukagawa R (2013) An improved SPH method for saturated soils and its application to investigate the mechanisms of embankment failure: case of hydrostatic pore-water pressure. Int J Numer Anal Meth Geomech 37(1):31–50. https://doi.org/10.1002/nag.1084

    Article  Google Scholar 

  5. Bui HH, Fukagawa R, Sako K et al (2008) Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic-plastic soil constitutive model. Int J Numer Anal Met 32(12):1537–1570. https://doi.org/10.1002/nag.688

    Article  Google Scholar 

  6. Bui HH, Fukagawa R, Sako K et al (2011) Slope stability analysis and discontinuous slope failure simulation by elasto-plastic smoothed particle hydrodynamics (SPH). Géotechnique 61(7):565–574. https://doi.org/10.1680/geot.9.P.046

    Article  Google Scholar 

  7. Bui HH, Nguyen GD (2017) A coupled fluid-solid SPH approach to modelling flow through deformable porous media. Int J Solids Struct 125:244–264. https://doi.org/10.1016/j.ijsolstr.2017.06.022

    Article  Google Scholar 

  8. Burns SJ, Piiroinen PT, Hanley KJ (2019) Critical time step for dem simulations of dynamic systems using a Hertzian contact model. Int J Numer Meth Eng 119(5):432–451. https://doi.org/10.1002/nme.6056

    Article  MathSciNet  Google Scholar 

  9. Chen D, Huang WX, Huang D (2023) A study of overtopping breach process with soil-water erosion using improved smoothed particle hydrodynamics. Acta Geotech. https://doi.org/10.1007/s11440-023-01979-1

    Article  Google Scholar 

  10. Chen ZY, Ma LQ, Yu S et al (2015) Back analysis of the draining process of the Tangjiashan Barrier Lake. J Hydraul Eng 141(4):05014011. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000965

    Article  Google Scholar 

  11. Duricic J, Erdik T, van Gelder P (2013) Predicting peak breach discharge due to embankment dam failure. J Hydroinform 15(4):1361–1376. https://doi.org/10.2166/hydro.2013.196

    Article  Google Scholar 

  12. Feng ZK, Xu WJ (2021) GPU material point method (MPM) and its application on slope stability analysis. B Eng Geol Environ 80(7):5437–5449. https://doi.org/10.1007/s10064-021-02265-8

    Article  Google Scholar 

  13. Fread DL (1988) BREACH, an erosion model for earthen dam failures. Hydrologic Research Laboratory, National Weather Service, NOAA MD, United States

  14. Fread DL (1988) The NWS DAMBRK model: theoretical background/user documentation. Hydrologic Research Laboratory, National Weather Service, NOAA

  15. Goswami P, Batty C (2014) Regional time stepping for SPH. In: Eurographics 2014, Eurographics Association. pp. 45–48. https://doi.org/10.2312/egsh.20141011

  16. Hanson G, Temple D, Hunt S et al (2011) Development and characterization of soil material parameters for embankment breach. Appl Eng Agric 27(4):587–595. https://doi.org/10.13031/2013.38205

    Article  Google Scholar 

  17. Heinrich D, Milatz M (2023) Capillary cohesion of different granular materials determined from uniaxial compression and water retention tests. In: E3S web of conferences, p. 02003. https://doi.org/10.1051/e3sconf/202338202003

  18. Jin YF, Yin ZY, Zhou XW et al (2021) A stable node-based smoothed pfem for solving geotechnical large deformation 2D problems. Comput Method Appl M 387:114179. https://doi.org/10.1016/j.cma.2021.114179

    Article  MathSciNet  Google Scholar 

  19. Li S, Peng C, Wu W et al (2020) Role of baffle shape on debris flow impact in step-pool channel: an SPH study. Landslides 17:2099–2111. https://doi.org/10.1007/s10346-020-01410-w

    Article  Google Scholar 

  20. Lian YJ, Bui HH, Nguyen GD et al (2021) A general SPH framework for transient seepage flows through unsaturated porous media considering anisotropic diffusion. Comput Method Appl M 387:114169. https://doi.org/10.1016/j.cma.2021.114169

    Article  MathSciNet  Google Scholar 

  21. Liu C, Pollard DD, Gu K et al (2015) Mechanism of formation of wiggly compaction bands in porous sandstone: 2. Numerical simulation using discrete element method. J Geophys Res 120(12):8153–8168. https://doi.org/10.1002/2015JB012374

    Article  Google Scholar 

  22. Luo Y, Chen L, Xu M et al (2014) Breaking mode of cohesive homogeneous earth-rock-fill dam by overtopping flow. Nat Hazards 74:527–540. https://doi.org/10.1007/s11069-014-1202-8

    Article  Google Scholar 

  23. Ma GD, Bui HH, Lian YJ et al (2022) A five-phase approach, SPH framework and applications for predictions of seepage-induced internal erosion and failure in unsaturated/saturated porous media. Comput Methods Appl Mech Eng 401:115614. https://doi.org/10.1016/j.cma.2022.115614

    Article  ADS  MathSciNet  Google Scholar 

  24. Monaghan JJ, Lattanzio JC (1985) A refined particle method for astrophysical problems. Astron Astrophys Rev 149:135–143

    ADS  Google Scholar 

  25. Morris M (2002) The impact project-continuing European research on Dambreak processes and the failure of flood embankments. In: Reservoirs in a changing world: proceedings of the 12th conference of the BDS held at TRINITY COLLEGE, DUBLIN 4–8 September 2002, Thomas Telford Publishing. pp 484–493. https://doi.org/10.1680/riacw.31395.0038

  26. Pan JZ, Lu ZX (1998) Prediction of paddy soil normal adhesion to steel surfaces by fuzzy logic. J Terramech 35(2):103–107. https://doi.org/10.1016/S0022-4898(98)00015-9

    Article  Google Scholar 

  27. Peng C, Li S, Wu W et al (2022) On three-dimensional SPH modelling of large-scale landslides. Can Geotech J 59(1):24–39. https://doi.org/10.1139/cgj-2020-0774

    Article  CAS  Google Scholar 

  28. Peng C, Wang S, Wu W et al (2019) Loquat: an open-source GPU-accelerated SPH solver for geotechnical modeling. Acta Geotech 14:1269–1287. https://doi.org/10.1007/s11440-019-00839-1

    Article  Google Scholar 

  29. Peng C, Wu W, Yu HS et al (2015) A SPH approach for large deformation analysis with hypoplastic constitutive model. Acta Geotech 10:703–717. https://doi.org/10.1007/s11440-015-0399-3

    Article  Google Scholar 

  30. Pourlak M, Akbari H, Jabbari E (2022) Importance of initial particle distribution in modeling dam break analysis with SPH. KSCE J Civ Eng 27. https://doi.org/10.1007/s12205-022-0304-1

    Article  Google Scholar 

  31. Price DJ (2012) Smoothed particle hydrodynamics and magnetohydrodynamics. J Comput Phys 231(3):759–794. https://doi.org/10.1016/j.jcp.2010.12.011

    Article  ADS  MathSciNet  Google Scholar 

  32. Qiu T, Liu C, Zhong XC et al (2020) Experimental research on the impact of temperature on the adhesion characteristics of soil-structure interface. Geofluids 2020:1–9. https://doi.org/10.1155/2020/6675576

    Article  CAS  Google Scholar 

  33. Rabinovich YI, Esayanur MS, Moudgil BM (2005) Capillary forces between two spheres with a fixed volume liquid bridge: theory and experiment. Langmuir 21(24):10992–10997. https://doi.org/10.1021/la0517639

    Article  CAS  PubMed  Google Scholar 

  34. Rungjiratananon W, Szego Z, Kanamori Y et al (2008) Real-time animation of sand-water interaction. In: Computer graphics forum, Wiley Online Library. pp 1887–1893. https://doi.org/10.1111/j.1467-8659.2008.01336.x

  35. Schmocker L, Hager WH (2009) Modelling dike breaching due to overtopping. J Hydraul Res 47(5):585–597. https://doi.org/10.3826/jhr.2009.3586

    Article  Google Scholar 

  36. Steeb H, Diebels S (2003) A thermodynamic-consistent model describing growth and remodeling phenomena. Comput Mater Sci 28(3–4):597–607. https://doi.org/10.1016/j.commatsci.2003.08.016

    Article  Google Scholar 

  37. Sun XS, Sakai M, Yamada Y (2013) Three-dimensional simulation of a solid-liquid flow by the DEM-SPH method. J Comput Phys 248:147–176. https://doi.org/10.1016/j.jcp.2013.04.019

    Article  ADS  MathSciNet  CAS  Google Scholar 

  38. Vardoulakis I, Stavropoulou M, Papanastasiou P (1996) Hydro-mechanical aspects of the sand production problem. Transp Porous Media 22:225–244. https://doi.org/10.1007/BF01143517

    Article  CAS  Google Scholar 

  39. Wang B, Chen YL, Wu C et al (2018) Empirical and semi-analytical models for predicting peak outflows caused by embankment dam failures. J Hydrol 562:692–702. https://doi.org/10.1016/j.jhydrol.2018.05.049

    Article  Google Scholar 

  40. Wang LJ (2020) Experimental research on overtopping breach flume of cohesionless earth rock dam. Low Temp Archit Technol (in Chinese) 42(10), 118–120+124. https://doi.org/10.13905/j.cnki.dwjz.2020.10.028

  41. Wang X, Fujisawa M, Mikawa M (2021) Visual simulation of soil-structure destruction with seepage flows. Proc ACM Comput Graph Interact Tech 4(3):1–18. https://doi.org/10.1145/3480141

    Article  Google Scholar 

  42. Wu JS, Zhang H, Yang R et al (2013) Numerical modeling of dam-break flood through intricate city layouts including underground spaces using GPU-based sph method. J Hydrodyn 25:818–828. https://doi.org/10.1016/S1001-6058(13)60429-1

    Article  Google Scholar 

  43. Wu W, Bui HH (2021) Point-based methods and their applications in geomechanics. Acta Geotech 16(8):2313–2313. https://doi.org/10.1007/s11440-021-01275-w

    Article  Google Scholar 

  44. Xu WJ, Dong XY (2021) Simulation and verification of landslide tsunamis using a 3d SPH–DEM coupling method. Comput Geotech 129:103803. https://doi.org/10.1016/j.compgeo.2020.103803

    Article  Google Scholar 

  45. Xu XY, Jiang YL, Yu P (2021) SPH simulations of 3d dam-break flow against various forms of the obstacle: toward an optimal design. Ocean Eng 229:108978. https://doi.org/10.1016/j.oceaneng.2021.108978

    Article  Google Scholar 

  46. Yan K, Zhao T, Liu Y (2022) Numerical investigation into the plane breach process of cohesionless dikes induced by overtopping. Int J Geomech 22(11):04022204. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002586

    Article  Google Scholar 

  47. Zerrouk N, Marche C (2004) New theoretical model for breaches in overtopped earth-fill dams and its validation. Can J Civil Eng 31(5):797–812

    Article  Google Scholar 

  48. Zhan L, Peng C, Zhang BY et al (2019) A stabilized TL–WC SPH approach with GPU acceleration for three-dimensional fluid-structure interaction. J Fluid Struct 86:329–353. https://doi.org/10.1016/j.jfluidstructs.2019.02.002

    Article  Google Scholar 

  49. Zhang C, Zhu YJ, Wu D et al (2022) Smoothed particle hydrodynamics: methodology development and recent achievement. J Hydrodyn 34(5):767–805. https://doi.org/10.1007/s42241-022-0052-1

    Article  Google Scholar 

  50. Zhang JY, Li Y, Xuan GX et al (2009) Overtopping breaching of cohesive homogeneous earth dam with different cohesive strength. Sci China Ser E 52:3024–3029. https://doi.org/10.1007/s11431-009-0275-1

    Article  Google Scholar 

  51. Zhang SR, Tan YS (2014) Risk assessment of earth dam overtopping and its application research. Nat Hazards 74:717–736. https://doi.org/10.1007/s11069-014-1207-3

    Article  Google Scholar 

  52. Zhao YD, Choo J (2020) Stabilized material point methods for coupled large deformation and fluid flow in porous materials. Comput Method Appl M 362:112742. https://doi.org/10.1016/j.cma.2019.112742

    Article  MathSciNet  Google Scholar 

  53. Zhong QM, Chen SS, Deng Z (2017) Numerical model for homogeneous cohesive dam breaching due to overtopping failure. J Mt Sci-Engl 14:571–580. https://doi.org/10.1007/s11629-016-3907-5

    Article  Google Scholar 

  54. Zhong QM, Chen SS, Deng Z (2018) A simplified physically-based model for core dam overtopping breach. Eng Fail Anal 90:141–155. https://doi.org/10.1016/j.engfailanal.2018.03.032

    Article  Google Scholar 

  55. Zhong QM, Chen SS, Deng Z et al (2019) Prediction of overtopping-induced breach process of cohesive dams. J Geotech Geoenviron 145(5):04019012. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002035

    Article  Google Scholar 

  56. Zhong QM, Wu WM, Chen SS et al (2016) Comparison of simplified physically based dam breach models. Nat Hazards 84:1385–1418. https://doi.org/10.1007/s11069-016-2492-9

    Article  Google Scholar 

  57. Zhou GG, Li S, Lu XQ et al (2022) Large-scale landslide dam breach experiments: overtopping and “overtopping and seepage’’ failures. Eng Geol 304:106680. https://doi.org/10.1016/j.enggeo.2022.106680

    Article  Google Scholar 

  58. Zhou MJ, Shi ZM, Peng C et al (2024) Two-phase modelling of erosion and deposition process during overtopping failure of landslide dams using GPU-accelerated ED-SPH. Comput Geotech 166:105944. https://doi.org/10.1016/j.compgeo.2023.105944

    Article  Google Scholar 

  59. Zhu CW, Peng C, Wu W et al (2022) A multi-layer SPH method for generic water-soil dynamic coupling problems. Part I: revisit, theory, and validation. Comput Method Appl M 396:115106. https://doi.org/10.1016/j.cma.2022.115106

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Project of Yangtze River Water Science Research Joint Fund (No. U2240211); Central Public-Interest Scientific Institution Basal Research Fund (No. Y722004). The first author gratefully acknowledges the assistance from Dr. Xu Wang at University of Tsukuba.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dianqing Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Z., Wang, S., Li, D. et al. SPH–DEM modeling overtopping failure of earthfill dams. Acta Geotech. 19, 953–970 (2024). https://doi.org/10.1007/s11440-024-02258-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-024-02258-3

Keywords

Navigation