Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

All-atom RNA structure determination from cryo-EM maps

Abstract

Many methods exist for determining protein structures from cryogenic electron microscopy maps, but this remains challenging for RNA structures. Here we developed EMRNA, a method for accurate, automated determination of full-length all-atom RNA structures from cryogenic electron microscopy maps. EMRNA integrates deep learning-based detection of nucleotides, three-dimensional backbone tracing and scoring with consideration of sequence and secondary structure information, and full-atom construction of the RNA structure. We validated EMRNA on 140 diverse RNA maps ranging from 37 to 423 nt at 2.0–6.0 Å resolutions, and compared EMRNA with auto-DRRAFTER, phenix.map_to_model and CryoREAD on a set of 71 cases. EMRNA achieves a median accuracy of 2.36 Å root mean square deviation and 0.86 TM-score for full-length RNA structures, compared with 6.66 Å and 0.58 for auto-DRRAFTER. EMRNA also obtains a high residue coverage and sequence match of 93.30% and 95.30% in the built models, compared with 58.20% and 42.20% for phenix.map_to_model and 56.45% and 52.3% for CryoREAD. EMRNA is fast and can build an RNA structure of 100 nt within 3 min.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the EMRNA framework.
Fig. 2: Overall performance of EMRNA for top 1, 5 and 10 predictions on the test set of 71 cases.
Fig. 3: Comparison between EMRNA and auto-DRRAFTER in building the full-length RNA structure.
Fig. 4: Comparison of EMRNA, phenix.map_to_model and CryoREAD in recovering RNA fragments on the test set of 71 cases.
Fig. 5: Quality assessment of the built EMRNA models.
Fig. 6: Comparison between EMRNA and CryoREAD on raw RNA-only maps.

Similar content being viewed by others

Data availability

The raw data of the evaluation results are provided in the article and supplementary tables. All published data sets used in this paper were taken from the EMDB and PDB (accession codes specified in the figure captions and in supplementary tables). The EMRNA input maps and output models used in the study are available at https://zenodo.org/records/10225107 ref. 67. Source data are provided with this paper.

Code availability

The EMRNA package is freely available for academic or noncommercial users at http://huanglab.phys.hust.edu.cn/EMRNA/ or https://zenodo.org/records/10540040 (ref. 68).

References

  1. Nogales, E. The development of cryo-EM into a mainstream structural biology technique. Nat. Methods 13, 24–27 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Frank, J. Advances in the field of single-particle cryo-electron microscopy over the last decade. Nat. Protoc. 12, 209–212 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cheng, Y. Single-particle cryo-EM—how did it get here and where will it go. Science 361, 876–880 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Terwilliger, T. C., Adams, P. D., Afonine, P. V. & Sobolev, O. V. A fully automatic method yielding initial models from high-resolution cryo-electron microscopy maps. Nat. Methods 15, 905–908 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Terwilliger, T. C., Adams, P. D., Afonine, P. V. & Sobolev, O. V. Cryo-EM map interpretation and protein model building using iterative map segmentation. Protein Sci. 29, 87–99 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. de la Rosa-Trevín, J. M. et al. Scipion: a software framework toward integration, reproducibility and validation in 3D electron microscopy. J. Struct. Biol. 195, 93–99 (2016).

    Article  PubMed  Google Scholar 

  8. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lawson, C. L. et al. EMDataBank unified data resource for 3DEM. Nucleic Acids Res. 44, D396–D403v2016 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Ma, H., Jia, X., Zhang, K. & Su, Z. Cryo-EM advances in RNA structure determination. Signal Transduct. Target. Ther. 7, 58 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Su, Z. et al. Cryo-EM structures of full-length Tetrahymena ribozyme at 3.1 Å resolution. Nature 596, 603–607 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bonilla, S. L., Vicens, Q. & Kieft, J. S. Cryo-EM reveals an entangled kinetic trap in the folding of a catalytic RNA. Sci. Adv. 8, eabq4144 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Luo, B. et al. Cryo-EM reveals dynamics of Tetrahymena group I intron self-splicing. Nat. Catal. 6, 298–309 (2023).

    Article  CAS  Google Scholar 

  15. Li, S. et al. Topological crossing in the misfolded Tetrahymena ribozyme resolved by cryo-EM. Proc. Natl Acad. Sci. USA 119, e2209146119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang, X., Li, S., Pintilie, G., Palo, M. Z. & Zhang, K. Snapshots of the first-step self-splicing of Tetrahymena ribozyme revealed by cryo-EM. Nucleic Acids Res. 51, 1317–1325 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li, S., Palo, M. Z., Zhang, X., Pintilie, G. & Zhang, K. Snapshots of the second-step self-splicing of Tetrahymena ribozyme revealed by cryo-EM. Nat. Commun. 14, 1294 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu, D., Thélot, F. A., Piccirilli, J. A., Liao, M. & Yin, P. Sub-3-Å cryo-EM structure of RNA enabled by engineered homomeric self-assembly. Nat. Methods 19, 576–585 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Baker, M. L. et al. Modeling protein structure at near atomic resolutions with Gorgon. J. Struct. Biol. 174, 360–373 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lindert, S. et al. EM-fold: de novo folding of α-helical proteins guided by intermediate-resolution electron microscopy density maps. Structure 17, 990–1003 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen, M. & Baker, M. L. Automation and assessment of de novo modeling with Pathwalking in near atomic resolution cryoEM density maps. J. Struct. Biol. 204, 555–563 (2018).

    Article  PubMed  Google Scholar 

  22. Wang, R. Y. et al. De novo protein structure determination from near-atomic-resolution cryo-EM maps. Nat. Methods 12, 335–338 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Frenz, B., Walls, A. C., Egelman, E. H., Veesler, D. & DiMaio, F. RosettaES: a sampling strategy enabling automated interpretation of difficult cryo-EM maps. Nat. Methods 14, 797–800 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Terashi, G. & Kihara, D. De novo main-chain modeling for EM maps using MAINMAST. Nat. Commun. 9, 1618 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  25. Si, D. et al. Deep learning to predict protein backbone structure from high-resolution cryo-EM density maps. Sci. Rep. 10, 4282 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. He, J. & Huang, S. Y. Full-length de novo protein structure determination from cryo-EM maps using deep learning. Bioinformatics 37, 3480–3490 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Pfab, J., Phan, N. M. & Si, D. DeepTracer for fast de novo cryo-EM protein structure modeling and special studies on CoV-related complexes. Proc. Natl Acad. Sci. USA 118, e2017525118 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. He, J. & Huang, S. Y. EMNUSS: a deep learning framework for secondary structure annotation in cryo-EM maps. Brief. Bioinform. 22, bbab156 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  29. He, J., Lin, P., Chen, J., Cao, H. & Huang, S. Y. Model building of protein complexes from intermediate-resolution cryo-EM maps with deep learning-guided automatic assembly. Nat. Commun. 13, 4066 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang, X., Zhang, B., Freddolino, P. L. & Zhang, Y. CR-I-TASSER: assemble protein structures from cryo-EM density maps using deep convolutional neural networks. Nat. Methods 19, 195–204 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhou, X. et al. Progressive assembly of multi-domain protein structures from cryo-EM density maps. Nat. Comput. Sci. 2, 265–275 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jamali, K., Kimanius, D. & Scheres, S. H. A graph neural network approach to automated model building in cryo-EM maps. In The 11th International Conference on Learning Representations (ICLR, 2022).

  33. Kappel, K. et al. De novo computational RNA modeling into cryo-EM maps of large ribonucleoprotein complexes. Nat. Methods 15, 947–954 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kappel, K. et al. Accelerated cryo-EM-guided determination of three-dimensional RNA-only structures. Nat. Methods 17, 699–707 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nguyen, T. H. D. et al. The architecture of the spliceosomal U4/U6. U5 tri-snRNP. Nature 523, 47–52 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Greber, B. J. et al. Architecture of the large subunit of the mammalian mitochondrial ribosome. Nature 505, 515–519 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Chaker-Margot, M., Barandun, J., Hunziker, M. & Klinge, S. Architecture of the yeast small subunit processome. Science 355, eaal1880 (2017).

    Article  PubMed  Google Scholar 

  38. Li, X. et al. Structure of ribosomal silencing factor bound to Mycobacterium tuberculosis ribosome. Structure 23, 1858–1865 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chojnowski, G. et al. Brickworx builds recurrent RNA and DNA structural motifs into medium-and low-resolution electron-density maps. Acta Crystallogr. D 71, 697–705 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nakamura, A. et al. Fast and automated protein–DNA/RNA macromolecular complex modeling from cryo-EM maps. Brief. Bioinform. 24, bbac632 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wang, X., Terashi, G. & Kihara, D. CryoREAD: de novo structure modeling for nucleic acids in cryo-EM maps using deep learning. Nat. Methods 20, 1739–1747 (2023).

    Article  CAS  PubMed  Google Scholar 

  42. Das, R., Karanicolas, J. & Baker, D. Atomic accuracy in predicting and designing noncanonical RNA structure. Nat. Methods 7, 291–294 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Watkins, A. M., Rangan, R. & Das, R. FARFAR2: improved de novo Rosetta prediction of complex global RNA folds. Structure 28, 963–976 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. He, J., Li, T. & Huang, S. Y. Improvement of cryo-EM maps by simultaneous local and non-local deep learning. Nat. Commun. 14, 3217 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tian, C. et al. ff19SB: amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution. J. Chem. Theory Comput. 16, 528–552 (2019).

    Article  PubMed  Google Scholar 

  46. Zgarbová, M. et al. Refinement of the Cornell et al. nucleic acids force field based on reference quantum chemical calculations of glycosidic torsion profiles. J. Chem. Theory Comput. 7, 2886–2902 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D 74, 531–544 (2018).

    Article  ADS  CAS  Google Scholar 

  48. Gong, S., Zhang, C. & Zhang, Y. RNA-align: quick and accurate alignment of RNA 3D structures based on size-independent TM-scoreRNA. Bioinformatics 35, 4459–4461 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Singh, J., Hanson, J., Paliwal, K. & Zhou, Y. RNA secondary structure prediction using an ensemble of two-dimensional deep neural networks and transfer learning. Nat. Commun. 10, 5407 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  50. Lorenz, R. et al. ViennaRNA Package 2.0. Algorithms Mol. Biol. 6, 1–14 (2011).

    Article  Google Scholar 

  51. Zhang, K. et al. Practical blind image denoising via Swin-Conv-UNet and data synthesis. Mach. Intell. Res. 20, 822–836 (2023).

    Article  Google Scholar 

  52. Liu, Z. et al. Swin transformer: hierarchical vision transformer using shifted windows. In Proc. IEEE/CVF International Conference on Computer Vision 9992–10002 (IEEE, 2021).

  53. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Capriotti, E. & Marti-Renom, M. A. Quantifying the relationship between sequence and three-dimensional structure conservation in RNA. BMC Bioinform. 11, 1–10 (2010).

    Article  Google Scholar 

  56. Wang, Z., Bovik, A. C., Sheikh, H. R. & Simoncelli, E. P. Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004).

    Article  ADS  PubMed  Google Scholar 

  57. Helsgaun K. An effective implementation of the Lin–Kernighan traveling salesman heuristic. Eur. J. Oper. Res. 126, 106–130 (2000).

  58. Wayment-Steele, H. K. et al. RNA secondary structure packages evaluated and improved by high-throughput experiments. Nat. Methods 19, 1234–1242 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kabsch, W. A solution for the best rotation to relate two sets of vectors. Acta Crystallogr. A 32, 922–923 (1976).

    Article  ADS  Google Scholar 

  60. Lu, X. J., Bussemaker, H. J. & Olson, W. K. DSSR: an integrated software tool for dissecting the spatial structure of RNA. Nucleic Acids Res. 43, e142–e142 (2015).

    PubMed  PubMed Central  Google Scholar 

  61. Zhang, C. & Pyle, A. M. CSSR: assignment of secondary structure to coarse-grained RNA tertiary structures. Acta Crystallogr. D 78, 466–471 (2022).

    Article  ADS  CAS  Google Scholar 

  62. Zhao, Y. et al. Automated and fast building of three-dimensional RNA structures. Sci. Rep. 2, 734 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Wang, J. & Xiao, Y. Using 3dRNA for RNA 3-D structure prediction and evaluation. Curr. Protoc. Bioinform. 57, 5–9 (2017).

    Article  Google Scholar 

  64. Zhang, Y., Wang, J. & Xiao, Y. 3dRNA: 3D structure prediction from linear to circular RNAs. J. Mol. Biol. 434, 167452 (2022).

    Article  CAS  PubMed  Google Scholar 

  65. Ma, H. et al. Auto-DRRAFTER: automated RNA modeling based on cryo-EM density. Methods Mol. Biol. 2568, 193–211 (2023).

    Article  PubMed  Google Scholar 

  66. Zhang, K. et al. Cryo-EM structure of a 40 kDa SAM-IV riboswitch RNA at 3.7 Å resolution. Nat. Commun. 10, 5511 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  67. Li, T. & Huang, S.-Y. EMRNA: Accurate RNA structure determination from cryo-EM maps by deep learning and integrated modeling. Zenodohttps://zenodo.org/records/10225107 (2023).

  68. Li, T. & Huang, S.-Y. EMRNA program. Zenodo https://zenodo.org/records/10540040 (2024).

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant nos. 32161133002, 62072199 and 32071247) and the startup grant of Huazhong University of Science and Technology. The computation is completed in the HPC Platform of Huazhong University of Science and Technology.

Author information

Authors and Affiliations

Authors

Contributions

S.-Y.H. and Y.X. conceived and supervised the project. T.L., J.H., H.C., Y.Z. and S.-Y.H. designed and performed the experiments. S.-Y.H. and T.L. analyzed the data. H.C. and J.C. tested the program. T.L. and S.-Y.H. wrote the paper. All authors read and approved the final version of the paper.

Corresponding authors

Correspondence to Yi Xiao or Sheng-You Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Biotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Texts 1–3, Figs. 1–15 and Note.

Reporting Summary

Supplementary Table

Supplementary Tables 1–10.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., He, J., Cao, H. et al. All-atom RNA structure determination from cryo-EM maps. Nat Biotechnol (2024). https://doi.org/10.1038/s41587-024-02149-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41587-024-02149-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing