Skip to main content
Log in

Oxidation Characterization of Water Immersion Coal on Pore Evolution and Oxygen Adsorption Behavior

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

The oxidation and spontaneous combustion of water immersion coal threatens the mine safety production after experiencing water evacuation in the underground goaf. The weathering effect creates disparate water content in coal that results in the distinct oxidation process. This paper investigates the immersion coal pore evolution and oxygen adsorption behavior at different water contents from the molecular dynamics perspective. Proximate analysis, ultimate analysis, 13C NMR spectrum research, and XPS spectrum were used to construct the macromolecular coal model. There is a double-peak behavior for the water immersion coal porosity and specific surface area. The maximum porosity of water immersion coal was 25.7% and 28.9% arising at 5.9% and 10.2% water content, respectively. The adsorption loading and average oxygen adsorption density both exhibited the rise-decline-rise-decline trend with two remarkable peaks presented at the same site. The two peaks possessed the lowest oxygen adsorption total energy level of − 23.37 and − 21.73 kcal/mol. Temperature rise trial was conducted to evaluate and verify the double-peak characterization of the water immersion coal at the low-temperature oxidation stage. The temperature rising rate versus the heating time of higher water content slowed down at an elevated water bath temperature. There were two maximum immersion coal temperatures, 85.52 and 85.66 °C, with optimum water content of 6.0% and 12.0%, respectively, at the stabilization stage. The obtained achievement of the crucial optimum water content has important theoretical guiding significance for the scientific prevention of the water immersion coal oxidation spontaneous combustion disaster in an underground goaf.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

References

  • Ai, T., Wu, S. Y., Zhang, R., Gao, M. Z., Zhou, J. F., Xie, J., Ren, L., & Zhang, Z. P. (2021). Changes in the structure and mechanical properties of a typical coal induced by water immersion. International Journal of Rock Mechanics and Mining Sciences, 138, 104597.

    Article  Google Scholar 

  • Bi, H. R., Chen, W., Li, J., Guo, J. T., & She, C. C. (2022). Modeling impacts of mining activity-induced landscape change on local climate. Environmental Science and Pollution Research, 29, 71136–71149.

    Article  PubMed  Google Scholar 

  • Biswal, S. S., Raval, S., & Gorai, A. K. (2019). Delineation and mapping of coal mine fire using remote sensing data-a review. International Journal of Remote Sensing, 40, 6499–6529.

    Article  ADS  Google Scholar 

  • Bu, Y. C., Niu, H. Y., Wang, H. Y., Li, S. P., Yang, Y. X., Qiu, T., & Wang, G. (2022). Study on pore structure change and lean oxygen re-ignition characteristics of high-temperature oxidized water-immersed coal. Fuel, 323, 124346.

    Article  CAS  Google Scholar 

  • Bu, Y. C., Niu, H. Y., Wang, H. Y., Qiu, T., Chen, H. Y., & Xue, D. (2023). Characteristics of lean oxygen combustion and dynamic microreaction process of water-soaked coal. Fuel, 332, 126010.

    Article  CAS  Google Scholar 

  • Chatterjee, D. P., & Nandi, A. K. (2021). A review on the recent advances in hybrid supercapacitors. Journal of Materials Chemistry A, 9, 15880–15918.

    Article  CAS  Google Scholar 

  • Cheng, G., Li, Y. L., Zhang, M. N., & Cao, Y. J. (2021). Simulation of the adsorption behavior of CO2/N2/O2 and H2O molecules in lignite. Journal of China Coal Society, 46, 960–969.

    Google Scholar 

  • Chong, J. K., Cheng, X., Xiao, L. H., Guo, M., Gao, J. M., Cheng, F. Q., Zhang, M., & Huo, X. T. (2022). Fine characterization of the macromolecular structure of Shanxi low-rank coal. Journal of Molecular Structure, 1273, 134359.

    Article  Google Scholar 

  • Ding, C., Li, Z. X., Wang, J. R., Lu, B., & Gao, D. M. (2023). Effects of inert gas CO2/N2 injection on coal low-temperature oxidation characteristic: Experiments and simulations. Arabian Journal of Chemistry, 16, 104510.

    Article  CAS  Google Scholar 

  • Global Energy Review: CO2 Emissions in 2021. International Energy Agency (IEA). https://www.iea.org/reports/global-energy-review-co2-emissions-in-2021-2.

  • Grzybek, T., Pietrzak, R., & Wachowska, H. (2002). X-ray photoelectron spectroscopy study of oxidized coals with different sulphur content. Fuel Processing Technology, 77, 1–7.

    Article  Google Scholar 

  • Guzovic, Z., Duic, N., Piacentino, A., Markovska, N., Mathiesen, B. V., & Lund, H. (2022). Paving the way for the Paris Agreement: Contributions of SDEWES science. Energy, 263, 125617.

    Article  Google Scholar 

  • Hua, K. P., & Lu, Y. K. (2022). Adsorption mechanism of physical adsorption of oxygen by bituminous coal. Safety in Coal Mines, 53, 48–55.

    Google Scholar 

  • Huang, L., Ning, Z. F., Wang, Q., Qi, R. R., Zeng, Y., Qin, H. B., Ye, H. T., & Zhang, W. T. (2018). Molecular simulation of adsorption behaviors of methane, carbon dioxide and their mixtures on kerogen: Effect of kerogen maturity and moisture content. Fuel, 211, 159–172.

    Article  CAS  Google Scholar 

  • Huang, Z., Li, J. Y., Gao, Y. K., Shao, Z. L., & Zhang, Y. H. (2022). Thermal behavior and microscopic characteristics of water-soaked coal spontaneous combustion. Combustion Science and Technology, 194, 636–654.

    Article  CAS  Google Scholar 

  • Ishaq, H., Dincer, I., & Crawford, C. (2022). A review on hydrogen production and utilization: Challenges and opportunities. International Journal of Hydrogen Energy, 47, 26238–26264.

    Article  CAS  Google Scholar 

  • Li, J., Fu, P. B., Zhu, Q. R., Mao, Y. D., & Yang, C. (2018). A lab-scale experiment on low-temperature coal oxidation in context of underground coal fires. Applied Thermal Engineering, 141, 333–338.

    Article  CAS  Google Scholar 

  • Li, J. L., Lu, W., Kong, B., Cao, Y. J. Z., Qi, G. S., & Qin, C. R. (2019). Mechanism of gas generation during low-temperature oxidation of coal and model compounds. Energy and Fuels, 33, 1527–1539.

    Article  Google Scholar 

  • Li, W. J., Yu, X. Z., Hu, N., Huang, F., Wang, J., & Peng, Q. N. (2022a). Study on the relationship between fossil energy consumption and carbon emission in Sichuan Province. Energy Reports, 8, 53–62.

    Article  Google Scholar 

  • Li, Y. Y., Yang, Z. Y., Ju, X. Q., & Zhou, A. N. (2022b). Adsorption and diffusion behavior of CH4 and CO2 in closed and open pores from Zhaozhuang coal. Energy & Fuels, 36, 2582–2590.

    Article  CAS  Google Scholar 

  • Li, Z., Ni, G. H., Wen, Y. Z., Jiang, H. H., Zhang, X. F., Wang, G., & Wang, Z. Y. (2022c). Coal-CH4/CO2 high-low orbit adsorption characteristics based on molecular simulation. Fuel, 315, 123263.

    Article  Google Scholar 

  • Lian, L. L., Qin, Z. H., Li, C. S., Yang, X. Q., & Lin, Z. (2021). Model construction and molecular dynamics simulation of coal group component skeleton structure. Journal of China Coal Society, 46, 2776–2792.

    Google Scholar 

  • Liang, Y. T., & Wang, S. G. (2017). Prediction of coal mine goaf self-heating with fluid dynamics in porous media. Fire Safety Journal, 87, 49–56.

    Article  CAS  Google Scholar 

  • Nie, S. B., Tang, M. Y., Xing, S. C., Han, C., Qin, R. X., Song, X. L., & Dai, G. L. (2020). Investigation of water influence on coal based on thermal oxidative degradation kinetics. Journal of Thermal Analysis and Calorimetry, 139, 1265–1274.

    Article  CAS  Google Scholar 

  • Niu, H. Y., Liu, Y. K., Wu, K., Wu, J. P., Li, S. L., & Wang, H. Y. (2023a). Study on pore structure change characteristics of water-immersed and air-dried coal based on SEM-BET. Combustion Science and Technology, 195, 3994–4016.

    Article  CAS  Google Scholar 

  • Niu, H. Y., Mao, Z. H., Bu, Y. C., Li, S. P., Yang, Y. X., Sun, Q. Q., & Tao, M. (2023b). Effect of soaking time on the spontaneous combustion characteristics of lignite. Combustion Science and Technology. https://doi.org/10.1080/00102202.2023.2213816

    Article  Google Scholar 

  • Ren, S. J., Zhang, Y. N., Song, Z. Y., Xiao, Y., Deng, J., & Shu, C. M. (2023a). Initial exploration on potential fire hazards detection from coal spontaneous combustion applied by acoustic wave. Science of the Total Environment, 897, 165475.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Ren, Z. J., Wang, D. P., Qin, Z., & Liu, Z. W. (2023b). Effects of pore size, water content, and oxygen-containing functional groups on oxygen adsorption in bituminous coal. Scientific Reports, 13, 10373.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Si, L. L., Wei, J. P., Xi, Y. J., Wang, H. Y., Wen, Z. H., Li, B., & Zhang, H. T. (2021). The influence of long-time water intrusion on the mineral and pore structure of coal. Fuel, 290, 119848.

    Article  CAS  Google Scholar 

  • Song, B. B., Zhai, X. W., Ma, T., Wang, B., Hao, L., & Zhou, Y. J. (2023). Effect of water immersion on pore structure of bituminous coal with different metamorphic degrees. Energy, 274, 127449.

    Article  CAS  Google Scholar 

  • Wang, D. M. (2012). The coal oxidation dynamics: theory and application. Science Press.

    Google Scholar 

  • Wang, H. H., Dlugogorski, B. Z., & Kennedy, E. M. (2003). Coal oxidation at low temperatures: Oxygen consumption, oxidation products, reaction mechanism and kinetic modelling. Progress in Energy and Combustion Science, 29, 487–513.

    Article  CAS  Google Scholar 

  • Wang, C. P., Lv, C. H., Bai, Z. J., Deng, J., Kang, F. R., Xiao, Y., & Shu, C. M. (2021a). Synergistic acceleration effect of coal spontaneous combustion caused by moisture and associated pyrite. Fuel, 304, 121458.

    Article  CAS  Google Scholar 

  • Wang, K., Fan, H. H., Gao, P., He, Y. Z., & Yang, C. (2021b). Influence of water content on the coal spontaneous combustion behavior during low-temperature pre-pyrolysis processes. Combustion Science and Technology, 192, 2058–2069.

    Article  Google Scholar 

  • Wang, D. M., Jia, J. Z., Li, B., Wu, Y. M., & Zhao, D. (2022). Molecular simulation study on the effect of coal metamorphism on the competitive adsorption of CO2/CH4 in binary system. Fuel, 335, 127046.

    Google Scholar 

  • Xin, H. H., Tian, W. J., Zhou, B. H., Qi, X. Y., Li, J. F., Wu, J. F., & Wang, D. M. (2023). Pore structure evolution and oxidation characteristic change of coal treated with liquid carbon dioxide and liquid nitrogen. Energy, 268, 126674.

    Article  CAS  Google Scholar 

  • Xu, Y. L., Bu, Y. C., & Wang, L. Y. (2021). Re-ignition characteristics of the long-flame coal affected by high-temperature oxidization & water immersion. Journal of Cleaner Production, 315, 128064.

    Article  CAS  Google Scholar 

  • Xue, S. Z., Sun, Q., Shi, Q. M., & Jia, H. L. (2023). Influence of temperature on long-flame coal characteristics based on nuclear magnetic resonance T-1-T-2 spectra. Natural Resources Research, 32, 1251–1263.

    Article  CAS  Google Scholar 

  • Yang, Y. L., Li, Z. H., Si, L. L., Gu, F. J., Zhou, Y. B., Qi, Q. Q., & Sun, X. M. (2016). Study governing the impact of long-term water immersion on coal spontaneous ignition. Arabian Journal for Science and Engineering, 42, 1359–1369.

    Article  Google Scholar 

  • Zhai, X. W., Wang, B., Wang, K., & Dariusz, O. (2019). Study on the influence of water immersion on the characteristic parameters of spontaneous combustion oxidation of low-rank bituminous coal. Combustion Science and Technology, 191, 1101–1122.

    Article  CAS  Google Scholar 

  • Zhai, X. W., Ge, H., Wang, T. Y., Shu, C. M., & Li, J. (2020a). Effect of water immersion on active functional groups and characteristic temperatures of bituminous coal. Energy, 205, 118076.

    Article  CAS  Google Scholar 

  • Zhai, X. W., Jiang, S. R., & Wang, B. (2020b). Research status of influence of water content on pore structure and spontaneous combustion characteristics of coal. Safety in Coal Mines, 51, 38–42.

    Google Scholar 

  • Zhang, Z. Q., & Yan, K. F. (2011). Molecular dynamics simulation of oxygen diffusion in dry and water-containing brown coal. Molecular Physics, 109, 2367–2374.

    Article  CAS  ADS  Google Scholar 

  • Zhang, Y. T., Wang, D. X., & Zhong, X. X. (2007). Study on influence of water on low-temperature oxidation of coal. Safety in Coal Mines, 11, 1–4.

    CAS  Google Scholar 

  • Zhang, Q. H., Liu, X. F., Nie, B. S., Wu, W. B., & Wang, R. (2022). Methane sorption behavior on tectonic coal under the influence of moisture. Fuel, 327, 125150.

    Article  CAS  Google Scholar 

  • Zhao, H., Yu, J. L., Liu, J. S., & Tahmasebi, A. (2015). Experimental study on the self-heating characteristics of Indonesian lignite during low temperature oxidation. Fuel, 150, 55–63.

    Article  CAS  Google Scholar 

  • Zhao, K. Y., Xu, N. X., Mei, G., & Tian, H. (2016). Predicting the distribution of ground fissures and water-conducted fissures induced by coal mining: A case study. Springerplus, 5, 977.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao, Y. G., Li, M. F., & Shao, Y. (2022). Effect of demineralization on Yimin lignite by experiments and molecular simulation techniques. Journal of Molecular Structure, 1269, 133837.

    Article  CAS  Google Scholar 

  • Zheng, X. Z., Lu, J. H., Xiao, Y., Zhao, Y. H., & Li, Q. W. (2014). Experimental study over the effect of high moisture on the coal spontaneous combustion characteristic parameters. Journal of Safety and Environment, 14, 71–75.

    Google Scholar 

  • Zhu, H. Q., Guo, S., Xie, Y. Y., & Zhao, H. R. (2021). Molecular simulation and experimental studies on CO2 and N2 adsorption to bituminous coal. Environmental Science and Pollution Research, 28, 15673–15686.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities (2022JCCXAQ07), National Natural Science Foundation of China (52074304), National Key R&D Program of China (2023YFC3009101), and Open Research Project of the State Key Laboratory of Coal Resources and Safe Mining (SKLCRSM17KFA10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-xiao Lu.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Xx., Shi, Gy., Wang, S. et al. Oxidation Characterization of Water Immersion Coal on Pore Evolution and Oxygen Adsorption Behavior. Nat Resour Res 33, 925–942 (2024). https://doi.org/10.1007/s11053-024-10314-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-024-10314-8

Keywords

Navigation