Skip to main content

Advertisement

Log in

Phillygenin Inhibits TGF-β1-induced Hepatic Stellate Cell Activation and Inflammation: Regulation of the Bax/Bcl-2 and Wnt/β-catenin Pathways

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Hepatic fibrosis (HF), a precursor to cirrhosis and hepatocellular carcinoma, is caused by abnormal proliferation of connective tissue and excessive accumulation of extracellular matrix in the liver. Notably, activation of hepatic stellate cells (HSCs) is a key link in the development of HF. Phillygenin (PHI, C21H24O6) is a lignan component extracted from the traditional Chinese medicine Forsythiae Fructus, which has various pharmacological activities such as anti-inflammatory, antioxidant and anti-tumour effects. However, whether PHI can directly inhibit HSC activation and ameliorate the mechanism of action of HF has not been fully elucidated. Therefore, the aim of the present study was to investigate the in vitro anti-HF effects of PHI and the underlying molecular mechanisms. Transforming growth factor-β1 (TGF-β1)-activated mouse HSCs (mHSCs) and human HSCs (LX-2 cells) were used as an in vitro model of HF and treated with different concentrations of PHI for 24 h. Subsequently, cell morphological changes were observed under the microscope, cell viability was analyzed by MTT assay, cell cycle and apoptosis were detected by flow cytometry, and the mechanism of anti-fibrotic effect of PHI was explored by immunofluorescence, ELISA, RT-qPCR and western blot. The results showed that PHI suppressed the proliferation of TGF-β1-activated mHSCs and LX-2 cells, arrested the cell cycle at the G0/G1 phase, decreased the levels of α-SMA, Collagen I, TIMP1 and MMP2 genes and proteins, and promoted apoptosis in activated mHSCs and LX-2 cells. Besides, PHI reduced the expression of inflammatory factors in activated mHSCs and LX-2 cells, suggesting a potential anti-inflammatory effect. Mechanically, PHI inhibited TGF-β1-induced HSC activation and inflammation, at least in part through modulation of the Bax/Bcl-2 and Wnt/β-catenin pathways. Overall, PHI has significant anti-HF effects and may be a promising agent for the treatment of HF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The analyzed data sets generated during the present study will be provided by the corresponding author on reasonable request.

Abbreviations

HF:

Hepatic fibrosis

ECM:

Extracellular matrix

HSCs:

Hepatic stellate cells

TGF-β1:

Transforming growth factor-β1

PHI:

Phillygenin

mHSCs:

Mouse hepatic stellate cells

FBS:

Fetal bovine serum

MTT:

3-(4,5-Dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide

DMSO:

Dimethyl sulfoxide

PI:

Propidium iodide

IL-1β:

Interleukin 1β

IL-6:

Interleukin 6

TNF-α:

Tumor necrosis factor α

BSA:

Bovine serum albumin

GSK-3β:

Glycogen synthase kinase 3β

α-SMA:

α-Smooth muscle actin

TIMP1:

Tissue inhibitors of metalloproteinase 1

Bax:

Bcl-2 associated X

Bcl-2:

B-cell lymphoma 2

ELISA:

Enzyme-linked immunosorbent assay

RT-qPCR:

Real-time quantitative PCR

References

  1. Kisseleva, T., and D. Brenner. 2021. Molecular and cellular mechanisms of liver fibrosis and its regression. Nature Reviews Gastroenterology & Hepatology 18 (3): 151–166.

    Article  Google Scholar 

  2. Berumen, J., J. Baglieri, T. Kisseleva, and K. Mekeel. 2021. Liver fibrosis: Pathophysiology and clinical implications. WIREs Mechanisms of Disease 13 (1): e1499.

    Article  CAS  PubMed  Google Scholar 

  3. Cogliati, B., C.N. Yashaswini, S. Wang, D. Sia, and S.L. Friedman. 2023. Friend or foe? The elusive role of hepatic stellate cells in liver cancer. Nature Reviews Gastroenterology & Hepatology 20 (10): 647–661.

    Article  CAS  Google Scholar 

  4. Kumar, S., Q. Duan, R. Wu, E.N. Harris, and Q. Su. 2021. Pathophysiological communication between hepatocytes and non-parenchymal cells in liver injury from NAFLD to liver fibrosis. Advanced Drug Delivery Reviews 176: 113869.

    Article  CAS  PubMed  Google Scholar 

  5. Higashi, T., S.L. Friedman, and Y. Hoshida. 2017. Hepatic stellate cells as key target in liver fibrosis. Advanced Drug Delivery Reviews 121: 27–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Friedman, S.L. 2008. Hepatic stellate cells: Protean, multifunctional, and enigmatic cells of the liver. Physiological Reviews 88 (1): 125–172.

    Article  CAS  PubMed  Google Scholar 

  7. Tsuchida, T., and S.L. Friedman. 2017. Mechanisms of hepatic stellate cell activation. Nature Reviews Gastroenterology & Hepatology 14 (7): 397–411.

    Article  CAS  Google Scholar 

  8. Parola, M., and M. Pinzani. 2019. Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues. Molecular Aspects of Medicine 65: 37–55.

    Article  CAS  PubMed  Google Scholar 

  9. Guo, Y., L. Xiao, L. Sun, and F. Liu. 2012. Wnt/beta-catenin signaling: A promising new target for fibrosis diseases. Physiological Research 61 (4): 337–346.

    Article  CAS  PubMed  Google Scholar 

  10. Dees, C., and J.H. Distler. 2013. Canonical Wnt signalling as a key regulator of fibrogenesis - implications for targeted therapies? Experimental Dermatology 22 (11): 710–713.

    Article  PubMed  Google Scholar 

  11. Hu, H.H., G. Cao, X.Q. Wu, N.D. Vaziri, and Y.Y. Zhao. 2020. Wnt signaling pathway in aging-related tissue fibrosis and therapies. Ageing Research Reviews 60: 101063.

    Article  CAS  PubMed  Google Scholar 

  12. Schunk, S.J., J. Floege, D. Fliser, and T. Speer. 2021. WNT-β-catenin signalling - a versatile player in kidney injury and repair. Nature Reviews Nephrology 17 (3): 172–184.

    Article  CAS  PubMed  Google Scholar 

  13. Nishikawa, K., Y. Osawa, and K. Kimura. 2018. Wnt/β-Catenin Signaling as a Potential Target for the Treatment of Liver Cirrhosis Using Antifibrotic Drugs. International Journal of Molecular Sciences 19 (10): 3103.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jiang, F., C.J. Parsons, and B. Stefanovic. 2006. Gene expression profile of quiescent and activated rat hepatic stellate cells implicates Wnt signaling pathway in activation. Journal of Hepatology 45 (3): 401–409.

    Article  CAS  PubMed  Google Scholar 

  15. Wang, C., R. Wu, S. Zhang, L. Gong, K. Fu, C. Yao, C. Peng, and Y. Li. 2023. A comprehensive review on pharmacological, toxicity, and pharmacokinetic properties of phillygenin: Current landscape and future perspectives. Biomedicine & Pharmacotherapy 166: 115410.

    Article  CAS  Google Scholar 

  16. Song, W., J. Wu, L. Yu, and Z. Peng. 2018. Evaluation of the Pharmacokinetics and Hepatoprotective Effects of Phillygenin in Mouse. BioMed Research International 2018: 7964318.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhou, W., X. Yan, Y. Zhai, H. Liu, L. Guan, Y. Qiao, J. Jiang, and L. Peng. 2022. Phillygenin ameliorates nonalcoholic fatty liver disease via TFEB-mediated lysosome biogenesis and lipophagy. Phytomedicine 103: 154235.

    Article  CAS  PubMed  Google Scholar 

  18. Guo, J., W.R. Yan, J.K. Tang, X. Jin, H.H. Xue, T. Wang, L.W. Zhang, Q.Y. Sun, and Z.X. Liang. 2022. Dietary phillygenin supplementation ameliorates aflatoxin B(1)-induced oxidative stress, inflammation, and apoptosis in chicken liver. Ecotoxicology and Environmental Safety 236: 113481.

    Article  CAS  PubMed  Google Scholar 

  19. Hu, N., C. Guo, X. Dai, C. Wang, L. Gong, L. Yu, C. Peng, and Y. Li. 2020. Forsythiae Fructuse water extract attenuates liver fibrosis via TLR4/MyD88/NF-κB and TGF-β/smads signaling pathways. Journal of Ethnopharmacology 262: 113275.

    Article  CAS  PubMed  Google Scholar 

  20. Hu, N., C. Wang, X. Dai, M. Zhou, L. Gong, L. Yu, C. Peng, and Y. Li. 2020. Phillygenin inhibits LPS-induced activation and inflammation of LX2 cells by TLR4/MyD88/NF-κB signaling pathway. Journal of Ethnopharmacology 248: 112361.

    Article  CAS  PubMed  Google Scholar 

  21. Wang, C., C. Ma, K. Fu, L.H. Gong, Y.F. Zhang, H.L. Zhou, and Y.X. Li. 2021. Phillygenin Attenuates Carbon Tetrachloride-Induced Liver Fibrosis via Modulating Inflammation and Gut Microbiota. Frontiers in Pharmacology 12: 756924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang, C., C. Ma, K. Fu, Y. Liu, L. Gong, C. Peng, and Y. Li. 2022. Hepatoprotective effect of phillygenin on carbon tetrachloride-induced liver fibrosis and its effects on short chain fatty acid and bile acid metabolism. Journal of Ethnopharmacology 296: 115478.

    Article  CAS  PubMed  Google Scholar 

  23. Ma, C., C. Wang, Y. Zhang, Y. Li, K. Fu, L. Gong, H. Zhou, and Y. Li. 2023. Phillygenin inhibited M1 macrophage polarization and reduced hepatic stellate cell activation by inhibiting macrophage exosomal miR-125b-5p. Biomedicine & Pharmacotherapy 159: 114264.

    Article  CAS  Google Scholar 

  24. Kim, K.K., D. Sheppard, H.A. Chapman. 2018. TGF-β1 Signaling and Tissue Fibrosis. Cold Spring Harb Perspect Biol 10(4).

  25. Peng, F., Y. Tian, J. Ma, Z. Xu, S. Wang, M. Tang, J. Lei, G. Gong, and Y. Jiang. 2020. CAT1 silencing inhibits TGF-β1-induced mouse hepatic stellate cell activation in vitro and hepatic fibrosis in vivo. Cytokine 136: 155288.

    Article  CAS  PubMed  Google Scholar 

  26. Liao, J., Z. Zhang, Q. Yuan, L. Luo, and X. Hu. 2022. The mouse Anxa6/miR-9-5p/Anxa2 axis modulates TGF-β1-induced mouse hepatic stellate cell (mHSC) activation and CCl(4)-caused liver fibrosis. Toxicology Letters 362: 38–49.

    Article  CAS  PubMed  Google Scholar 

  27. Du, B., L. Zhang, Y. Sun, G. Zhang, J. Yao, M. Jiang, L. Pan, and C. Sun. 2019. Phillygenin exhibits anti-inflammatory activity through modulating multiple cellular behaviors of mouse lymphocytes. Immunopharmacology and Immunotoxicology 41 (1): 76–85.

    Article  CAS  PubMed  Google Scholar 

  28. Jiao, J., S.L. Friedman, and C. Aloman. 2009. Hepatic fibrosis. Current Opinion in Gastroenterology 25 (3): 223–229.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Arthur, M.J., J.P. Iredale, and D.A. Mann. 1999. Tissue inhibitors of metalloproteinases: Role in liver fibrosis and alcoholic liver disease. Alcoholism, Clinical and Experimental Research 23 (5): 940–943.

    CAS  PubMed  Google Scholar 

  30. Pinzani, M., and F. Marra. 2001. Cytokine receptors and signaling in hepatic stellate cells. Seminars in Liver Disease 21 (3): 397–416.

    Article  CAS  PubMed  Google Scholar 

  31. Koyama, Y., and D.A. Brenner. 2017. Liver inflammation and fibrosis. The Journal of Clinical Investigation 127 (1): 55–64.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hammerich, L., and F. Tacke. 2023. Hepatic inflammatory responses in liver fibrosis. Nature Reviews Gastroenterology & Hepatology 20 (10): 633–646.

    Article  CAS  Google Scholar 

  33. Zhou, M., X. Zhao, L. Liao, Y. Deng, M. Liu, J. Wang, X. Xue, and Y. Li. 2022. Forsythiaside A Regulates Activation of Hepatic Stellate Cells by Inhibiting NOX4-Dependent ROS. Oxidative Medicine and Cellular Longevity 2022: 9938392.

    PubMed  PubMed Central  Google Scholar 

  34. Wang, C., Y. Liu, L. Gong, X. Xue, K. Fu, C. Ma, and Y. Li. 2023. Phillygenin Ameliorates Carbon Tetrachloride-Induced Liver Fibrosis: Suppression of Inflammation and Wnt/β-Catenin Signaling Pathway. Inflammation 46 (4): 1543–1560.

    Article  CAS  PubMed  Google Scholar 

  35. Schuster, R., F. Younesi, M. Ezzo, and B. Hinz. 2023. The Role of Myofibroblasts in Physiological and Pathological Tissue Repair. Cold Spring Harbor Perspectives in Biology 15 (1): a041231.

    Article  CAS  PubMed  Google Scholar 

  36. Hinz, B., and D. Lagares. 2020. Evasion of apoptosis by myofibroblasts: A hallmark of fibrotic diseases. Nature Reviews Rheumatology 16 (1): 11–31.

    Article  CAS  PubMed  Google Scholar 

  37. Green, D.R. 2022. The Mitochondrial Pathway of Apoptosis Part II: The BCL-2 Protein Family. Cold Spring Harbor Perspectives in Biology 14 (6): a041046.

    Article  CAS  PubMed  Google Scholar 

  38. Gibson, C.J., and M.S. Davids. 2015. BCL-2 Antagonism to Target the Intrinsic Mitochondrial Pathway of Apoptosis. Clinical Cancer Research 21 (22): 5021–5029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Edlich, F. 2018. BCL-2 proteins and apoptosis: Recent insights and unknowns. Biochemical and Biophysical Research Communications 500 (1): 26–34.

    Article  CAS  PubMed  Google Scholar 

  40. Jarskog, L.F., E.S. Selinger, J.A. Lieberman, and J.H. Gilmore. 2004. Apoptotic proteins in the temporal cortex in schizophrenia: High Bax/Bcl-2 ratio without caspase-3 activation. American Journal of Psychiatry 161 (1): 109–115.

    Article  PubMed  Google Scholar 

  41. Perugorria, M.J., P. Olaizola, I. Labiano, A. Esparza-Baquer, M. Marzioni, J.J.G. Marin, L. Bujanda, and J.M. Banales. 2019. Wnt-β-catenin signalling in liver development, health and disease. Nature Reviews. Gastroenterology & Hepatology 16 (2): 121–136.

    Article  CAS  Google Scholar 

  42. Lee, J.M., J. Yang, P. Newell, S. Singh, A. Parwani, S.L. Friedman, K.N. Nejak-Bowen, and S.P. Monga. 2014. β-Catenin signaling in hepatocellular cancer: Implications in inflammation, fibrosis, and proliferation. Cancer Letters 343 (1): 90–97.

    Article  CAS  PubMed  Google Scholar 

  43. Miao, C.G., Y.Y. Yang, X. He, C. Huang, Y. Huang, L. Zhang, X.W. Lv, Y. Jin, and J. Li. 2013. Wnt signaling in liver fibrosis: Progress, challenges and potential directions. Biochimie 95 (12): 2326–2335.

    Article  CAS  PubMed  Google Scholar 

  44. Liu, J., Q. Xiao, J. Xiao, C. Niu, Y. Li, X. Zhang, Z. Zhou, G. Shu, and G. Yin. 2022. Wnt/β-catenin signalling: Function, biological mechanisms, and therapeutic opportunities. Signal Transduction and Targeted Therapy 7 (1): 3.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Nusse, R., and H. Clevers. 2017. Wnt/β-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell 169 (6): 985–999.

    Article  CAS  PubMed  Google Scholar 

  46. Koehler, A., J. Schlupf, M. Schneider, B. Kraft, C. Winter, and J. Kashef. 2013. Loss of Xenopus cadherin-11 leads to increased Wnt/β-catenin signaling and up-regulation of target genes c-myc and cyclin D1 in neural crest. Developmental Biology 383 (1): 132–145.

    Article  CAS  PubMed  Google Scholar 

  47. Ahmed, H., M.I. Umar, S. Imran, F. Javaid, S.K. Syed, R. Riaz, and W. Hassan. 2022. TGF-β1 signaling can worsen NAFLD with liver fibrosis backdrop. Experimental and Molecular Pathology 124: 104733.

    Article  CAS  PubMed  Google Scholar 

  48. Xiong, Y., H. Lu, and H. Xu. 2020. Galangin Reverses Hepatic Fibrosis by Inducing HSCs Apoptosis via the PI3K/Akt, Bax/Bcl-2, and Wnt/β-Catenin Pathway in LX-2 Cells. Biological &/and Pharmaceutical Bulletin 43 (11): 1634–1642.

    Article  CAS  Google Scholar 

  49. Zhang, C., X.Q. Liu, H.N. Sun, X.M. Meng, Y.W. Bao, H.P. Zhang, F.M. Pan, and C. Zhang. 2018. Octreotide attenuates hepatic fibrosis and hepatic stellate cells proliferation and activation by inhibiting Wnt/β-catenin signaling pathway, c-Myc and cyclin D1. International Immunopharmacology 63: 183–190.

    Article  CAS  PubMed  Google Scholar 

  50. Liu, Z., S. Zhou, Y. Zhang, and M. Zhao. 2022. Rat bone marrow mesenchymal stem cells (BMSCs) inhibit liver fibrosis by activating GSK3β and inhibiting the Wnt3a/β-catenin pathway. Infectious Agents and Cancer 17 (1): 17.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by National Natural Science Foundation of China (No: 81891012, 81630101, and U19A2010), Sichuan TCM Science and Technology Industry Innovation Team (No: 2022C001), Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine (No: ZYYCXTD-D-202209), Sichuan Province Science and Technology Support Program (No: 2021JDRC0041, 2022ZYD0088).

Author information

Authors and Affiliations

Authors

Contributions

Cheng Wang: conceptualization, methodology, writing-original draft, writing-reviewing and editing. Shenglin Zhang: writing-original draft. Cheng Wang and Yanzhi Li: project administration. Lihong Gong and Chenhao Yao: software, validation. Ke Fu: data curation. Yunxia Li: writing-reviewing and editing, funding acquisition. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yunxia Li.

Ethics declarations

Ethics Approval

The whole experimental scheme was approved by the Animal Experiment Ethics Committee of Chengdu University of traditional Chinese medicine and carried out under its supervision (Permit number: SYXK 2020-124).

Consent for Publication

All authors have read the manuscript and authorized its publication.

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Zhang, S., Li, Y. et al. Phillygenin Inhibits TGF-β1-induced Hepatic Stellate Cell Activation and Inflammation: Regulation of the Bax/Bcl-2 and Wnt/β-catenin Pathways. Inflammation (2024). https://doi.org/10.1007/s10753-024-01984-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10753-024-01984-w

KEY WORDS

Navigation